292 research outputs found

    Towards Ghost-free Shadow Removal via Dual Hierarchical Aggregation Network and Shadow Matting GAN

    Full text link
    Shadow removal is an essential task for scene understanding. Many studies consider only matching the image contents, which often causes two types of ghosts: color in-consistencies in shadow regions or artifacts on shadow boundaries. In this paper, we tackle these issues in two ways. First, to carefully learn the border artifacts-free image, we propose a novel network structure named the dual hierarchically aggregation network~(DHAN). It contains a series of growth dilated convolutions as the backbone without any down-samplings, and we hierarchically aggregate multi-context features for attention and prediction, respectively. Second, we argue that training on a limited dataset restricts the textural understanding of the network, which leads to the shadow region color in-consistencies. Currently, the largest dataset contains 2k+ shadow/shadow-free image pairs. However, it has only 0.1k+ unique scenes since many samples share exactly the same background with different shadow positions. Thus, we design a shadow matting generative adversarial network~(SMGAN) to synthesize realistic shadow mattings from a given shadow mask and shadow-free image. With the help of novel masks or scenes, we enhance the current datasets using synthesized shadow images. Experiments show that our DHAN can erase the shadows and produce high-quality ghost-free images. After training on the synthesized and real datasets, our network outperforms other state-of-the-art methods by a large margin. The code is available: http://github.com/vinthony/ghost-free-shadow-removal/Comment: Accepted by AAAI 202

    Mask-ShadowGAN: Learning to Remove Shadows from Unpaired Data

    Full text link
    This paper presents a new method for shadow removal using unpaired data, enabling us to avoid tedious annotations and obtain more diverse training samples. However, directly employing adversarial learning and cycle-consistency constraints is insufficient to learn the underlying relationship between the shadow and shadow-free domains, since the mapping between shadow and shadow-free images is not simply one-to-one. To address the problem, we formulate Mask-ShadowGAN, a new deep framework that automatically learns to produce a shadow mask from the input shadow image and then takes the mask to guide the shadow generation via re-formulated cycle-consistency constraints. Particularly, the framework simultaneously learns to produce shadow masks and learns to remove shadows, to maximize the overall performance. Also, we prepared an unpaired dataset for shadow removal and demonstrated the effectiveness of Mask-ShadowGAN on various experiments, even it was trained on unpaired data.Comment: Accepted to ICCV 201

    Enhanced Boundary Learning for Glass-like Object Segmentation

    Full text link
    Glass-like objects such as windows, bottles, and mirrors exist widely in the real world. Sensing these objects has many applications, including robot navigation and grasping. However, this task is very challenging due to the arbitrary scenes behind glass-like objects. This paper aims to solve the glass-like object segmentation problem via enhanced boundary learning. In particular, we first propose a novel refined differential module that outputs finer boundary cues. We then introduce an edge-aware point-based graph convolution network module to model the global shape along the boundary. We use these two modules to design a decoder that generates accurate and clean segmentation results, especially on the object contours. Both modules are lightweight and effective: they can be embedded into various segmentation models. In extensive experiments on three recent glass-like object segmentation datasets, including Trans10k, MSD, and GDD, our approach establishes new state-of-the-art results. We also illustrate the strong generalization properties of our method on three generic segmentation datasets, including Cityscapes, BDD, and COCO Stuff. Code and models is available at \url{https://github.com/hehao13/EBLNet}.Comment: ICCV-2021 Code is availabe at https://github.com/hehao13/EBLNe

    SCOTCH and SODA: A Transformer Video Shadow Detection Framework

    Full text link
    Shadows in videos are difficult to detect because of the large shadow deformation between frames. In this work, we argue that accounting for shadow deformation is essential when designing a video shadow detection method. To this end, we introduce the shadow deformation attention trajectory (SODA), a new type of video self-attention module, specially designed to handle the large shadow deformations in videos. Moreover, we present a new shadow contrastive learning mechanism (SCOTCH) which aims at guiding the network to learn a unified shadow representation from massive positive shadow pairs across different videos. We demonstrate empirically the effectiveness of our two contributions in an ablation study. Furthermore, we show that SCOTCH and SODA significantly outperforms existing techniques for video shadow detection. Code is available at the project page: https://lihaoliu-cambridge.github.io/scotch_and_soda/Comment: Accepted to CVPR 202

    Improving Pedestrian Attribute Recognition With Weakly-Supervised Multi-Scale Attribute-Specific Localization

    Full text link
    Pedestrian attribute recognition has been an emerging research topic in the area of video surveillance. To predict the existence of a particular attribute, it is demanded to localize the regions related to the attribute. However, in this task, the region annotations are not available. How to carve out these attribute-related regions remains challenging. Existing methods applied attribute-agnostic visual attention or heuristic body-part localization mechanisms to enhance the local feature representations, while neglecting to employ attributes to define local feature areas. We propose a flexible Attribute Localization Module (ALM) to adaptively discover the most discriminative regions and learns the regional features for each attribute at multiple levels. Moreover, a feature pyramid architecture is also introduced to enhance the attribute-specific localization at low-levels with high-level semantic guidance. The proposed framework does not require additional region annotations and can be trained end-to-end with multi-level deep supervision. Extensive experiments show that the proposed method achieves state-of-the-art results on three pedestrian attribute datasets, including PETA, RAP, and PA-100K.Comment: Accepted by ICCV 201
    corecore