
 Nunez-Yanez, J., & Howard, N. (2021). Energy-efficient neural
networks with near-threshold processors and hardware accelerators.
Journal of Systems Architecture, 116, [102062].
https://doi.org/10.1016/j.sysarc.2021.102062

Peer reviewed version
License (if available):
CC BY-NC-ND
Link to published version (if available):
10.1016/j.sysarc.2021.102062

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via Elsevier at https://doi.org/10.1016/j.sysarc.2021.102062. Please refer to any applicable terms of use of the
publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the
published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/

https://doi.org/10.1016/j.sysarc.2021.102062
https://doi.org/10.1016/j.sysarc.2021.102062
https://research-information.bris.ac.uk/en/publications/9987c56f-a2bf-4f24-a74c-a866aaa88ded
https://research-information.bris.ac.uk/en/publications/9987c56f-a2bf-4f24-a74c-a866aaa88ded

1

Energy-efficient neural networks with near-threshold processors and hardware accelerators

Jose Nunez-Yanez*, Neil Howard**

*University of Bristol, UK **Sensata Technologies, UK

Abstract

Hardware for energy-efficient AI has received significant attention over the last years with both

start-ups and large corporations creating products that compete at different levels of

performance and power consumption. The main objective of this hardware is to offer levels of

efficiency and performance that cannot be obtained with general-purpose processors or

graphics processing units. In parallel, innovative hardware techniques such as near- and sub-

threshold voltage processing have been revisited, capitalizing on the low-power requirements

of deploying AI at the network edge. In this paper, we evaluate recent developments in

hardware for energy-efficient AI, focusing on inference in embedded systems at the network

edge. We then explore a heterogeneous configuration that deploys a neural network that

processes multiple independent inputs and deploys convolutional and LSTM (Long Short-

Term Memory) layers. This heterogeneous configuration uses two devices with different

performance/power characteristics connected with a feedback loop. It obtains energy

reductions measured at 75% while simultaneously maintaining the level of inference accuracy.

1. Introduction

Over the last few years, novel hardware for deep-learning in AI from well-known companies

and start-ups have entered the market with a focus on high energy-efficiency/performance

and low cost. These devices generally focus on only supporting network inference and they

analyse data produced near to the sensor locations under strict constraints of performance

and power. On the other hand, GPUs remain dominant in the area of training, although some

hardware is optimized for both training and inference such as the Graphcore Intelligence

Processing Unit (IPU) [1]. These IPUs are massively-parallel, mixed-precision floating-point

processors made available as PCIe cards. The cost and power of these devices mean that

they are more suitable for cloud deployments (as done with Google TPUs) rather than at the

network edge.

At the network edge, the power profile of many deep-learning devices is in the order of 1 Watt

and typical examples include the EdgeTPU from Google, Neural Compute Stick (NCS2) from

Intel and hardware from start-ups such as XMOS’s Xcore.ai [2]. In terms of hardware features,

these accelerators include dedicated hardware engines designed to accelerate compute-

intense kernels such as matrix-matrix multiply, with systolic arrays being the preferred

approach in many cases. Companies such as Eta Compute [3] and Ambiq [4] have targeted

even lower power, at the milliwatt level, by creating microcontrollers that exploit novel voltage

scaling, such as near- and sub-threshold computing. Both of these products are based on the

ARM architecture. The rising popularity of RISC-V has also resulted in other novel

architectures. One example is GAP8 [5] that, in addition to having 8 RISC-V processors for

compute and another one for control, adds a neural network accelerator engine. The interest

in this hardware has been facilitated thanks to standard frameworks that are able to train and

create neural network configurations that can then be further optimized using hardware-

specific tools. A framework that has grown in popularity for this type of resource-constrained

AI at the edge is TensorFlow Lite [6] and the hardware used in this paper combines it with

some vendor-specific steps to perform final optimizations.

In this research, we focus on energy efficiency and computing adaptivity at the network edge,

with the aim of adapting energy resources to changes in the input data behaviour in real-time.

2

We investigate how to build a heterogeneous neural network using energy-efficient state-of-

the-art hardware applied to human activity recognition as a case study. We consider

commercially-available devices with different levels of power/performance based on near-

threshold microcontrollers. These have a large range of performance points at different

voltages. We also consider neural network accelerators as a more capable alternative, though

at the cost of higher power. Without loss of generality, we will refer to these two device types

as “little” and “big” since our methodology is inspired from the “big.LITTLE” [7] ARM technology

that has been popular in the area of mobile computing. We consider that both “little” and “big”

devices are physically collocated in an embedded system. The novel contributions of this work

can be summarized as follows:

1. Evaluate the power, energy and performance of state-of-the-art ultra-low-power

processors to measure the benefits of near-threshold computing processors as “little”

devices.

2. Propose a methodology that splits a complex problem that includes convolutional and

recurrent layers into simpler problems. Then train independent networks to solve these

simpler problems.

3. Propose a practical deployment of this heterogeneous setup using state-of-the-art “big”

edge neural accelerators with “little” near-threshold processors, evaluating the effects on

inference accuracy compared with a homogeneous (“big”-only) solution.

4. Evaluate the energy and performance of the proposed heterogeneous hardware compared

with using the “big” edge neural accelerator.

5. We have released the training/inference setup for the heterogenous components at

https://github.com/eejlny/subthreshold_hetero_mcu_ncs

2. Background

Edge computing is seen as a solution to the latency and privacy issues associated with cloud

computing but a major challenge is being able to run AI workloads on compute resources that

are limited by power and capabilities [8]. The review conducted in [9] establishes the

advantage of hybrid computing schemes between device, edge and cloud servers. In this

paper we focus on device and edge AI formed by a heterogenous compute system that

extends an edge neural network accelerator with a low-power subthreshold processor with

limited compute capabilities.

Typically, these edge devices are specialized for inference and support low-precision

arithmetic such as 8-bit integers. For example, Gyrfalcon’s matrix processing engine (MPE)

uses processor-in-memory techniques to compute neural network models. The 2803 chip [10]

delivers 24TOPS/W and consumes a minimum power of 700mW. Similarly, Google offers a

low-cost and low-power version of the Google TPU called EdgeTPU [11] that can run

dedicated convolutional neural networks with 8-bit precision. This is capable of 4TOPS while

consuming 2W. The systolic array size is much smaller than a cloud TPU at around 64 x 64

mult-add cells, resulting in 4TOPS at 480MHz. The EdgeTPU is not capable of general

network training which requires floating-point precision, although it can deploy transfer

learning techniques [12]. FPGA vendors such as Xilinx have also focused on inference, with

the Xilinx DPU [13] unit. This contains register configuration, data controller, and convolution

computing modules optimized for the FPGA hardware resources. An encapsulated scheduler

can assign tasks to multiple DPUs and tools are available, such as Dsight, to monitor

performance. It uses a systolic array architecture for matrix multiplications and packs 8-bit

operators into the device DSP blocks. A popular alternative on FPGAs is to design binarized

accelerators that use single bits for weights and activations. This means that complex

3

multiplication operations are replaced with XNOR and popcount operations. This strategy is

used in [14] that proposes an architecture that initially transfers the convolution operations into

matrix multiplication by unfolding and duplicating inputs and rearranging the weights. The

system uses a dataflow architecture to map full networks to a large Zynq device 7z100. The

dataflow architecture uses a balanced pipeline, with buffers to smooth out the flow of

computations, and achieves a very high throughput. The limitation is that the hardware

complexity means that only small networks with few layers and filters can be mapped before

hardware sharing is required. An alternative to reduce complexity without the extreme

quantization used in binary networks is presented in [15]. This assigns variable bit widths to

layers with a general reduction in precision for deeper layers. The PEs (processing elements)

support bit-serial multiplication and the weight bits are sent serially with additional PEs used

to compensate for the lower throughput of the bit-serial architecture, which is much simpler

than bit-parallel multiplication hardware. The concept of using mixed-precision hardware is

also explored in [16] which proposes a scheduling strategy to distribute real-time tasks

associated with sensor data acquisition, inference and action on a heterogenous system that

combines an FPGA and CPU. The FPGA inference accelerator supports precisions from 8 to

64 bits, resulting in different computation times that the scheduler needs to take into account.

Intel also offers FPGA-based solutions that can be targeted with their OpenVino [17] toolkit

that has, as main components, the model optimizer and inference engine. OpenVino takes as

input a trained network, using a framework such as TensorFlow/Keras, and optimizes it to

target Intel hardware that can be Intel CPUs, GPUs, FPGAs, or other devices such as the Intel

NCS2 based on the Myriad Vision Processing Unit (VPU). The VPU has 16 VLIW general-

purpose programmable cores, optimized for vision processing workloads, and includes a

neural compute engine to accelerate tensor matrix calculations. The VLIW cores also enable

other algorithms, unrelated to deep learning, although the current OpenVINO toolset focuses

just on supporting recurrent and convolutional neural networks. The VPU uses 16-bit floating-

point arithmetic instead of integer arithmetic, but these more complex data types, compared

with fixed point arithmetic, also imply that performance must be lower at the same silicon size.

The previously-presented architectures vary in their power, performance and capabilities, and

heterogeneous solutions have been proposed combining them to improve on these individual

aspects. In [18], JointDNN is proposed as a collaborative neural network for cloud and mobile

systems that processes some layers on the mobile device and some layers in the cloud device.

An optimization algorithm based on Integer Linear Programming considers communication

costs, computation costs and energy requirements to schedule layers to the cloud and mobile

device with some networks, such as autoencoders, mapping the first and the last layers to the

mobile device. In JointDNN, all the layers are computed. In contrast our work targets

heterogeneous edge systems with the aim of reducing the activation of the most complex parts

of the network. Distributed computing has been explored in MoDNN [19] and DeepThings [20]

that use fine-grained partitioning on lightweight end devices such as Raspberry Pis and

Android smartphones. The run-time assigns tasks to independent processor nodes that are

homogenous. This previous work focuses on systems with multiple CPUs and GPUs or

collections of homogenous simple processors. In contrast, we focus on using the “big.LITTLE”

concept, specifically applied to deep learning tasks.

Our approach is different from other related work (exploring “big” and “little” configurations for

neural networks) such as [21] and [22] that construct a "little” network with the same inputs

and outputs as the “big” network and uses the score metric from the "small” network to decide

when to activate the “big” network. In our case, the “little” and “big” networks perform different

tasks and information flows in both directions, in a feedback loop. The idea of using more than

one network to achieve a classification task has been explored before, with concepts such as

4

networks in which multiple classifier heads of the same network are simultaneously trained on

the same training data in order to improve generalization and robustness [23]. Also related

is the concept of knowledge distillation, where a smaller network is trained by transferring

knowledge from a pre-trained high-capacity model, achieving network compression and

resulting in a smaller network that obtains better performance than one trained independently,

using only labels [24]. Our framework is conceptually different since training of the “little” and

“big” models is done independently, with different labels and with an information exchange

between “big”-to-”little” and “little”-to-”big” at run-time, in order to obtain an overall inference

accuracy that is as good as the “big” model, but with much lower energy costs.

Also related to our approach is the fast exiting presented in [25], which tries to make decisions

closer to the edge so that the cloud device is not used, or commercial products such as Apple

Siri. Siri employs two on-device networks to classify speech into one of 20 classes such as

general speech, silence and wake-word. In Siri, the first DNN is smaller, with 5 layers with 32

neurons, and runs on a low-power, always-on processor and it triggers a second, more

powerful, DNN (5 layers with 192 units) on the main processor. The objective of the first

network is to detect if something has been said and the objective of the second is to perform

the full classification. The solution presented in this paper is different because it has

information flowing in both directions, adapting the model of the simple network which not only

detects the presence of an activity, but also fully classifies the activity in most cases.

3. Low-power processor evaluation

Table 1 shows technical details of commercially available processors aimed at low-power

applications. A selection of four shown in bold letters is used to perform the initial evaluation

in this section. The table shows that a popular microarchitecture is the 32-bit ARM Cortex-M,

with the armv7-M instruction set, that is used by three of the selected candidates, provided by

Eta Compute, Ambiq and STM. Recently there has been significant interest in using open-

source microarchitectures such as RISC-V which are royalty-free. Several companies have

introduced devices based on the RISC-V microarchitecture. An example shown in Table 1 is

GAP8 [26] which, in contrast with the other solutions presented in the table, is a multi-core

architecture of PULP RI5CY cores, with one fabric controller and 8 computing cluster

processors. The fabric controller acts as a master for control and communications with the

cluster and it is responsible for memory allocation, execution start, output collection and, finally,

memory deallocation. The GAP8 processor is also characterised by having an additional

dedicated hardware engine to speed up the convolutions needed in neural network

applications. This hardware convolution engine (HWCE) can generate a 5-by-5 convolution

or a pair of 3-by-3 convolutions, with 16-bit operands, in a single cycle. A set of tools like

NNtool and auto-tiler are available to facilitate the mapping of the network model to the

processor cluster.

All the considered processors use voltage and frequency scaling techniques in order to

optimize how energy is used, depending on performance requirements, but while the STM

and GAP8 processors can be considered to use standard DVFS (Dynamic Voltage and

Frequency Scaling), the Ambiq and Eta Compute parts deploy proprietary forms of AVS

(Adaptive Voltage Scaling). AVS is characterized by using some form of sensing of the device

operation in a feedback loop at run-time to better track the frequency supported at a given

voltage. In contrast, DVFS uses fixed voltage and frequency pairs, predetermined at

fabrication time [27]. The STM32L4 and Ambiq Apollo3 are both Cortex-M4 processors while

the ECM3531 is a Cortex-M3. Cortex-M4 and M3 are both similar cores, with a 3-stage

pipeline and Thumb-2 instruction set, but the Cortex-M4 adds a range of instructions and

hardware, such as 16/32-bit MAC and 8- and 16-bit SIMD arithmetic, specifically optimized to

5

handle DSP algorithms. Both the M3 and M4 cores in Table 1 include floating-point hardware

support. The Apollo3 also adds 4KB of data cache while the STM32L4 uses a special

accelerator called “ART” to implement a small cache memory. The ECM3531 uses an

additional “Coolflux” 16-bit DSP designed by NXP to complement the simpler Cortex M3

microarchitecture, although this DSP is not currently used by the neural network libraries. The

main fundamental difference between the STM and the Ambiq/Eta Compute devices is the

power optimization technology that, in the last two cases, uses “near-threshold” computing

techniques, with a core supply voltage at 0.5V compared with the 1V used by the STM device.

In principle “sub-threshold” computing, with voltage supplies around 0.3V, should be even

more efficient. However, at such low voltages, there is a large increase in energy loss through

leakage, due to the massive increase in switching time of the transistors. These means that,

in practice, using near- rather than sub-threshold computing has been found to be more

optimal from an energy point of view. Comparing the datasheet power values of the near-

threshold Eta Compute and Ambiq Apollo3 with the traditional low-power microcontroller from

STM, the power advantage is indicated to be around a factor of four. It is also clear that the

neural model must be small since it needs to fit in a just a few KB of available memory which

is also needed to allocate run-time data structures, program binaries etc.

Table 1. Power efficient MCU alternatives

Device Architecture Fabrication
Process

Embedded
Memory
(flash/SRAM/
cache)

Low
core
Volta
ge

Coremark
Power

Power scaling capabilities

STM32L4 32-bit Cortex-
M4F

90nm 1 MB/320 KB 1.05V 133 uA/MHz
80 MHz
114 uA/MHz
26 MHz

Voltage scaling between
1.08V at 80 MHz and
1.05V at 26 MHz.

GAP8 32-bit RISC-V
multicore

55nm
TSMC

0
KB/64KB+51
2KB/0 KB

1.0V N/A Voltage scaling between
1.0V at 90 MHz (cluster)
1.2V at 175 MHz (cluster)

Apollo2 32-bit ARM
Cortex-M4F

TSMC
40nm

1MB/256KB/
16 KB

0.5V 14.8
uA/MHz 48
MHz

SPOT (Subthreshold
Power Optimized
Technology) with
two main power levels:
SPOT 24MHz/48MHz

Apollo3 32-bit ARM
Cortex-M4F

TSMC
40nm

1 MB/384
KB/16 KB

0.5V 10.3uA/MHz
< 48 MHz
27
uA/MHz >
48 MHz

SPOT (Subthreshold
Power Optimized
Technology) with
two main power levels:
TurboSPOT 96MHz/
SPOT 48MHz

Eta
Compute
ECM3531

32-bit ARM
Cortex-M3
with 16bit
DSP coolflux

55nm ULP
TSMC

512 KB/256
KB/0 KB

0.55V 13uA/MHz CVFS (continuous
voltage scaling) with
multiple working points
of frequency and
voltage available.

Eta
Compute
ECM3532

32-bit ARM
Cortex-M3
with 16-bit
“Coolflux” DSP

55nm ULP
TSMC

512 KB/256
KB/0 KB

0.55V 5uA/MHz CVFS (continuous voltage
scaling) with multiple
working points of
frequency and voltage
available.

6

To perform an initial evaluation of the performance, power and energy characteristics of the

preselected 4 processor cores we have mapped an MNIST model with a topology as shown

in Fig. 1.

Figure 1. Convolutional neural network test topology

For the power measurements we have used a x-nucleo-LPM01A as a power source for all the

Cortex-M class processors, measuring the current draw with a voltage supply at 3V. We have

used a Picoscope oscilloscope to measure the voltage drop in the 1Ohm shunt resistor

available in the GAP8 board. This enables us to calculate the current going into the processor,

and hence also the power by multiplying with the processor voltage. Fig. 2 shows the initial

analysis of power consumption on the tested devices. The figure shows that GAP8, Apollo3

and ECM3531 devices operate at similar power levels if we consider a GAP8 using only one

core. The GAP8 device is optimized for only two voltage levels, corresponding to voltage levels

1.0V and 1.2V. Similarly, the Apollo3 device is optimized for frequencies of 48 MHz and 96

MHz and shows that power scaling slows down at a selected frequency of 24 MHz.

7

Figure 2. MCU power evaluation

Fig. 2 shows that the power efficiency of the STM device is significantly worse than the rest of

the devices considered. Our application scenario will benefit from a large range of optimized

frequency/voltage points so that it is possible to select the point that delivers enough

performance depending on input data. This is illustrated in Fig. 3 that shows how, conceptually,

we aim at adapting the working point of the device depending on the complexity of the

inference task. For example, the “little” device samples the input data reacting to its own

inference decisions that are used to estimate the amount of activity in the input sensor. This

means that the inference rate increases if an increase in activity is detected, indicating the

presence of data that will benefit from being observed at a higher resolution. The increase in

inference rate means that less time is available to complete the request, so the voltage and

frequency point of the “little” device increases. The “big” device intervenes when the “little”

device detects an activity type change, assisting the “little” device in performing the

classification. After a while, the processing rate decreases if the “little” device stops detecting

activity changes. Conceptually, AVS with multiple frequency and voltage points can be

deployed in this scenario so processing speed adapts to time and energy constraints [28].

0

5

10

15

20

25

30

35

40

45

50

0 20 40 60 80 100 120 140 160 180 200

P
o

w
er

 (
m

W
)

Frequency (MHz)

STM32L4

GAP8 1

GAP8 2

GAP8 4

GAP8 8

ECM3531+Tensai

Apollo3

ECM3531

8

Time

Input
Sampling

little
processing

big
processing Variable

processing rates

Figure 3. Adaptive heterogeneous processing

The Eta Compute ECM3531 offers this feature with internal voltage regulators that are

optimized for frequency ranges between 7 MHz and 60 MHz. Figs 4 and 5 show the execution

time for one MNIST inference and the corresponding energy usage. The Apollo3 and

ECM3531 devices show similar execution time when the standard GCC compiler and CMSIS-

NN library are used. Both devices show that the lowest power point is not the most energy

efficient. This can be attributed to the increase of leakage at lower performance points which

is significant challenge in low-voltage operation. The ECM3531 can be used with a proprietary

optimizing compiler called Tensai, created by Eta Compute, and this results in significantly

better execution times. In this scenario, the effect of voltage scaling on energy is less visible

and this could be attributed to an increase of the effect of the embedded memory not having

its supply voltage scaled. The GAP8 device shows the best execution time and this can be

attributed largely to the usage of the hardware engine to accelerate the convolutional neural

network kernels. The energy figure also shows the GAP8 device as the most energy efficient

thanks to the reduction in execution time. Overall, the ECM3531 with the Tensai compiler

offers a good balance between energy efficiency and low power with a large range of

performance points available.

9

Figure 4. MCU performance evaluation

Figure 5. MCU energy evaluation

1

10

100

1000

10000

100000

0 20 40 60 80 100 120 140 160 180 200

Ti
m

e
(m

s)

Frequency (MHz)

GAP8 1

GAP8 2

GAP8 4

GAP8 8

ECM3531 + Tensai

Apollo3

STM32L4

ECM3531

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 20 40 60 80 100 120 140 160 180 200

En
er

gy
 (

u
J)

Frequency (MHz)

STM32L4

GAP8 1

GAP8 2

GAP8 4

GAP8 8

ECM3531+Tensai

Apollo3

ECM3531

10

4. Heterogeneous Methodology

In section 2 we have seen that hardware solutions optimized for low-power inference are

becoming popular and that these devices have variations in arithmetic precision, support for

different neural layers such as recurrent layers (e.g. LSTM) and power and performance

profiles optimized for different applications. Many frameworks to perform neural network

training also exist (e.g. Torch, TensorFlow, MXnet, Theano or Caffe) but lately TensorFlow

Lite has appeared as particularly relevant for resource-constrained devices such as mobile

and edge devices. TensorFlow Lite is optimized for microcontrollers and also edge hardware

accelerators. This single-entry point is useful to speed-up the development of the

heterogeneous network since only the final optimization steps are customized for each device

while the training step is performed only once and it is shared. The proposed collaborative

network exploits the different capabilities, performance and power of these devices, creating

a heterogeneous solution that improves the energy values. In this case study, we investigate

a heterogeneous network mapped to two clearly distinct hardware devices. The first one is the

NCS2 device from Intel, based on their Myriad series of visual processors, enhanced with

dedicated execution units for neural network acceleration. Device power is estimated at

around 1W with a throughput of 1TOPS with a base clock frequency of 700MHz, with 16-bit

floating-point precision. The second device is a microcontroller based on a near-threshold

voltage processor, operating at a minimum voltage of around 0.5V. From the initial analysis

conducted in section 3, we have chosen near-threshold operating devices from Eta Compute

and Ambiq as candidates for this second device.

Fig. 6 shows the proposed heterogeneous flow that uses Keras/TensorFlow as a common

framework for model development. Keras is a popular high-level neural network API written in

Python. It is very well integrated with TensorFlow to facilitate neural network development.

The outputs of the training and evaluation stages are HDF5 Keras models. The models are

then frozen to remove data and variables needed for training but not for model deployment.

The resulting frozen models must then be optimized for each individual target independently.

The NCS2 device uses the OpenVino toolset that also supports other Intel devices such as

FPGAs, GPUs and CPUs. The NCS2 uses 16-bit floating-point precision and OpenVino

replaces the 32-bit floating-point values used during training with 16-bit floating-point values.

Inference can work well with even lower precision so no accuracy loss is apparent after this

substitution. In this work, we have used OpenVino 2020.1.023 that also introduces support for

LSTM layers. The outputs from OpenVino consist of a number of files that contain the network

description and network parameters. On the other hand, the Eta Compute ECM3531 and

Ambiq Apollo3 devices use neural network models generated by the TensorFlow Lite

converter and can employ any precision since they are fully-fledged 32-bit ARM processors

with floating-point support. In this research, we quantize all model parameters and input data

to 8-bit precision in order to simplify the network and make it more suitable for microcontroller

deployment. The model pruning and scaling step shown in Fig. 6 indicates our own automatic

iterative step in which the original “big” model is simplified progressively for the MCU device,

scaling and removing layers to satisfy the lower problem complexity that results from

substituting the multiple-class problem with a two-class problem. The training and validation

datasets are rearranged to a set of two-class problems for “little” model training. This problem

reduction to two classes is an intrinsic part of the proposed methodology. It generates a

number of models for the “little” device, equal to the number of original classes. For example,

if the original model had a total of 10 classes then a total of 10 optimized “little” models are

created. Pruning and scaling continues as long as accuracy is maintained to the same level

as in the original classification problem. For example, if the original “big” model obtained an

accuracy of 90%, then the optimization objective is that each of the individual simplified

11

networks achieves 90% or higher in their simplified problems in order to minimize possible

accuracy degradation of the heterogeneous solution.

Keras/tensorflow
training

dataset (multiple
classes big / two
classes LITTLE)

big model
description

model.h5

TF lite quantization/conversion

Model evaluation (accuracy)

Model freezing
model.pb

model.tflite

XXD model binary to bytes

model.cc

Model Optimization (Openvino)

model.bin
model.xml

model.mapping

Model pruning

LITTLE model
description

LITTLE deployment
(e.g. MCU Eta

Compute)

big deployment (e.g.
Intel NCS2)

Figure 6. Model heterogeneous mapping/pruning/quantization

5. Model development

The use case application under consideration consists of an activity detection system using
accelerometer and gyroscope sensors to classify user activity into 6 different classes: walking,
walking upstairs, walking downstairs, sitting, lying down, and running. All data is normalized
to the range [-1,1]. The accelerometer sensor produces triaxial acceleration (total acceleration)
and the estimated body acceleration, while the gyroscope produces triaxial angular velocity
[29]. The NCS2 “big” model consists of convolutional, max pooling, LSTM, concatenation and,
finally, dense layers, as shown in Fig 7.a and originally proposed in [30]. LSTM layers are not
very well supported in edge deep learning accelerators, with support either being on-going
work or not possible due to the specialized pipelines of the accelerators. One of the
motivations for choosing the NCS2 device is that the latest version of the OpenVino toolset
supports LSTM and, consequently, it is possible to investigate its performance, energy impact
and accuracy gains. The “little” model shown in Fig 7.b has been derived via pruning from the
full model to obtain a highly simplified configuration in order to improve its suitability for
microcontroller deployment. It uses a single sensor as input. In contrast, the “big” NCS2
device uses the input from the three sensors, which are processed individually before being

12

merged with a concatenate layer. The conv1d layer used in the “little” model has been
simplified to only 8 filters, instead of the original 512.

 Figure 7. (a) “big” model (b) “little” model

Since a single input sensor is used by the “little” model, it is necessary to select which sensor

to use. The “little” model needs to detect a change of the current activity to a new activity. This

results in 6 possible changes and, to determine which of the available sensors offers better

accuracy, each of these 6 configurations is trained with all three input sensors. Results are

shown in Fig. 8. We can observe that the body_acc sensor is the most accurate for the three

walking configurations and the total_acc sensor for the other three configurations: sitting,

standing and laying. Overall, the “little” network obtains an accuracy of over 90%, following

careful sensor selection (although it can degrade down to 82% if the wrong sensor is chosen,

as seen in the walking upstairs case).

13

Figure 8. “little” model sensor accuracy evaluation

Fig 9.a shows, conceptually, the heterogeneous neural network composed of NCS2 and MCU

devices. The NCS2 device uses a single model “A”, shown in Fig 7.a, trained to classify the

network activities, while the MCU device uses a single model topology “B”, shown in Fig 7.b,

with a total of 6 learned configurations. As indicated previously, each of these 6 configurations

is specialized to detect one single activity. The original input training and evaluation data is

used to train the full model, while 6 new data sets are derived to train the “little” networks. This

means that each of these new data sets contains current_activity/other_activity, and

current_activity can have six different values. The heterogeneous system operational mode is

shown in Fig 9.b where, after initialization, the Eta Compute device computes continuously,

while the NCS2 only computes when changes in the active activity are detected. The Eta

Compute device communicates to the NCS2 when these changes are detected, while the

NCS2 device communicates the new current activity, after inference, to the Eta Compute

device. The Eta Compute device will switch its activity model to reflect the new current activity.

After completing the flow of Fig 6, the resulting models are compiled, together with the control

code, and the resulting binary occupies only 4KB. The full model for the NCS2 device occupies

660KB. Although it could be argued that the NCS2 model is still a small model, it would not be

feasible to map it to the Eta Compute device due to flash memory constraints of 512KB.

0.75

0.8

0.85

0.9

0.95

1

walking walking upstairs walking
downstairs

sitting standing laying

V
al

 A
cc

u
ra

cy

Current activity
body_acc body_gyro total_acc

14

 Figure 9. (a) Heterogeneous model (b) Processing steps

6. Heterogeneous inference accuracy

We have considered two variations of the full model: with or without LSTM layers. The effects

of using these LSTM layers in model accuracy are shown in Fig. 10. In Fig. 10, the bars

correspond to number of predictions and the points shown as rhombus symbols correspond

to the measured accuracy. The rhombus in the figure for the LSTM NCS2 and CNN NCS2

cases, shown on the left, indicate that there is approximately 1% degradation in accuracy by

removing the LSTM layers. The accuracy of these homogeneous configurations is in the range

of 92% to 93%, depending on the presence of LSTM layers. The data set contains a total of

2946 data points and the corresponding grey bars in the figure show that, when the NCS2 is

used exclusively, a total of 2946 inference invocations are performed, which corresponds to

one invocation per input data sample, as expected. We have then evaluated the data set with

the heterogeneous configuration that deploys both the “little” Eta Compute and the “big” NCS2

devices. The results, shown on the right of Fig.10, show that the accuracy of the

heterogeneous configurations remains virtually unchanged. The bars now show a total of 2946

inference invocations in the Eta Compute device but only around 700 invocations of the NCS2

device. As indicated in the previous section, the NCS2 device is only used when the Eta

Compute device predicts a change in the input class. The data for the model has been

obtained with a sampling rate of 50Hz and, according to the data set documentation, each of

the data samples correspond to 2.56 seconds of activity. Consequently, there are 50*2.56 =

128 samples per sensor and axis. There are three axes so a total of 128x3 values form an

input into the neural network. There are about 25 samples in each activity window (an activity

is replaced by another activity after 25 samples) in the data set, so each activity window

corresponds to approximately 25*2.56 = 64 seconds. With these constraints, the neural

network needs to be able to perform one classification every 2.56s in order to maintain real-

time performance with the data supplied from the sensors. In a real deployment, a human

activity such as walking, sitting or lying down could last for multiple minutes so, consequently,

a larger proportion of decisions could be made on the low-power Eta Compute device, while

Change ?

Data read

Initialize

ETA Inference

NCS inference

Current NCS
Classification

output

Update ETA
model

Previous NCS
Classification

output

Data reader

Input Data
queue

NCS processing
Model B

MCU processing
Model A

activations

6 class
classification

Final Classifier

Final activity type
clasification

Model
Parameter
library x 6

Input Data

2 class classification
(current or other)

15

the NCS2 device remains in a deep sleep state. An additional observation is that the recurrent

neural network theory indicates that LSTM layers are characterized by keeping a state

memory of the previous inputs. Since, in the heterogeneous configuration, the “big” model

sees only a fraction of the original inputs, this could mean that the LSTM functionality is

degraded. However, in the analysis shown in Fig. 10, we see a similar classification accuracy

in the heterogeneous case as in the homogenous case in which all the inputs are seen.

Figure 10. Heterogeneous vs homogenous model accuracy and activity

To gain further insights into heterogeneous system behaviour, Fig. 11 and Fig. 12 show the

accuracy effects of the heterogeneous configuration with a window sample of 300 inputs. The

truth values show the ideal behaviour (with the correct activity identified with a probability of

1.0), while the predictions at the top show the class activity predicted by the network and its

probability. In a perfect system, both top and bottom figures should match perfectly. The “big”

model shown in Fig 11.a, for both CNN and LSTM cases, correctly predicts the class with a

probability of 1.0 for most of the samples. After approximately 100 samples, the model enters

the category of “standing” that it finds difficult to differentiate from “sitting”. This is observable

again at sample 270. If we compare this with the heterogeneous model shown in Fig 11.b, we

can observe a similar behaviour after sample 100. Overall, the heterogeneous model shows

a smoother output, although this is not necessarily better. It just means that the Eta Compute

model is not detecting changes in the input and using the previous classification provided by

the NCS2 model as its output. If this classification was incorrect then the error will propagate.

The same experiments are repeated in Fig.12 for the case without LSTM layers. Overall, the

results in terms of accuracy, shown in Fig 11 and Fig 12, confirm that, in this case study, the

heterogeneous model does not degrade the accuracy compared with the homogenous model

that uses a single device.

LSTM NCS2 CNN NCS2 LSTM NCS2 + Eta
Compute

CNN NCS2 + Eta
Compute

0

500

1000

1500

2000

2500

3000

3500

0.9

0.91

0.92

0.93

0.94

0.95

P
re

d
ic

ti
o

n
 c

o
u

n
t

A
cc

u
ra

cy

Eta Compute prediction count NCS2 prediction count Accuracy

16

7. Heterogeneous system performance, power and energy

From the evaluation conducted in section 3, we have selected the Ambiq Apollo3 and Eta

Compute ECM3531 for this final evaluation. We have mapped the “little” network presented in

Fig 7.b to the Ambiq Apollo3 and Eta Compute ECM3531 devices. Compilation of the C

models and host code uses GCC7.3.1 with CMSIS-NN support. CMSIS-NN is a collection of

efficient neural network kernels developed by ARM in order to maximize the performance and

minimize the memory footprint on Cortex-M processor cores. We also include the results

Figure 11. (a) homogeneous LSTM NCS2 vs (b) heterogeneous LSTM NCS2+Eta Compute

Figure 12. (a) homogeneous CNN NCS2 vs (b) heterogeneous CNN NCS2+Eta Compute

17

obtained with the optimizing compiler Tensai developed by Eta Compute. Fig. 13 compares

the inference time of Apollo3 and ECM3531 devices using the “little” network. This shows a

clear advantage for the ECM3531 when using the Tensai compiler. An important consideration

is that the ECM3531 supports a larger range of frequencies compared with Apollo3. ECM3531

uses optimized frequency and voltage values between 7MHz and 62MHz. In contrast, the

Apollo3 frequency selection is limited to two main levels of 48MHz and 96MHz (the latter called

“boost”). We have added an additional point at 24MHz to extend this range.

Figure 13. Inference time on near-threshold voltage MCUs

Next, we evaluate power and energy of single inferences in the “little” network, shown in Fig.

14. For the Apollo3 device, the lowest power below 1mW is achieved at the lowest frequency

of 24MHz as expected, but it is also clear that energy efficiency is better at the nominal

frequency of 48MHz. For the ECM3531, the lowest power is obtained at 7MHz, where the

voltage regulators are configured to 600mV. When using the GCC compiler, the best energy

efficiency is not achieved at the lowest power level. In contrast, when using the Tensai

optimizing compiler, energy efficiency for the different frequency modes is largely unaffected.

This could be explained due to the simple network that has a low operation density per byte,

so energy is dominated by memory accesses. In essence, the optimizing compiler results in

computation that is more memory bound and less compute bound. This means that if x

operations are needed per byte brought from memory using Tensai, and y operations are

needed per byte brought from memory in the case of the gcc compiler, then y>>x. The power

consumed by the flash/SRAM memory devices present in the device does not scale with

voltage but, since they are built into the device, they are being measured by the power board.

In any case, we observe a low power figure at 7MHz of 0.3mW for the ECM3531, and better

energy efficiency for all the frequency points than the Apollo3 device. At 7MHz the ECM3531

device can perform an inference with the “little” network every 32ms, much faster than the

2.56s required by the sensors in this sample case study. This means that, between processing

samples, the processor can enter a deep sleep state in which we have measured a current of

12nA, equivalent to approximately 20nW. It is clear that with this time constraint, a much lower

frequency, in the range of kHz, should be sufficient. However, the current software

development kit available for the Eta Compute device does not support lower frequencies and

the near-threshold logic will not operate at voltage levels below 0.5V. The low-performance

requirements means that deeper sub-threshold operation could be very useful in this case but

0

20

40

60

80

100

120

140

160

180

200

0 20 40 60 80 100 120

Ti
m

e
(m

s)

Frequency (MHz)

Time Apollo3 Time ECM3531+ Tensai Time ECM3531

18

the issues with transistor leakage need to be solved first. Alternatively, the sensor sampling

rates could be increased in a real deployment to better match the performance capabilities of

the platform and obtain finer granularity in the classification process. This could be particularly

relevant in related applications such as machine health monitoring [31], where the state of the

machine can change at much higher rate than human activity.

Figure 14. Power and energy in the near-threshold voltage MCUs

We have measured the NCS2 power using a power meter at approximately 1W when actively

running computations. Fig. 15 compares the energy requirements of the heterogeneous

solution using the ECM3531/NCS2 combination with the homogenous solution using only the

NCS2. The energy usage results from performing a total of 2946 predictions over the whole

data set with the ECM3531 running at its low frequency of 7 MHz and using the Tensai

compiler. The configurations that include LSTM layers show higher energy costs. This is due

to the increase of processing time in the NCS2 device once LSTM layers are enabled, which

increases from 1.55 ms to 5.12 ms per inference. Overall, we observe that the energy cost of

the heterogeneous solution is about one quarter of the homogenous solution with this sample

data. The main reason is that, in this sample data, about ¾ of all inferences are done

successfully in the “little” network and only ¼ require access to the NCS2 device.

0

20

40

60

80

100

120

140

0

1

2

3

4

5

6

7

8

9

10

0 20 40 60 80 100 120

En
er

gy
(u

J)

P
o

w
er

 (
m

W
)

Frequency (MHz)

Power ECM3531+Tensai

Power Apollo3

Power ECM3531

Energy ECM3531 + Tensai

Energy Apollo3

Energy ECM3531

19

Figure 15. Energy consumption of homogenous vs heterogeneous inference solutions

8. Conclusions

Over the last few years, there have been significant advances in energy-efficient hardware,

with the objective of deploying sophisticated AI applications near the edge, close to sensors,

using resource-constrained devices. In this research we have evaluated a methodology based

on TensorFlow Lite to create and deploy neural networks using energy-efficient state-of-the-

art near-threshold processors that use sophisticated voltage scaling techniques, combined

with dedicated neural accelerators. We have investigated a heterogeneous solution consisting

of two devices, forming a “big”-“little” embedded system, that cooperate at solving a task by

exchanging information between them. The “little” device is based on the ECM3531 Eta

Compute Cortex-M3 MCU while the “big” device uses the NCS2 neural accelerator developed

by Intel. In both cases, Keras and TensorFlow are used to train and generate the network

parameters, with only the final optimization steps being specific to each of them, to perform

tasks such as quantization to 8-bit integer for the MCU and quantization to 16-bit floating-point

for the NCS2. Our application is representative of an activity detection problem that uses

recurrent layers and multiple sensors, and it assumes that the activity will remain constant for

a period of time before being replaced by a new activity. The results show that these different

devices can work collaboratively at their optimal points, delivering accuracy, performance and

better energy efficiency. Future work involves extending the work to other application areas,

such as machine health monitoring. In this case the processing requirements will increase to

millisecond levels and the operating point of the system could be adjusted at run-time

depending on the level of monitoring granularity required. We have released our code to

promote research in this field https://github.com/eejlny/subthreshold_hetero_mcu_ncs

Acknowledgements: This research was funded by the Royal Society Industry fellowship,

INF\R2\192044 Machine Intelligence at the Network Edge (MINET).

LSTM NCS2 CNN NCS2 LSTM NCS2 + Eta
Compute

CNN NCS2 + Eta
Compute

0

2

4

6

8

10

12

14

16

18

20

En
e

rg
y

co
st

s
(J

)

Energy cost total (J) (Eta Compute at 7 MHz)

20

[1] Jia, Z., Tillman, B., Maggioni, M., & Scarpazza, D. (2019). “Dissecting the Graphcore IPU

Architecture via Microbenchmarking”. ArXiv, abs/1912.03413.

[2] “Silicon to Satisfy the AIoT: xcore.ai”, https://www.eejournal.com/article/silicon-to-satisfy-

the-aiot-xcore-ai/ accessed October 2020.

[3] “Low-Power AI Startup Eta Compute Delivers First Commercial Chips”,

https://spectrum.ieee.org/tech-talk/semiconductors/processors/lowpower-ai-startup-eta-

compute-delivers-first-commercial-chips, accessed October 2020.

[4] “Ambiq Micro Achieves World-Leading Power Consumption Performance with TSMC

40ULP Technology”, https://www.design-reuse.com/news/46420/ambiq-micro-apollo3-blue-

wireless-soc-tsmc-40ulp.html, accessed October 2020.

[5] “Ultra-low power and high-performance AI processor GAP8” https://greenwaves-

technologies.com/gap8-the-internet-of-things-iot-application-processor/, accessed October

2020.

[6] Farhoodfar, Avid. (2019). “Machine Learning for Mobile Developers: Tensorflow Lite

Framework”.

https://www.researchgate.net/publication/333659766_Machine_Learning_for_Mobile_Develo

pers_Tensorflow_Lite_Framework

[7] K. Nikov, J. L. Nunez-Yanez and M. Horsnell, "Evaluation of Hybrid Run-Time Power

Models for the ARM big.LITTLE Architecture," 2015 IEEE 13th International Conference on

Embedded and Ubiquitous Computing, Porto, 2015, pp. 205-210, doi:

10.1109/EUC.2015.32.

[8] J. Chen and X. Ran, "Deep Learning With Edge Computing: A Review," in Proceedings of

the IEEE, vol. 107, no. 8, pp. 1655-1674, Aug. 2019, doi: 10.1109/JPROC.2019.2921977.

[9] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo and J. Zhang, "Edge Intelligence: Paving the

Last Mile of Artificial Intelligence With Edge Computing," in Proceedings of the IEEE, vol.

107, no. 8, pp. 1738-1762, Aug. 2019, doi: 10.1109/JPROC.2019.2918951.

[10] https://www.gyrfalcontech.ai/solutions/2803s/, accessed October 2020

[11] https://coral.ai/docs/edgetpu/faq/, accessed October 2020

[12] Weiss, K., Khoshgoftaar, T.M. & Wang, D. “A survey of transfer learning”. Journal of

Bbig Data 3, 9 (2016). https://doi.org/10.1186/s40537-016-0043-6

[13] J. Zhu, L. Wang, H. Liu, S. Tian, Q. Deng and J. Li, "An Efficient Task Assignment

Framework to Accelerate DPU-Based Convolutional Neural Network Inference on FPGAs,"

in IEEE Access, vol. 8, pp. 83224-83237, 2020, doi: 10.1109/ACCESS.2020.2988311.

[14] Xu, Zhe & Cheung, Ray C.C. (2020). “Binary Convolutional Neural Network Acceleration

Framework for Rapid System Prototyping”. Journal of Systems Architecture. 109. 101762.

10.1016/j.sysarc.2020.101762.

[15] Lien-Chih Hsu, Ching-Te Chiu, Kuan-Ting Lin, Hsing-Huan Chou, Yen-Yu Pu, “ESSA:

An energy-aware bit-serial streaming deep convolutional neural network accelerator”,

Journal of Systems Architecture, Volume 111, 2020, ISSN 1383-7621,

https://doi.org/10.1016/j.sysarc.2020.101831

[16] Jiang, Wei & Song, Ziwei & Zhan, Jinyu & He, Zhiyuan & Wen, Xiangyu & Jiang, Ke.

(2020). “Optimized Co-Scheduling of Mixed-Precision Neural Network Accelerator for Real-

https://doi.org/10.1016/j.sysarc.2020.101831

21

Time Multitasking Applications”. Journal of Systems Architecture. 110. 101775.

10.1016/j.sysarc.2020.101775.

[17] Yizhi Liu, Yao Wang, Ruofei Yu, Mu Li, Vin Sharma, and Yida Wang. 2019. “Optimizing

CNN model inference on CPUs”. In Proceedings of the 2019 USENIX Conference on Usenix

Annual Technical Conference (USENIX ATC ’19). USENIX Association, USA, 1025–1040.

[19] A. E. Eshratifar, M. S. Abrishami and M. Pedram, "JointDNN: An Efficient Training and

Inference Engine for Intelligent Mobile Cloud Computing Services," in IEEE Transactions on

Mobile Computing, doi: 10.1109/TMC.2019.2947893.

[19] J. Mao, X. Chen, K. W. Nixon, C. Krieger and Y. Chen, "MoDNN: Local distributed mobile
computing system for Deep Neural Network," Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2017, Lausanne, 2017, pp. 1396-1401, doi:
10.23919/DATE.2017.7927211.

[20] Z. Zhao, K. M. Barijough and A. Gerstlauer, "DeepThings: Distributed Adaptive Deep
Learning Inference on Resource-Constrained IoT Edge Clusters," in IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 37, no. 11, pp. 2348-2359,
Nov. 2018, doi: 10.1109/TCAD.2018.2858384.

[21] Amiri, S, Hosseinabady, M, McIntosh-Smith, S & Nunez-Yanez, J, 2018, ‘Multi-precision
convolutional neural networks on heterogeneous hardware’. in: Design, Automation & Test in
Europe Conference & Exhibition (DATE), 2018. Institute of Electrical and Electronics
Engineers (IEEE), pp. 419-424

[22] E. Park et al., "Big/little deep neural network for ultra low power inference," 2015
International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS), Amsterdam, 2015, pp. 124-132, doi: 10.1109/CODESISSS.2015.7331375.

[23] Song, G. and W. Chai. “Collaborative Learning for Deep Neural Networks.” NeurIPS

(2018).

[24] Geoffrey Hinton and Oriol Vinyals and Jeffrey Dean, 2015. “Distilling the Knowledge in a

Neural Network”, NIPS Deep Learning and Representation Learning Workshop, arXiv

preprint arXiv:1503.02531.

[25] S. Teerapittayanon, B. McDanel and H. T. Kung, "BranchyNet: Fast inference via early
exiting from deep neural networks," 2016 23rd International Conference on Pattern
Recognition (ICPR), Cancun, 2016, pp. 2464-2469, doi: 10.1109/ICPR.2016.7900006.

[26] E. Flamand et al., "GAP-8: A RISC-V SoC for AI at the Edge of the IoT," 2018 IEEE 29th

International Conference on Application-specific Systems, Architectures and Processors

(ASAP), Milan, 2018, pp. 1-4, doi: 10.1109/ASAP.2018.8445101.

[27] J. Nunez-Yanez, "Energy Proportional Neural Network Inference with Adaptive Voltage

and Frequency Scaling," in IEEE Transactions on Computers, vol. 68, no. 5, pp. 676-687, 1

May 2019, doi: 10.1109/TC.2018.2879333

[28] “Is DVFS worth the effort”, https://semiengineering.com/is-dvfs-worth-the-effort/,
accessed October 2020

22

[29] Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra and Jorge L. Reyes-Ortiz.

“A Public Domain Dataset for Human Activity Recognition Using Smartphones”. 21th

European Symposium on Artificial Neural Networks, Computational Intelligence and Machine

Learning, ESANN 2013. Bruges, Belgium 24-26 April 2013

[30] Ordóñez, F.J.; Roggen, D. “Deep Convolutional and LSTM Recurrent Neural Networks

for Multimodal Wearable Activity Recognition”. Sensors 2016, 16, 115.

[31] Y. Zhang, P. Hutchinson, N. A. J. Lieven and J. Nunez-Yanez, "Remaining Useful Life

Estimation Using Long Short-Term Memory Neural Networks and Deep Fusion," in IEEE

Access, vol. 8, pp. 19033-19045, 2020, doi: 10.1109/ACCESS.2020.2966827.

