343 research outputs found

    Making decisions based on context: models and applications in cognitive sciences and natural language processing

    Full text link
    It is known that humans are capable of making decisions based on context and generalizing what they have learned. This dissertation considers two related problem areas and proposes different models that take context information into account. By including the context, the proposed models exhibit strong performance in each of the problem areas considered. The first problem area focuses on a context association task studied in cognitive science, which evaluates the ability of a learning agent to associate specific stimuli with an appropriate response in particular spatial contexts. Four neural circuit models are proposed to model how the stimulus and context information are processed to produce a response. The neural networks are trained by modifying the strength of neural connections (weights) using principles of Hebbian learning. Such learning is considered biologically plausible, in contrast to back propagation techniques that do not have a solid neurophysiological basis. A series of theoretical results for the neural circuit models are established, guaranteeing convergence to an optimal configuration when all the stimulus-context pairs are provided during training. Among all the models, a specific model based on ideas from recommender systems trained with a primal-dual update rule, achieves perfect performance in learning and generalizing the mapping from context-stimulus pairs to correct responses. The second problem area considered in the thesis focuses on clinical natural language processing (NLP). A particular application is the development of deep-learning models for analyzing radiology reports. Four NLP tasks are considered including anatomy named entity recognition, negation detection, incidental finding detection, and clinical concept extraction. A hierarchical Recurrent Neural Network (RNN) is proposed for anatomy named entity recognition, which is then used to produce a set of features for incidental finding detection of pulmonary nodules. A clinical context word embedding model is obtained, which is used with an RNN to model clinical concept extraction. Finally, feature-enriched RNN and transformer-based models with contextual word embedding are proposed for negation detection. All these models take the (clinical) context information into account. The models are evaluated on different datasets and are shown to achieve strong performance, largely outperforming the state-of-art

    Experience-driven formation of parts-based representations in a model of layered visual memory

    Get PDF
    Growing neuropsychological and neurophysiological evidence suggests that the visual cortex uses parts-based representations to encode, store and retrieve relevant objects. In such a scheme, objects are represented as a set of spatially distributed local features, or parts, arranged in stereotypical fashion. To encode the local appearance and to represent the relations between the constituent parts, there has to be an appropriate memory structure formed by previous experience with visual objects. Here, we propose a model how a hierarchical memory structure supporting efficient storage and rapid recall of parts-based representations can be established by an experience-driven process of self-organization. The process is based on the collaboration of slow bidirectional synaptic plasticity and homeostatic unit activity regulation, both running at the top of fast activity dynamics with winner-take-all character modulated by an oscillatory rhythm. These neural mechanisms lay down the basis for cooperation and competition between the distributed units and their synaptic connections. Choosing human face recognition as a test task, we show that, under the condition of open-ended, unsupervised incremental learning, the system is able to form memory traces for individual faces in a parts-based fashion. On a lower memory layer the synaptic structure is developed to represent local facial features and their interrelations, while the identities of different persons are captured explicitly on a higher layer. An additional property of the resulting representations is the sparseness of both the activity during the recall and the synaptic patterns comprising the memory traces.Comment: 34 pages, 12 Figures, 1 Table, published in Frontiers in Computational Neuroscience (Special Issue on Complex Systems Science and Brain Dynamics), http://www.frontiersin.org/neuroscience/computationalneuroscience/paper/10.3389/neuro.10/015.2009

    Neural Distributed Autoassociative Memories: A Survey

    Full text link
    Introduction. Neural network models of autoassociative, distributed memory allow storage and retrieval of many items (vectors) where the number of stored items can exceed the vector dimension (the number of neurons in the network). This opens the possibility of a sublinear time search (in the number of stored items) for approximate nearest neighbors among vectors of high dimension. The purpose of this paper is to review models of autoassociative, distributed memory that can be naturally implemented by neural networks (mainly with local learning rules and iterative dynamics based on information locally available to neurons). Scope. The survey is focused mainly on the networks of Hopfield, Willshaw and Potts, that have connections between pairs of neurons and operate on sparse binary vectors. We discuss not only autoassociative memory, but also the generalization properties of these networks. We also consider neural networks with higher-order connections and networks with a bipartite graph structure for non-binary data with linear constraints. Conclusions. In conclusion we discuss the relations to similarity search, advantages and drawbacks of these techniques, and topics for further research. An interesting and still not completely resolved question is whether neural autoassociative memories can search for approximate nearest neighbors faster than other index structures for similarity search, in particular for the case of very high dimensional vectors.Comment: 31 page

    A Review of Findings from Neuroscience and Cognitive Psychology as Possible Inspiration for the Path to Artificial General Intelligence

    Full text link
    This review aims to contribute to the quest for artificial general intelligence by examining neuroscience and cognitive psychology methods for potential inspiration. Despite the impressive advancements achieved by deep learning models in various domains, they still have shortcomings in abstract reasoning and causal understanding. Such capabilities should be ultimately integrated into artificial intelligence systems in order to surpass data-driven limitations and support decision making in a way more similar to human intelligence. This work is a vertical review that attempts a wide-ranging exploration of brain function, spanning from lower-level biological neurons, spiking neural networks, and neuronal ensembles to higher-level concepts such as brain anatomy, vector symbolic architectures, cognitive and categorization models, and cognitive architectures. The hope is that these concepts may offer insights for solutions in artificial general intelligence.Comment: 143 pages, 49 figures, 244 reference

    Brain-Inspired Computational Intelligence via Predictive Coding

    Full text link
    Artificial intelligence (AI) is rapidly becoming one of the key technologies of this century. The majority of results in AI thus far have been achieved using deep neural networks trained with the error backpropagation learning algorithm. However, the ubiquitous adoption of this approach has highlighted some important limitations such as substantial computational cost, difficulty in quantifying uncertainty, lack of robustness, unreliability, and biological implausibility. It is possible that addressing these limitations may require schemes that are inspired and guided by neuroscience theories. One such theory, called predictive coding (PC), has shown promising performance in machine intelligence tasks, exhibiting exciting properties that make it potentially valuable for the machine learning community: PC can model information processing in different brain areas, can be used in cognitive control and robotics, and has a solid mathematical grounding in variational inference, offering a powerful inversion scheme for a specific class of continuous-state generative models. With the hope of foregrounding research in this direction, we survey the literature that has contributed to this perspective, highlighting the many ways that PC might play a role in the future of machine learning and computational intelligence at large.Comment: 37 Pages, 9 Figure

    New Learning and Control Algorithms for Neural Networks.

    Get PDF
    Neural networks offer distributed processing power, error correcting capability and structural simplicity of the basic computing element. Neural networks have been found to be attractive for applications such as associative memory, robotics, image processing, speech understanding and optimization. Neural networks are self-adaptive systems that try to configure themselves to store new information. This dissertation investigates two approaches to improve performance: better learning and supervisory control. A new learning algorithm called the Correlation Continuous Unlearning (CCU) algorithm is presented. It is based on the idea of removing undesirable information that is encountered during the learning period. The control methods proposed in the dissertation improve the convergence by affecting the order of updates using a controller. Most previous studies have focused on monolithic structures. But it is known that the human brain has a bicameral nature at the gross level and it also has several specialized structures. In this dissertation, we investigate the computing characteristics of neural networks that are not monolithic being enhanced by a controller that can run algorithms that take advantage of the known global characteristics of the stored information. Such networks have been called bicameral neural networks. Stinson and Kak considered elementary bicameral models that used asynchronous control. New control methods, the method of iteration and bicameral classifier, are now proposed. The method of iteration uses the Hamming distance between the probe and the answer to control the convergence to a correct answer, whereas the bicameral classifier takes advantage of global characteristics using a clustering algorithm. The bicameral classifier is applied to two different models of equiprobable patterns as well as the more realistic situation where patterns can have different probabilities. The CCU algorithm has also been applied to a bidirectional associative memory with greatly improved performance. For multilayered networks, indexing of patterns to enhance system performance has been studied
    corecore