19 research outputs found

    Middleware platform for distributed applications incorporating robots, sensors and the cloud

    Get PDF
    Cyber-physical systems in the factory of the future will consist of cloud-hosted software governing an agile production process executed by autonomous mobile robots and controlled by analyzing the data from a vast number of sensors. CPSs thus operate on a distributed production floor infrastructure and the set-up continuously changes with each new manufacturing task. In this paper, we present our OSGibased middleware that abstracts the deployment of servicebased CPS software components on the underlying distributed platform comprising robots, actuators, sensors and the cloud. Moreover, our middleware provides specific support to develop components based on artificial neural networks, a technique that recently became very popular for sensor data analytics and robot actuation. We demonstrate a system where a robot takes actions based on the input from sensors in its vicinity

    MultiTASC: A Multi-Tenancy-Aware Scheduler for Cascaded DNN Inference at the Consumer Edge

    Full text link
    Cascade systems comprise a two-model sequence, with a lightweight model processing all samples and a heavier, higher-accuracy model conditionally refining harder samples to improve accuracy. By placing the light model on the device side and the heavy model on a server, model cascades constitute a widely used distributed inference approach. With the rapid expansion of intelligent indoor environments, such as smart homes, the new setting of Multi-Device Cascade is emerging where multiple and diverse devices are to simultaneously use a shared heavy model on the same server, typically located within or close to the consumer environment. This work presents MultiTASC, a multi-tenancy-aware scheduler that adaptively controls the forwarding decision functions of the devices in order to maximize the system throughput, while sustaining high accuracy and low latency. By explicitly considering device heterogeneity, our scheduler improves the latency service-level objective (SLO) satisfaction rate by 20-25 percentage points (pp) over state-of-the-art cascade methods in highly heterogeneous setups, while serving over 40 devices, showcasing its scalability.Comment: Accepted at 28th IEEE Symposium on Computers and Communications (ISCC), 202

    One Size Does Not Fit All: Quantifying and Exposing the Accuracy-Latency Trade-off in Machine Learning Cloud Service APIs via Tolerance Tiers

    Full text link
    Today's cloud service architectures follow a "one size fits all" deployment strategy where the same service version instantiation is provided to the end users. However, consumers are broad and different applications have different accuracy and responsiveness requirements, which as we demonstrate renders the "one size fits all" approach inefficient in practice. We use a production-grade speech recognition engine, which serves several thousands of users, and an open source computer vision based system, to explain our point. To overcome the limitations of the "one size fits all" approach, we recommend Tolerance Tiers where each MLaaS tier exposes an accuracy/responsiveness characteristic, and consumers can programmatically select a tier. We evaluate our proposal on the CPU-based automatic speech recognition (ASR) engine and cutting-edge neural networks for image classification deployed on both CPUs and GPUs. The results show that our proposed approach provides an MLaaS cloud service architecture that can be tuned by the end API user or consumer to outperform the conventional "one size fits all" approach.Comment: 2019 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS
    corecore