179 research outputs found

    Baby-Step Giant-Step Algorithms for the Symmetric Group

    Full text link
    We study discrete logarithms in the setting of group actions. Suppose that GG is a group that acts on a set SS. When r,s∈Sr,s \in S, a solution g∈Gg \in G to rg=sr^g = s can be thought of as a kind of logarithm. In this paper, we study the case where G=SnG = S_n, and develop analogs to the Shanks baby-step / giant-step procedure for ordinary discrete logarithms. Specifically, we compute two sets A,B⊆SnA, B \subseteq S_n such that every permutation of SnS_n can be written as a product abab of elements a∈Aa \in A and b∈Bb \in B. Our deterministic procedure is optimal up to constant factors, in the sense that AA and BB can be computed in optimal asymptotic complexity, and ∣A∣|A| and ∣B∣|B| are a small constant from n!\sqrt{n!} in size. We also analyze randomized "collision" algorithms for the same problem

    Beating the Generator-Enumeration Bound for pp-Group Isomorphism

    Full text link
    We consider the group isomorphism problem: given two finite groups G and H specified by their multiplication tables, decide if G cong H. For several decades, the n^(log_p n + O(1)) generator-enumeration bound (where p is the smallest prime dividing the order of the group) has been the best worst-case result for general groups. In this work, we show the first improvement over the generator-enumeration bound for p-groups, which are believed to be the hard case of the group isomorphism problem. We start by giving a Turing reduction from group isomorphism to n^((1 / 2) log_p n + O(1)) instances of p-group composition-series isomorphism. By showing a Karp reduction from p-group composition-series isomorphism to testing isomorphism of graphs of degree at most p + O(1) and applying algorithms for testing isomorphism of graphs of bounded degree, we obtain an n^(O(p)) time algorithm for p-group composition-series isomorphism. Combining these two results yields an algorithm for p-group isomorphism that takes at most n^((1 / 2) log_p n + O(p)) time. This algorithm is faster than generator-enumeration when p is small and slower when p is large. Choosing the faster algorithm based on p and n yields an upper bound of n^((1 / 2 + o(1)) log n) for p-group isomorphism.Comment: 15 pages. This is an updated and improved version of the results for p-groups in arXiv:1205.0642 and TR11-052 in ECC

    Probabilistic symmetry reduction

    Get PDF
    Model checking is a technique used for the formal verification of concurrent systems. A major hindrance to model checking is the so-called state space explosion problem where the number of states in a model grows exponentially as variables are added. This means even trivial systems can require millions of states to define and are often too large to feasibly verify. Fortunately, models often exhibit underlying replication which can be exploited to aid in verification. Exploiting this replication is known as symmetry reduction and has yielded considerable success in non probabilistic verification. The main contribution of this thesis is to show how symmetry reduction techniques can be applied to explicit state probabilistic model checking. In probabilistic model checking the need for such techniques is particularly acute since it requires not only an exhaustive state-space exploration, but also a numerical solution phase to compute probabilities or other quantitative values. The approach we take enables the automated detection of arbitrary data and component symmetries from a probabilistic specification. We define new techniques to exploit the identified symmetry and provide efficient generation of the quotient model. We prove the correctness of our approach, and demonstrate its viability by implementing a tool to apply symmetry reduction to an explicit state model checker

    On the Complexity of Isomorphism Problems for Tensors, Groups, and Polynomials I: Tensor Isomorphism-Completeness

    Get PDF
    We study the complexity of isomorphism problems for tensors, groups, and polynomials. These problems have been studied in multivariate cryptography, machine learning, quantum information, and computational group theory. We show that these problems are all polynomial-time equivalent, creating bridges between problems traditionally studied in myriad research areas. This prompts us to define the complexity class TI, namely problems that reduce to the Tensor Isomorphism (TI) problem in polynomial time. Our main technical result is a polynomial-time reduction from d-tensor isomorphism to 3-tensor isomorphism. In the context of quantum information, this result gives multipartite-to-tripartite entanglement transformation procedure, that preserves equivalence under stochastic local operations and classical communication (SLOCC)

    Incorporating Weisfeiler-Leman into algorithms for group isomorphism

    Get PDF
    In this paper we combine many of the standard and more recent algebraic techniques for testing isomorphism of finite groups (GpI) with combinatorial techniques that have typically b

    A Systematic Study of Isomorphism Invariants of Finite Groups via the Weisfeiler-Leman Dimension

    Get PDF
    We investigate the relationship between various isomorphism invariants for finite groups. Specifically, we use the Weisfeiler-Leman dimension (WL) to characterize, compare and quantify the effectiveness and complexity of invariants for group isomorphism. It turns out that a surprising number of invariants and characteristic subgroups that are classic to group theory can be detected and identified by a low dimensional Weisfeiler-Leman algorithm. These include the center, the inner automorphism group, the commutator subgroup and the derived series, the abelian radical, the solvable radical, the Fitting group and ?-radicals. A low dimensional WL-algorithm additionally determines the isomorphism type of the socle as well as the factors in the derives series and the upper and lower central series. We also analyze the behavior of the WL-algorithm for group extensions and prove that a low dimensional WL-algorithm determines the isomorphism types of the composition factors of a group. Finally we develop a new tool to define a canonical maximal central decomposition for groups. This allows us to show that the Weisfeiler-Leman dimension of a group is at most one larger than the dimensions of its direct indecomposable factors. In other words the Weisfeiler-Leman dimension increases by at most 1 when taking direct products
    • …
    corecore