4 research outputs found

    Traversing Every Edge in Each Direction Once, But Not at Once: Cubic (Polyhedral) Graphs

    Full text link
    A {\em retracting-free bidirectional circuit} in a graph GG is a closed walk which traverses every edge exactly once in each direction and such that no edge is succeeded by the same edge in the opposite direction. Such a circuit revisits each vertex only in a number of steps. Studying the class Ω\mathit{\Omega} of all graphs admitting at least one retracting-free bidirectional circuit was proposed by Ore (1951) and is by now of practical use to nanotechnology. The latter needs in various molecular polyhedra that are constructed from a single chain molecule in the retracting-free way. Some earlier results for simple graphs, obtained by Thomassen and, then, by other authors, are specially refined by us for a cubic graph QQ. Most of such refinements depend only on the number nn of vertices of QQ

    Vertex Splitting and Upper Embeddable Graphs

    Full text link
    The weak minor G of a graph G is the graph obtained from G by a sequence of edge-contraction operations on G. A weak-minor-closed family of upper embeddable graphs is a set G of upper embeddable graphs that for each graph G in G, every weak minor of G is also in G. Up to now, there are few results providing the necessary and sufficient conditions for characterizing upper embeddability of graphs. In this paper, we studied the relation between the vertex splitting operation and the upper embeddability of graphs; provided not only a necessary and sufficient condition for characterizing upper embeddability of graphs, but also a way to construct weak-minor-closed family of upper embeddable graphs from the bouquet of circles; extended a result in J: Graph Theory obtained by L. Nebesk{\P}y. In addition, the algorithm complex of determining the upper embeddability of a graph can be reduced much by the results obtained in this paper
    corecore