
ar
X

iv
:1

90
5.

02
51

8v
1

 [
cs

.C
C

]
 6

 M
ay

 2
01

9

Incorporating Weisfeiler–Leman into algorithms for group isomorphism

Peter A. Brooksbank∗ Joshua A. Grochow† Yinan Li‡ Youming Qiao§

James B. Wilson¶

May 8, 2019

Abstract

In this paper we combine many of the standard and more recent algebraic techniques for testing
isomorphism of finite groups (GpI) with combinatorial techniques that have typically been applied to
Graph Isomorphism. We show how to combine several state-of-the-art GpI algorithms for specific group
classes into an algorithm for general GpI, namely: composition series isomorphism (Rosenbaum–Wagner,
Theoret. Comp. Sci., 2015; Luks, 2015), recursively-refineable filters (Wilson, J. Group Theory, 2013),
and low-genus GpI (Brooksbank–Maglione–Wilson, J. Algebra, 2017). Recursively-refineable filters—
a generalization of subgroup series—form the skeleton of this framework, and we refine our filter by
building a hypergraph encoding low-genus quotients, to which we then apply a hypergraph variant of
the k-dimensional Weisfeiler–Leman technique. Our technique is flexible enough to readily incorporate
additional hypergraph invariants or additional characteristic subgroups as they emerge.

After introducing this general technique, we prove three main results about its complexity:

• Let the width of a filter be the dimension of the largest quotient of two adjacent subgroups of the
filter; the color-ratio of our hypergraph captures how much smaller a color class is compared to
the layer of the filter it is coloring. When we use genus-g quotients and hypergraph k-WL, we can
solve isomorphism for solvable groups of order n in time

(n

color-ratio

)width

poly(n) + nO(gk)

In the “base case”, where the solvable radical is itself low-genus and the semisimple part acts
trivially, we can get a better guaranteed running time of nO(log log n), by combining cohomolog-
ical techniques (Grochow–Qiao, CCC ’14, SIAM J. Comput., 2017), code equivalence (Babai–
Codenotti–Grochow–Qiao, SODA ’11), and low-genus isomorphism ([BMW], ibid.).

• We introduce a new random model of finite groups. Unlike previous models, we prove that our
model has good coverage, in that it produces a wide variety of groups, and in particular a number
of distinct isomorphism types that is logarithmically equivalent to the number of all isomorphism
types. In this random model, we show that our filter-and-1-WL refinement method results in
constant average width (the above result uses max width).

• For p-groups of class 2 and exponent p—widely believed to be the hardest cases of GpI, and where
we also expect the above techniques to get stuck—we improve on the average-case algorithm of Li–
Qiao (FOCS ’17). Our new algorithm is simpler and applies to a larger fraction of random p-groups
of class 2 and exponent p. The previous algorithm was based on a linear-algebraic analogue of the
individualize-and-refine technique; our new algorithm combines that technique with concepts from
isomorphism of low-genus groups. We also implement this algorithm in MAGMA and show that
in experiments it improves over the default (brute force) algorithm for this problem.

∗Department of Mathematics, Bucknell University, Lewisburg, PA 17837, United States.
pbrooksb@bucknell.edu

†Departments of Computer Science and Mathematics, University of Colorado—Boulder, Boulder, CO 80309-0430,
United States. jgrochow@colorado.edu

‡CWI and QuSoft, Science Park 123, 1098XG Amsterdam, Netherlands. Yinan.Li@cwi.nl.
§Center for Quantum Software and Information, University of Technology Sydney, Ultimo NSW 2007, Australia.

Youming.Qiao@uts.edu.au
¶Department of Mathematics, Colorado State University, Fort Collins, CO 80523, United States.

James.Wilson@ColoState.Edu

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301632073?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1905.02518v1

1 Introduction

The problem of deciding whether two finite groups are isomorphic (GpI) has a century-old history
that straddles several fields, including topology, computational algebra, and computer science. It
also has several unusual variations in complexity. For example, the dense input model—where
groups are specified by their multiplication “Cayley” tables, has quasi-polynomial time complexity
and it reduces to the better known Graph Isomorphism problem (GphI); cf. [L3, Section 10].
Meanwhile, GpI for a sparse input model for groups, such as by permutations, matrices, or black-
box groups, reduces from GphI; cf. [HL,LV]. At present sparse GpI is in Σ2P and it is not known to
lie in either NP nor coNP; see [BS, Propostion 4.8, Corollary 4.9]. In fact in the model of groups
input by generators and relations, Adian and Rabin famously showed GpI is undecideable [A,R1].

Following L. Babai’s breakthrough proof that GphI is in quasi-polynomial time [B1], dense
(Cayley table) GpI is now an essential bottleneck to improving graph isomorphism. So while the
methods we explore here can be applied in both the dense and the sparse models of GpI, we
concentrate our complexity claims on the dense case. In particular, when we say polynomial-
time, we mean polynomial time in the group order unless specified otherwise. Our contribution
here is to expose from within the structure of groups, graph theoretic properties which relate
to the difficulty of solving GpI. We expect this to facilitate the systematic use of combinatorial
isomorphism techniques within GpI that interplay with existing algebraic strategies.

We introduce a colored (hyper-)graph based on an algebraic data structure known as a recursively-
refineable filter which identifies abelian groups and vector spaces layered together to form the struc-
ture of a finite group. Filters have been useful in several isomorphism tests [W3,M3,M1,BOW]. As
the name suggests, filters can be refined, and with each refinement the cost T (n) of isomorphism
testing decreases after refinement to a function in O(T (n)1/c), for some c > 2. The more rounds of
refinement we can carry out the lower the cost of isomorphism. Existing uses of filter refinement
find characteristic structure algebraically; our principal innovation is to add a combinatorial per-
spective to refinement. We color (co)dimension-g subspaces of the layers of the filter using local
isomorphism invariants. This parameter g will be referred to as the genus parameter. The layers
are in turn connected to each other according to their position within the group, and this presents
further opportunities for coloring. With so much nuanced local information, the graph we asso-
ciate to a group is well suited to individualization and refinement techniques like the dimension-k
Weisfeiler–Leman procedure [WL,B2, IL,CFI]. The critical work is to refine these graphs compati-
bly with the refinement of the filter (Theorem A). Thus, one maintains the relationship between the
group and graph isomorphism properties as we recursively refine. While our methods do not apply
to structures as general as semigroups and quaisgroups, they can be adapted to other problems,
such as ring isomorphism [KS].

To explore the implications of this technique we introduce a model for random finite groups.
In doing so we consider pitfalls identified in previously suggested models for random finite groups.
We are especially concerned with coverage—the idea that we are able to easily sample from groups
within natural classes such as non-solvable, solvable, nilpotent, and abelian—and that within each
subclass the number of isomorphism types is dense on a log scale (Theorem C). Log-scale is for
now the best granularity we know for the enumeration of groups, cf. [BNV]. We then prove
(Theorem D) that in our random model, genus-1 1-WL-refinement on average refines to a series
of length Θ(log n), which thereby achieves the expected refinement length posed in [W3, p. 876].
Following the refinement, the average width of the filter is thus constant, though the cost of
refinement increases. (If the maximum width were constant it would result in a polynomial-time
average-case isomorphism test in our model.)

Finally within our random model there are several “base cases” where the recursive refinements

1

become less likely, or where our analysis is inadequate. We demonstrate that in two of these cases,
isomorphism can be solved either in polynomial time in the average-case sense (Theorem E) or in
nearly polynomial time (nO(log logn)) in the worst-case sense (Theorem F). The former also solves
a related problem of average complexity of tensor equivalence.

Our strategy harnesses critical features of a great variety of existing approaches to isomor-
phism (code equivalence, filter refinements, adjoint-tensor methods, bidirectional collision) and
uses Weisefeiler–Leman refinement as the top-level strategy to combine the various implications.
That diversity was not so much a plan but the result of hitting barriers and looking to the liter-
ature for solutions. The result, however, is a framework that is rather flexible and is well suited
to accommodate future ideas, both algebraic and combinatorial, as featured here already. That
strength of course comes at a cost that the mechanics and analysis are rather involved. We expect
that in time better analysis and simplified models will improve our understanding.

1.1 The context of this work

Much recent progress in GpI has been had by considering special classes of groups; the recent papers
[BMW1, GQ, LGR] survey and supplement these results. That has created powerful but highly
varied strategies with no obvious means of synthesis. Within our refinement model of computing
GpI we have the opportunity to begin merging some of the many options that have been developed
to date. To help explain our approach we consider examples of groups of invertible matrices over
finite fields of prime order, as graphically communicated in Figure 1.1. In fact, these examples will
later evolve into the aforementioned random model for finite groups.

(a) (c) (b)

Figure 1.1: Diagrams of matrix groups can capture many of the well-studied examples of finite
groups: (a) depicts a large variety of nilpotent groups; (b) depicts products of quasi- and almost-
simple groups together with possible permutations of isomorphic blocks; and (c) depicts wide range
of general finite groups decomposed into smaller classes of groups.

First thread: connection with linear and multilinear algebras. Algorithms and data
structures for linear and multilinear structures are on the whole far more evolved than counterparts
for groups. This explains why progress for groups can be made by mapping problems into the realm
of linear and multilinear algebra. Such a correspondence has been known for close to a century,
originating in work of Brahana [B3] and Baer [B3]. Consider groups U of the following form.

U 6 H(d1, . . . , dℓ;F) :=

Id1 a12 a22 · · ·
Id2 a23

. . .
. . .

Idℓ

∣

∣

∣

∣

∣

∣

∣

∣

∣

aij ∈Mdi×dj (F)

.

2

Figure 1.1(a) illustrates a possible U . In the creation of our random model we shall sample groups
U by selecting random matrices in H(d1, . . . , dℓ;F). A surprising necessity is that we sample only
sparse matrices. Although this might seem counter to the goals of seeding a group with lots of
entropy, we will demonstrate that groups with too much random seeding become virtually identical
(Theorem 5.2).

As a general remark it will be helpful throughout this work to regard all groups U = 〈U, ·,−1 , 1〉
as having been enriched by the addition of a second binary operation [a, b] = a−1b−1ab known as
commutation. In this way groups behave much more like rings than they do like semigroups or
quasigroups. In particular, [,] very nearly distributes over the usual binary operation · in U , in
that [ab, c] = b−1[a, c]b[b, c]. That explains the link to multilinear algebra. In the case of U :

Id1 a12 · · ·
. . .

. . .

Idℓ

,

Id1 b12 · · ·
. . .

. . .

Idℓ

=

Id1 a12 + b12 a22 + b22 + a12b23 − b12a23 · · ·
. . .

. . .

Idℓ

.

Stripping away the addition leaves us to compare bilinear (and later multilinear) products such
as (aij , bjk) 7→ aijbjk, under base changes. We treat these as functions F

a × F
b F

c, where

indicates the function is multilinear. Equivalently, we must study the orbits of groups GL(a,F)×
GL(b,F) × GL(c,F) acting on elements of the tensor space F

a ⊗ F
b ⊗ F

c. Such reductions of
group isomorphism to multilinear equivalence, and more general tensor equivalence problems have
been the key to the recent progress on some of the largest and most difficult instances of GpI

[BMW1,BW,LQ,IQ,LW2,BOW,W2]. The strategies buried within those methods are nevertheless
quite distinct. For example, several focus on ∗-algebras and properties of rings and modules acting
on tensors. Others focus on tensors as high-dimensional arrays, and perform individualization and
refinement techniques on slices of this data structure. Our model of refinement allows for both
strategies.

Second thread: relationship to code equivalence. Now consider the types of groups we
could place on the block diagonal of the matrix group examples in Figure 1.1. These could in-
clude groups like GL(di,F). We could also use subgroups such as GL(1,Fpdi) = F

×
pd−1 , as well

as natural families of geometrically interesting groups such as orthogonal, unitary, and symplectic
groups. We may even embed the same group several times into multiple blocks on the diagonal,
e.g.

〈[

A 0
0 A

]

: A ∈ GL(e,F)
〉

. Those blocks could further be permuted producing groups of block
monomial matrices such as

〈[

0 A
A 0

]

: A ∈ GL(e,F)
〉

. We can capture the spirit of such a group
graphically in Figure 1.1(b). Indeed, our random group model builds random semi-simple and
quasi-semisimple groups in just this way.

Isomorphism in the context of groups of this kind has been approached mostly through the use
of code equivalence. For example, for semisimple groups—those with no non-trivial abelian normal
subgroups—there is an algorithm that runs in time polynomial in the group order [BCGQ, BCQ],
as well as an algorithm that is efficient in practice [CH]. The key algorithmic idea is dynamic
programming, and its use follows the one by Luks in the context of hypergraph isomorphism and
code equivalence [L2]. Later [GQ] considers the further implications when the groups centrally
extend abelian groups similar to the general family we have described in this thread.

Third thread: composition series and filters. In recent years there has been some progress on
improving general isomorphism using subgroup chains. Rosenbaum and Wagner [RW] demonstrated
that one can fix a composition series C(G) for group G and then, given a composition series C(H)
for another group H, efficiently decide if there is an isomorphism G → H sending C(G) to C(H).

3

Luks gave an improvement of that test [L1]. In this way, the putative cost of nlogn+O(1) steps to
decide isomorphism by brute-force is reduced to the number of possible composition series, which
is at most n(

1
2
+o(1)) logn.

Filters can use characteristic subgroups to recursively find more characteristic subgroups, ul-
timately producing a large enough collection of fixed subgroups that an isomorphism test along
the lines of Rosenbaum–Wagner becomes efficient. For several families of groups such refinements
have been discovered [W3, M2]. Our approach here extends the filtration process by taking the
methods known and combining them into a colored hypergraph where individualization-refinement
techniques can be applied. The goal is to make it even more likely to reach a situation in which
the Rosenbaum–Wagner and Luks algorithms can be applied efficiently.

1.2 An outline of the Weisfeiler–Leman procedure for groups

Our approach to GpI uses recursively-refineable filters to build and refine a colored hypergraph
within, and between, abelian layers of a given group. A filter φ on a group G assigns to a c-
tuple s = (s1, . . . , sc) of natural numbers (including 0) a normal subgroup φs of G subject to
natural compatibility requirements. Let Norm(G) denote the set of normal subgroups of G, and
for A,B ⊆ G let [A,B] = 〈[a, b] | a ∈ A, b ∈ b〉.
Definition 1.1 (Filter [W3]). A filter on a group G is a map φ : Nd → Norm(G), where

(∀s, t ∈ N
d) s 6lex t =⇒ φs > φt and [φs, φt] 6 φs+t. (1.2)

Note that the first condition implies that the subgroups φs form a descending chain of subgroups,
though in general it is not a proper chain. Computationally we only store the lexicographically
least label s for each distinct subgroup φs in the image of φ. Thus, a filter’s image is bounded by
the length of the longest subgroup chain. For a group of order n this is at most log n.

We begin with a filter φ : Nc → Norm(G) known from the structure of general finite groups,
and then refine by increasing the value of c. That refinements exist is proved in [W3] and that
they can be computed efficiently is shown in [M3]. Our initial value for c will be the number of
distinct primes p1, . . . , pc dividing n = |G|. For each prime pi, we let Opi(G) denote the intersection
of all Sylow pi-subgroups of G, the maximum normal subgroup having order a power of pi. Let
ei = (. . . , 0, 1

i
, 0, . . .) ∈ N

c, sorted lexicographically (so that ei < ei+1), and define φ : Nc → Norm(G)

as follows:

φs =

G s = 0,
∏c
j=iOpj(G) s = ei,

[φsiei , G]φpisiei s = (si + 1)ei,
∏c
i=1 φsiei s =

∑c
i=1 siei.

Here the product
∏

i φsiei means the normal subgroup generated by the terms φsiei . For example
the group S4 of permutations on 4 letters would have

φ(0,0) = S4 > φ(1,0) = O2(S4)O3(S4) = 〈(12)(34), (13)(24)〉 > φ(2,0) = φ(0,1) = O3(S4) = 1.

The boundary filter ∂φ : Nd → Norm(G) is defined by ∂φs = 〈φs+t : t ∈ N
d\{0}〉 (if d = 1, then

∂φs = φs+1), and the quotients Ls := φs/∂φs are the layers of φ. Note that for each s 6= 0, Ls is
abelian, and in fact a Z[φ0/∂φ0]-module. In the selected filter above these are in fact Fpi-vector
spaces for some i. The set L(φ) =

⊕

s 6=0 Ls, with homogeneous bilinear products

[,]st : Ls × Lt Ls+t : (x∂φs, y∂φt) 7→ [x, y]∂φs+t,

4

is a graded Lie algebra whose graded components are invariant under Aut(G) [W3, Theorem 3.1].
A bilinear map (bimap) Ls×Lt Ls+t is said to have genus g if it is defined over a field F such

that dimF Ls+t 6 g, or (see [BMW1] for details) if it is built from such maps by certain elementary
products (such as direct products, but even “central” products are allowed). We will primarily be
concerned with the case where F = Zp and we consider bimaps whose codomain has dimension at
most g, but our results extend without difficulty to the more general notion of genus.

In our setting the layers of φ are elementary abelian, and our approach is to build a hypergraph
whose vertices are the union of the points (1-spaces) in the projective geometries of the layers.
For s ∈ N

d, let PGk(Ls) denote the set of (k + 1)-dimensional subspaces of Ls. Define a family
of hypergraphs H(g)(φ), where 1 < g ∈ Z is a parameter, with vertices and hyperedges defined as
follows:

The vertex set of H(g)(φ) is V =
⋃

s∈Nd PG0(Ls).

The hyperedge set of H(g)(φ) is E =
⋃

s∈Nd PGg(Ls)∪PGdimLs−g(Ls) ∪
⋃

s 6=tKst, where Kst
is a hypergraph with edges and 3-edges on PG0(Ls) ∪ PG0(Lt) ∪ PG0(Ls+t).

Having defined the hypergraph H(g)(φ), we shall apply the k-dimensional Weisfeiler-Leman
(WL) procedure to it in an appropriate way. Briefly, it is a hypergraph version of the WL procedure
[WL] on graphs [B2, IL]. When k = 1, such a WL procedure on hypergraphs was recently studied
by Böker [B1].

To this end we obtain an algorithm that, given a finite group G and integers g, k > 1, computes
a suitable characteristic filter φ : Nd → Norm(G), where N = O∞(G) =

∏

pOp(G) is the Fitting

subgroup, and an associated hypergraph H(g,k)(φ). Further, it colors the hyperedges E of H(g,k)(φ)
in a certain desirable way. If χ : E → N is a coloring of hyperedges, denote the corresponding

colored hypergraph by H(g,k)
χ (φ).

Theorem A. There is a deterministic algorithm that, given a finite group G and integers g, k > 1,
constructs the Fitting subgroup N = O∞(G), a characteristic filter φ : Nd → Norm(G) whose non-
zero layers are elementary abelian Aut(G)-modules, the hypergraph H = H(g,k)(φ), and a coloring
χ : V(H) ∪ E(H)→ N satisfying:

(i) H(g,k)
χ (φ) is hereditary in the following sense: for each s ∈ N

d − {0}, the vertex-and-edge-

colored hypergraph obtained by restricting H(g,k)
χ (φ) to G/φs is a refinement of the colored

hypergraph for G/φs based on the filter φ truncated at φs.

(ii) H(g,k)
χ (φ) is also hereditary in k in the following sense: the underlying hypergraphs of H(g,k)(φ)

and H(g,k+1)(φ) are identical, and the coloring of the latter refines the coloring of the former.

(iii) If G ∼= G′, there is a colored hypergraph isomorphism f : H(g,k)
χ (φ)→H(g,k)

χ′ (φ′) such that

∀e ∈ E(H), χ(e) = χ′(f(e)),

∀v ∈ V(H), χ(v) = χ′(f(v)).

The time complexity is |G|O(gk).

The algorithm to construct the colored hypergraph H(g,k)
χ (φ) is an iterative procedure that

we describe in detail in Section 3. Within a fixed iteration, we apply a Weisfeiler–Leman type
individualization procedure to obtain a stable coloring (a hypergraph analogue of k-dimensional

5

WL). We then use that stable coloring to search for characteristic structure in G not already
captured by the filter φ. If we succeed, we use this structure to refine φ and iterate.

Given the result of our WL-algorithm and applying Luks’s extension [L1] of the Rosenbaum–
Wagner composition series comparison [RW], whenever we refine we improve our isomorphism test,
resulting in:

Theorem B. Let φ = φg,k and H(g,k) = H(g,k)
χ (φ) denote the filter and colored hypergraph from

Theorem A. Let width(φ) denote the maximum dimension of any layer of φ, and let color-ratio(H)
be the product over all layers s of |Ls|/|Cs|, where Cs is the smallest color class in layer Ls. Then
given a nilpotent group N of order n, isomorphism can be tested in time

(

n

color-ratio(H(g,k))

)width(φg,k)

poly(n) + nO(gk).

We extend this with an individualize-and-refine technique in Section 4.3, though for that we do
not have as cleanly stated an upper bound.

Remark 1.3. The initial filter described above can be extended to solvable groups, and in particular
the solvable radical Rad(G) of any group, by doing something similar to the above within each
layer of the Fitting series. This would let us extend all our results from using the Fitting subgroup
O∞(G) to using the solvable radical Rad(G) instead, and would extend Theorem B from nilpotent
to solvable groups.

1.3 An outline of the random model

Unlike sampling a random graph, where edges can freely be added or omitted, sampling groups of a
fixed order requires some delicacy. For example, there are 15 isomorphism types of groups of order
16 but only 1 each of orders 15 and 17. Sampling random groups has hitherto been approached in
one of the following two ways.

Quotient Sampling. Fix a free group F [X] of all strings on an alphabet X ∪X−1, and consider
quotients by normal subgroupsN = 〈S〉 sampled by choosing S ⊂ F by some aleatory process.

Subgroup Sampling. Fix an automorphism group of a structure, such as the group Sym(Ω) of
permutations of a set Ω, or the group GL(V) of invertible linear transformations of a vector
space V . Consider subgroups H = 〈S〉 where S is sampled by some aleatory process.

Evidently, both methods yield groups, but neither offers sufficient variability when restricted to
finite groups. For instance Gromov studied quotient sampling as a function of the word lengths
of elements in S, finding most quotients are 1, Z/2, or infinite [G2]. Also, subgroup sampling in
G = Sym(Ω) (respectively GL(V)) has been shown by Dixon, Kantor–Lubotsky [KL], and others
to essentially sample An, Sn (respectively, subgroups SL(V) 6 H 6 GL(V)).

To escape these conditions we adopt a method of sampling that appears antithetical to random
models: we strongly bias our random selections. We settle on a model related to subgroup sampling
in GL(d, p) since this affords us easy-to-use group operations. (Note, Novikov–Boone demonstrated
that the word problem in the free group is undecidable and thus working with quotients F [X]/N
is not in general feasible [N,B2].)

First, we sample random upper (d×d)-unitriangular matrices u1, . . . , uℓ ∈ U(d, p) but we insist
that they are ǫ-sparse, for some constant ǫ. Then

U = 〈u1, . . . , uℓ〉.

6

0

10

20

30

40

50

60

0 5 10 15 20 25 30 35 40

Matrix density 10%

+++++++++++++++++
+

+
+++

++

+
++

+

+

+
+++

++++++++

+
50%

××××××××××××××××××××××××××××××××××
××
×

×
××
×

×
100%

∗ ∗
∗

∗

∗

∗

∗

Figure 1.2: Plots of the orders of 100 subgroups sampled as 〈u1, . . . , u5〉 6 U(10, 3) with three
different densities ǫ: (+, ǫ = 1/10), (×, ǫ = 1/2), and (∗, ǫ = 1). Greater density makes group
order, and structure, less varied. The X-axis is labelled by the group order, while the Y -axis is
labelled by the percentage of the sampled groups.

samples a subgroup whose order is a power of the prime p characteristic of our fixed field F. As we
shall demonstrate in Theorem 5.2, without limiting our randomness to sparse matrices the groups
U will almost always contain the following subgroup.

γ2(U(d, p)) =

1 0 ∗
. . .

. . .
. . .

1 0 ∗
1 0

1

.

In essence, this is a p-group analogue of the observations we made about sampling in Sn and
GL(d, p). However, sampling with sparsity gives substantial variation, as illustrated simply by
comparing orders in Figure 1.2. An interesting recent study by R. Gilman describes a similar
situation for permutations analyzed by Kolomogorov complexity [G1].

Secondly, once we have selected a suitably random upper unitriangular group U , an extension to
this group is selected by adding to its block-diagonal. That process consists of choosing a partition
of the series of common generalized eigen 1-spaces (the fixed point flag) of the group U . In each
block we select a random (almost) quasisimple group with a representation of dimension at most
the size of the block. We further allow for multiplicity and for permutations of isomorphic modules.
This extends U first by a block-diagonal abelian group, then a product of simple groups, followed by
a layer of abelian groups, and a final layer of permutations. It is well known that every finite group
has such a decomposition, often referred to as the Babai–Beals filtration [BB]. We note our own
filtration descends to the Fitting subgroup instead of to the solvable radical as in the Babai–Beals
treatment; revisit Figure 1.1 for an illustration.

Along with the proposal of such a model inevitably come questions as to its efficacy. We address
two of the more critical issues here. First, our model samples a large number of groups:

7

Theorem C. A random d×d group over Z/b, as above, samples from each of the following classes
of groups.

(i) finite abelian groups of exponent dividing b and order at most O(bd
2/2).

(ii) For each Z/b-bilinear map ∗ : U×V W , with rank U+rank V +rank W 6 d, the Brahana
groups [B3] Bh(∗) = U × V ×W with product (also denoted by ∗) as

(u, v, w) ∗ (u′, v′, w′) = (u+ u′, v + v′, w + w′ + u ∗ v′).

(iii) For each alternating Z/b-bilinear map ∗ : U ×U W , with rank U + rank W 6 d, the Baer
groups [B3] Br(∗) = U ×W with product (also denoted by ∗) as

(u,w) ∗ (u′, w′) = (u+ u′, w + w′ + u ∗ v′).

(iv) All classical groups T (r, q) for rank r over Fq where r log q 6 d.

(v) All permutation groups of degree at most d.

In particular this class of groups samples from pΘ(d3) pairwise non-isomorphic groups of order pd

which is a logarithmically dense set of all isomorphism types of groups of order pd. Furthermore,
this class of groups is closed to direct products and subdirect products.

Secondly, for groups selected from our model, even a genus-1, 1-WL refinement results in a
filter with constant average width. (Note, constant max width would result in a polynomial-time
isomorphism test.)

Theorem D. For a random group G 6 U(d, b) sampled by our model, one of the following cases
occurs on average when d and b are large enough:

(a) Ob(G) is abelian; or

(b) G has characteristic WL-filter refinement of length Θ(log |G|).

It was predicted in [W3] that most p-groups P had characteristic filters of length O(log |P |),
owing in part to a result of Helleloid–Martin [HM]. However, outside of examples in [W3,M3] there
where no large classes of groups where it could be demonstrated that such a filter could be efficiently
computed. In a survey of 500,000,000 groups of order 210 conducted by J. Maglione and the fifth
author, it was discovered that 96% of groups admitted a filter refinement by algebraic methods,
with most stabilizing at 10 = log2 1024 terms. Furthermore, in a sample of 100,000 p-groups having
orders between 100 and 370, most filters refined to a factor of about 10 times the original length.
Theorem D offers a theoretical explanation for those experimental results.

1.4 Testing pseudo-isometry of alternating bilinear maps

One base case for which the application of Weisfeiler–Leman is unlikely to go much further is p-
groups of class 2 and exponent p. (This special case has long been considered as difficult as the
general group isomorphism problem.) As we have seen in Baer’s correspondence [B3] (cf. Theorem C
(iii)), when p is odd testing isomorphism of such groups is equivalent to the following problem: given
two alternating bilinear maps α, β : U × U V , decide whether they are pseudo-isometric, that
is, whether they are the same under the natural action of GL(U)×GL(V).

8

Let Λ(n, q) denote the linear space of all n× n alternating matrices over Fq, namely the n× n
matrices G such that vtGv = 0 for all v ∈ F

n. Note, v 7→ vt and G 7→ Gt denotes transposition
on vectors and matrices, respectively. An alternating bilinear map α : U × U V with U ∼= F

n
q

and V ∼= F
m
q will be represented by an m-tuple of n × n such matrices. Testing pseudo-isometry

of alternating bilinear maps translates to the following: given two m-tuples of n × n alternating
matrices over Fq, G = (G1, . . . , Gm) and H = (H1, . . . ,Hm), decide whether there exists T ∈
GL(n, q), such that the linear spans of T tGT := (T tG1T, . . . , T

tGmT) and H are the same. For an
odd prime p, testing the pseudo-isometry of alternating bilinear maps over Fp in time pO(n+m) is
equivalent to testing isomorphism of p-groups of class 2 and exponent p in time polynomial in group
order. Also note that the näıve brute-force algorithm—enumerating all possible T ∈ GL(n, q)—
takes time qn

2 · poly(n, log q).
In [LQ] it was shown that when n and m are linearly related, for all but at most 1/qΩ(n)

fraction of G ∈ Λ(n, q)m, there is an algorithm in time qO(n) to test isometry of G with an
arbitrary H ∈ Λ(n, q)m.1 The technique used to derive this result merits further comment. It
was inspired by, and can be viewed as a linear algebraic analogue of, a classical combinatorial idea
from graph isomorphism testing, namely the individualization and refinement technique. More
specifically, it follows the use and analysis of this technique by Babai, Erdős, and Selkow, in the
first efficient average-case algorithm for graph isomorphism [BES]. By incorporating the genus
concept [BMW1] into the individualization and refinement scheme as used in [LQ, BES] we can
both extend and improve this result and at the same time greatly simplify the algorithm. Indeed,
we have implemented an effective version of this new algorithm in Magma [BJP]. We prove:

Theorem E. Suppose m is larger than some constant. There is an algorithm that, for all but at
most 1/qΩ(nm) fraction of G ∈ Λ(n, q)m, tests the pseudo-isometry of G to an arbitrary m-tuple of
alternating matrices H, in time qO(n+m).

We briefly outline a simplified version of the algorithm, which is easy to describe and straight-
forward to implement. A more detailed description can be found in Section 6.1. The simplified
version has already captured the essence of the strategy, but it comes with two small drawbacks.
First, it does not work over fields of characteristic 2. Secondly, the average-case analysis does not
achieve the level stated in Theorem E. Both issues will be remedied in the algorithm presented in
Section 6.2, followed by a rigorous average-case analysis.

Assume we are given two m-tuples of G = (G1, . . . , Gm) and H = (H1, . . . ,Hm) from Λ(n, q)m

for sufficiently large m and odd q. Let H be the subspace of Λ(n, q) spanned by H. Take the first
c matrices of G to form a tuple A = (G1, . . . , Gc) for some constant c < m. Note,

every pseudo-isometry from G to H maps A to a c-tuple B of matrices in H.
This simple observation leads to the following algorithm. (We say two c-tuples of alternating ma-
trices A and B are isometric if there exists an invertible matrix T ∈ GL(n, q) such that T tAT = B,
and the autometry group of A is {T ∈ GL(n, q) : T tAT = A}.) First, check if the autometry group
of A is too large (larger than qΩ(n)). If so, G does not satisfy our generic condition. Thus, suppose
the autometry group is not too large, and enumerate all possible c-tuples B in H. Exhaustively
check if any of them is isometric to A, and, in the case of isometry, check if any isometry between
A and B extends to an pseudo-isometry between G and H. The number of isometries between A

and B is also not too large, because it is equal to the order of the autometry group of A.
Note that the coset of isometries between A and B can be computed in time poly(n, c, log q) over

fields of characteristic not 2 [BW,IQ]. Enumerating all possible c-tuples in H incurs a multiplicative

1The main result in [LQ] is stated in a so-called linear algebraic Erdős–Rényi model. This model is not essentially
different from sampling random alternating matrix tuples. See also Remark 6.20 for some details.

9

cost qcm. Given an isometry between A and B, we can check whether G and H are pseudo-isometric
in poly(n,m, log q). Thus, the overall time complexity is bounded above by qcm ·s ·poly(n,m, log q),
where s is the order of the autometry group of A. As we shall prove in Section 6, there is an absolute
constant c such that for almost all m-tuple of n×n alternating matrices G, the first c matrices have
autometry group of order at most qO(n). Thus, the overall time complexity of the aforementioned
isometry test is qO(n+m) for almost all G and arbitrary H.

Performance. We implemented the above algorithm in Magma with some key adjustments
(see Section 6.1 for details). The implementation is publicly available on GitHub as part of a
comprehensive collection of tools—developed and maintained by the first and last authors and
their collaborators—to compute with groups, algebras, and multilinear functions [BMW2].

Absent additional characteristic structure that can be exploited, the traditional approach to
deciding pseudo-isometry between alternating bilinear maps α, β : V × V W is as follows. Let
α̂, β̂ : V ∧ V →W denote the linear maps induced by α, β. Compute the natural (diagonal) action
of GL(V) on V ∧ V , and decide if ker α̂ and ker β̂—each of codimension dimW in V ∧ V—belong
to the same orbit. An alternative version of brute force is to enumerate GL(W) and check if one
of these transformations lifts to a pseudo-isometry from α to β. Which of these two brute-force
options represents the best choice depends on the dimensions of V and W .

Our implementation is typically an improvement over both options. For example, in a prelim-
inary experiment, our implementation readily decides pseudo-isometry between randomly selected
alternating bilinear maps F

5
3 × F

5
3 F

4
3, while both brute-force options failed to complete. Note

that the worst-case for all methods should be when α, β are not isometric, since in that case
one must exhaust the entire enumerated list (or orbit) to confirm non-equivalence. However, the
modifications we made tend to detect non-equivalence rather easily, since other (easily computed)
invariants typically do not align in this case. We were therefore careful to also run tests with
equivalent inputs, so as to ensure a fair comparison with default methods.

1.5 On groups with genus-2 radicals

There are examples by the fifth author of non-isomorphic p-groups having all proper nontrivial
subgroups of a common order isomorphic, and likewise for quotients [W2]. No amount of local
invariants will distinguish such groups, so when a WL-refinement style algorithm such as ours
encounters such a group it can go no further. Even so, those examples are low genus and thus
isomorphism can be decided efficiently by unrelated methods [BMW1]. However, should these
groups arise as Op(G) for a non-nilpotent group G it remains to contend with them as a base case.
Combining the code equivalence technique of [BCGQ], the cohomological techniques of [GQ], and
results on the automorphism groups of low-genus groups [BMW1], we are able to get a nearly-
polynomial running time for testing isomorphism in an important subclass of such groups.

Theorem F. Let G be the class of groups G such that Rad(G)—the largest solvable normal subgroup
of G—is a p-group of class 2, exponent p 6= 2, such that G acts on Rad(G) by inner automorphisms.
Given groups G1, G2 of order n, it can be decided in poly(n) time if they lie in G. If so, isomorphism
can be decided, and a generating set for Aut(Gi) found, in time nO(g+log logn), where g is the genus
of Rad(G).

Structure of the paper. After presenting some preliminaries in Section 2, we detail the con-
struction of the colored hypergraphs and prove Theorem A in Section 3. We then explain the
combination of filters and composition series isomorphism in GpI, proving Theorem B in Section 4.
The model of random groups, and the effect of the refinement procedure in this model, are the

10

subject of Section 5, where Theorems C and D are proved. Finally, we provide the average-case
algorithm for p-groups of class 2 and exponent p (Theorem E) in Section 6, and the worst-case
algorithm for groups with genus-2 radical (Theorem F) in Section 7.

2 Preliminaries

Notation. Let [m] = {1, . . . ,m} for m ∈ N. We use
[n
d

]

q
to denote the Gaussian binomial

coefficient with parameters n, d and with base q. Let M(n × n′,F) (resp. M(n,F)) be the linear
space of all n × n′ (resp. n × n) matrices over F. The general linear group of degree n over F is
denoted by GL(n,F). When F = Fq for some prime power q, we write simply M(n, q) and GL(n, q)
in place of M(n,Fq) and GL(n,Fq).

Definitions of bilinear maps. Let U, V,W be vector spaces over a field F. A (F-)bilinear map
is a function α : U × V W such that

(∀u ∈ U, ∀v, v′ ∈ V, ∀a, b ∈ F) α(u, av + bv′) = aα(u, v) + bα(u, v′)

(∀u, u′ ∈ U, ∀v ∈ V, ∀a, b ∈ F) α(au+ bu′, v) = aα(u, v) + bα(u′, v).

If β : U ′ × V ′ →W ′ is another F-bilinear map, we regard β as a function on the same domain and
codomain as α by selecting arbitrary linear isomorphisms U → U ′, V → V ′, and W → W ′. We
say α, β : U × V W are isotopic if there exists (f, g, h) ∈ GL(U) × GL(V) ×GL(W) such that
β(f(u), g(v)) = h(α(u, v)) for all u ∈ U, v ∈ V , and principally isotopic if there is an isotopism
of the form (f, g, 1W). If U = V , we often require that f = g. We say α, β : V × V → W are
pseudo-isometric if there is an isotopism of the form (g, g, h), and that they are isometric if there
is a pseudo-isometry of the form (g, g, 1W). A bilinear map α : V × V → W is alternating, if for
any v ∈ V , α(v, v) = 0.

Computational models. Suppose, after fixing bases, that U = F
ℓ, V = F

n, and W = F
m,

which we regard as column spaces. A bilinear map α : U × V W can be represented as a tuple
of matrices A = (A1, . . . , Am) ∈M(ℓ× n,F)m, where

(∀u ∈ U, v ∈ V) α(u, v) = (utA1v, . . . , u
tAmv)t.

Suppose β : U × V → W is represeted by B = (B1, . . . , Bm) ∈ M(ℓ × n,F)m. The concepts of
isotopism and principal isotopism then have natural and straightforward interpretations in terms of
these matrices. Namely, we say A,B ∈ M(ℓ× n,F)m are isotopic, if there exist invertible matrices
T ∈ GL(ℓ,F), S ∈ GL(n,F) and R ∈ GL(m,F), such that

T tAS = (T tA1S, . . . , T
tAmS) =

(

m
∑

i=1

r1,iBi, . . . ,

m
∑

i=1

rm,iBi

)

= BR,

where ri,j denotes the (i, j)-th entry of R for i, j ∈ [m]. We say A and B are principal isotopic if
they are isotopic with R = Im.

Similarly, an alternating bilinear map α : V × V W can be represented by a tuple of
alternating matrices. Recall that an n × n matrix G over F is alternating if for every v ∈ F

n,
vtGv = 0. When F is not of characteristic 2, this is equivalent to the skew-symmetry condition.
Let Λ(n,F) be the linear space of all n× n alternating matrices over F (and Λ(n, q) when F = Fq).

11

Then pseudo-isometry and isometry have analogous formulations in terms of alternating matrix
tuples.

Given two tuples of alternating matrices G,H ∈ Λ(n, q)m, the set of isometries between G and
H is denoted as

Isom(G,H) = {T ∈ GL(n,F) : T tGT = H};
the group of autometries (or self-isometries) of G is denoted as Aut(G) = Isom(G,G). The set of
pseudo-isometries between G and H is defined as

ΨIsom(G,H) = {T ∈ GL(n,F) : ∃ T ′ ∈ GL(m, q), T tGT = HT ′};
the group of pseudo-autometries (or self-pseudo-isometries) of G is denoted as ΨAut(G) = ΨIsom(G,G).
It is straightforward to see that Isom(G,H) is a (possibly empty) coset of Aut(G), and ΨIsom(G,H)
is a (possibly empty) coset of ΨAut(G).

Some algorithms for bilinear maps. We note several of the algorithms we cite are described
as Las Vegas randomized algorithm in that they depend on factoring polynomials over finite fields.
That is known to be deterministic if the characteristic of the field is bounded. In our input model we
are given a list of the group elements, so all primes are bounded and so we cite these as deterministic
algorithms.

Theorem 2.1. Let α, β : U × V W be bilinear maps of vector spaces over a finite field F.

1. In time poly(dimU,dimV, |F|) one can decide if α, β are principally isotopic [BOW, Theo-
rem 3.7].

2. If U = V and the characteristic of F is not 2, in time poly(dimU, |F|) one can decide if α, β
are isometric [IQ].

In each case an affirmative answer is accompanied by a principal isotopism (or isometry).

We also require the following, which follows directly from Theorem 2.1 by enumerating GL(W).

Theorem 2.2. Let α, β : U × V →W be bilinear maps of vector spaces over a finite field F.

1. In time poly(dimU,dimV, |W |dim |W |) one can decide if α, β are isotopic.[BOW]

2. If U = V and the characteristic of F is not 2, in time poly(dimU, |W |dim |W |) one can decide
if α, β are pseudo-isometric [IQ].

The following theorem is the automorphism version of Theorem 2.1. Note that, unlike the case
of graph isomorphism, for the problems here there are no known reductions from the isomorphism
version to the automorphism version.

Theorem 2.3. Let α : U × V →W be a bilinear map of vector spaces over a finite field F.

1. In time poly(dimU,dimV, |F|), one can compute a generating set for the group of principal
autotopisms of α [BOW].

2. If U = V and the characteristic of F is not 2, in time poly(dimU, |F|), one can compute a
generating set for the group of autometries of α [BW].

Remark 2.4 (Shuffles). A bilinear map ∗ : U × V W can be encoded as a 3-dimensional array.
Transposing that array allows us to change swap the roles of U, V,W , for example creating a bilinear
map ∗ : V × U W or ∗ : W † × V U †, etc. (Here U † is the dual space of U). This swapping
is functorial and therefore isotopisms are permuted accordingly; cf. [BOW]. So while we highlight
the situation for principal isotopisms we could indeed specialize any one of the three spaces. We
shall assume throughout that when necessary a bilinear map is shuffled.

12

3 The colored hypergraph algorithm

A high-level description of our algorithm to construct a colored hypergraph associated to a finite
group was given in the introduction. We now provide the details; for convenient reference, an
outline is given in Algorithm 1 below.

Algorithm 1 Colored Hypergraph

Input: a finite group G, and integers g, k > 1

Output: a characteristic filter φ : Nd → Norm(G) and a colored hypergraph H(g,k)
χ (φ) upon which

Aut(G) acts as color-preserving automorphims.

1: φ ← initial characteristic filter for G. Section 1.2

2: Repeat the following steps until φ stops changing (stabilizes):

a: Build H(g)
χ (φ) on each layer of φ. Section 3.1

b: Extend H(g)
χ (φ) between layers of φ. Section 3.2

c: Apply k-dimensional Weisfeiler–Leman to H(g)
χ (φ) Section 3.3

d: S ← {Aut(G)-invariant subgroups extracted from WL(k,H(g)
χ (φ))}. Section 3.4

e: Refine φ using S. Section 3.5

3: Return φ and WL(k,H(g)
χ (φ)).

3.1 Coloring within layers: low-genus quotients and restrictions

For s ∈ N
d, Ls is a Zp-vector space for some prime p = ps of dimension ds. Recall that for any

vector space L, PG(L) denotes the projective geometry of L, which we may think of as a poset
whose elements are the vector subspaces of L, (partially) ordered by inclusion, and we use PGk(L) to
denote the set of k+ 1-dimensional subspaces. Let L∗

s = Hom(Ls,Zp) denote the set of linear maps
from Ls to Zp, i. e., the dual vector space of Ls. Then the map X 7→ X∗ = {ν ∈ L∗

s : ν(X) = 0}
is an order-reversing bijection PG(Ls) → PG(L∗

s). By the Fundamental Theorem of Projective
Geometry, there is a bijective linear transformation2 fs : Ls → L∗

s such that X∗ = fs(X). Let
bs : Ls × Ls Zp be the linear form defined by bs(x, y) = fs(y)(x). For X 6 Ls, let X⊥ = {x ∈
Ls : bs(x,X) = 0}.

The vertices and hyperedges of H(g)(φ) are, respectively,

V =
⋃

s∈Nd

PG0(Ls), E =

⋃

s∈Nd:dimLs>g

(PGg−1(Ls) ∪ PGds−g−1(Ls))

 ∪
⋃

s∈Nd:dimLs6g

PGds(Ls).

(3.1)

(Recall that Ls ∼= Z
ds
ps .) To regard X ∈ PGd(Ls) as a hyperedge, when convenient we identify the

d-subspace X with the set of points (1-spaces) it contains. The initial coloring is as follows.

• Vertices. The initial color χ(v) of a vertex v ∈ V is simply the index s of the layer Ls such
that v ∈ PG0(Ls).

2We note that in some cases, it makes sense to consider a layer Ls as being defined over a larger field Fpk , thus
effectively reducing its dimension, and reducing the size of the hypergraph. In such cases, this map is only guaranteed
to be semi-linear, that is, fs(a+ b) = fs(a) + fs(b), but fs(λa) = α(λ)fs(a) where α ∈ Gal(Fpk) is an automorphism
of the field Fpk . This doesn’t present any essential difficulties, but needs to be kept track of.

13

• Hyperedges corresponding to subspaces of codimension g (dimension ds−g−1), when dimLs >
g. The initial color χ(X) of these hyperedges X ∈ PGds−g−1(Ls) is determined by s together
with a set of labels indexed by pairs t, u ∈ N

d such that t + u = s as follows: if t 6= u, the
label of X corresponding to the pair (t, u) is the isotopism type of the projection Lt × Lu

Ls → Ls/X
⊥; when t = u it is the pseudo-isometry type of this projection.

• Hyperedges corresponding to subspaces of dimension g (elements of PGg−1(Ls)), when dimLs >
g. The initial color χ(X) of these hyperedges is determined by s together with a set of labels
indexed by t ∈ N

d t 6= s as follows: the label of X corresponding to t is the isotopism type of
the restriction of the bimap Ls×Lt Ls+t to X×Lt Ls+t. (When the dimension is such
that dimension g and codimension g subspaces are the same, this set of labels is appended
to the set of labels for codimension g subspaces; the two sets of labels are kept separate by
their indexing.)

• Hyperedges when dimLs 6 g. In this case, there is only a single hyperedge X corresponding
to the entire layer Ls. It is given a color that is similar to the previous two, namely, for each
t, u ∈ N

d such that t+ u = s, χ(X) gets a set of labels indexed by the pairs (t, u), labeled by
the isotopism type of Lt ×Lu Ls (resp., pseudo-isometry type if t = u), together with, for
each t ∈ N

d (now including t = s) the isotopism (resp., pseudo-isometry) type of the bimap
Ls × Lt Ls+t.

Observe, one need not pre-compute all isotopism (resp. pseudo-isometry) types. Instead, one
can generate labels on the fly by pairwise comparison. Namely, given a new hyperedge X to label,
test for isotopism (or pseudo-isometry) between Lt × Lu Ls/X

⊥ and all distinctly labelled
Lt × Lu Ls/Y

⊥, introducing a new label for X if necessary.
By Theorem 2.2, isotopism and pseudo-isometry of bilinear maps U×V →W can be decided in

time poly(dimU,dimV, |W |dimW), and also (by Remark 2.4) in time poly(|U |dimU ,dimV,dimW).
(When g = 2, this can be decided very efficiently using the algorithm in [BMW1].) It follows that
we can label all hyperedges in time |G|O(g). Note that if the charactistic is 2, then even for maps
of the form Ls × Ls Ls+s, we only use the isotopism label instead of pseudo-isometry label,
because the results of [IQ] are not yet known to extend to characteristic 2. While this is less refined
information, it is still useful.

3.2 Coloring between layers

The colored hypergraphH(g)
χ (φ) described in the previous section already contains much local infor-

mation from which global characteristic structure may be inferred, extracted, and used. However,
we can often elucidate further characteristic structure by examining individual commutator rela-
tions between the layers. Of the various possible strategies one could try, we propose one that is
both elementary and effective.

For each distinct pair s, t ∈ N
d, add to E the the following edges. For each x ∈ Ls, y ∈ Lt such

that [x, y] = 0 in Ls+t (that is, [x, y] ∈ ∂φs+t), we add an edge from x to y. For each x, y which
do not commute modulo ∂φs+t, we add a hyperedge of size 3, connecting x ∈ Ls, y ∈ Lt, and
[x, y] ∈ Ls+t. Upon refinement, this allows the vertex colors within each layer to affect the colors
in the other layers.

3.3 The Weisfeiler–Leman procedure

Given a vertex-and-hyperedge-colored (hereafter just “colored”) hypergraph H = (V, E , χ), where
χ : V ∪ E → C (C a finite set of colors), we show here how to apply the k-dimensional Weisfeiler–

14

Leman procedure k-WL, originally developed in the context of graphs independently by Babai–
Mathon [B2] and Immerman–Lander [IL] (see [CFI] and [B1] for more detailed history). For the case
of k = 1 (color refinement) applied to hypergraphs, the same procedure was proposed and studied
in the very recent preprint by Böker [B1]. In particular, Böker shows that when we consider a graph
as a (2-uniform) hypergraph, this procedure coincides with the usual color refinement procedure
on graphs.

Let WL(k,H) denote the colored hypergraph resulting from applying k-WL to H. The two key
properties we will need in our application of this procedure are that: (1) WL(k,H) can be computed
from H in |H|O(k) time, and (2) If H ′ is another colored hypergraph, then H and H ′ are isomorphic
(as colored hypergraphs) iff WL(k,H) and WL(k,H ′) are isomorphic as colored hypergraphs. (In
fact, the set of isomorphisms will be the same: Iso(H,H ′) = Iso(WL(k,H),WL(k,H ′))).

We find it simplest to describe the application of WL to hypergraphs by using instead their
“incidence (bipartite) graphs.” We believe this bijection between vertex-and-edge-colored hyper-
graphs and vertex-colored bipartite graphs is essentially folklore; we include it here for completeness.
Given a hypergraph H = (V, E), its incidence graph is the bipartite graph I(H) = (VL, VR, E) where
VL = V, VR = E , E = {(v, e) ∈ V × E : v ∈ e}. It is not hard to see that every bipartite graph
arises from a unique hypergraph in this manner, so I is a bijection and I−1 is well-defined.

An isomorphism between two vertex-and-edge-colored hypergraphs Hi = (Vi, Ei, χi) (i = 1, 2)
is a bijection f : V1 → V2 such that (1) f(E1) = {f(e) : e ∈ E1} = {{f(v) : v ∈ e} : e ∈ E1} = E2,
(2) χ1(v) = χ2(f(v)) for all v ∈ V1, and (3) χ1(e) = χ2(f(e)) for all e ∈ E1. We say that two
vertex-colored bipartite graphs Gi = (VL,i, VR,i, Ei, χi : VL,i ∪ VR,i → C) (i = 1, 2) are isomorphic if
there are bijections fL : VL,1 → VL,2 and fR : VR,1 → VR,2 such that (1) f(E1) = {(fL(u), fR(v)) :
(u, v) ∈ E1} = E2 and (2) χ1(u) = χ2(fL(u)) for all u ∈ VL,1 and χ1(fR(v)) = χ2(v) for all v ∈ VR,1.

Proposition 3.2 (Folklore). Given two vertex-and-edge-colored hypergraphs H1,H2, there is a
natural bijection between Iso(H1,H2) and Iso(I(H1), I(H2)); in particular, H1 is isomorphic to H2

iff their vertex-colored bipartite incidence graphs are isomorphic. Furthermore, both I and I−1 can
be computed in O(V + E) time.3

Proof sketch. Notation as above. Given χ : V ∪E → C, a vertex-and-edge coloring on a hypergraph
H = (V, E), we get a coloring on the vertices of I(H), which we also denote by χ by abuse of
notation. The coloring on V (I(H)) = VL ∪ VR is the same as before, since VL = V and VR = E .
The inverse is similar. The running time results from the fact that H and I(H) can essentially be
described by identical underlying data structures.

We show the natural bijection between Iso(H1,H2) and Iso(I(H1), I(H2)). Given an isomor-
phism f : V1 → V2 from H1 to H2, we define an isomorphism f̂ from I(H1) to I(H2) in the natural
way: f̂(v) = f(v) for v ∈ VL,1 = V1, and for e ∈ VR,1 = E1 we define f̂(e) = f(e), that is, f̂(e)

is the vertex in VR,1 = E1 which corresponds to the hyperedge {f(u) : u ∈ e}. To see that f̂ is
an isomorphism we must check that it preserves incidences and colors. For incidences, we have
(v, e) ∈ E(I(H1)) iff v ∈ e (thinking of v ∈ VL,1 = V1 and e ∈ VR,1 = E1) iff f(v) ∈ f(e) (since f is

an isomorphism of hypergraphs) iff f(v) = f̂(v) ∈ f̂(e) = f(e), by the definition of f̂ . To see that
the colors are preserved, for v ∈ VL,1 = V1, we have, by definition (and abuse of notation), that

χ(v) = χ(f(v)) = χ(f̂(v)), and for u ∈ VR,1 = E1 we have χ(u) = χ(f(u)) = χ(f̂(u)). The inverse
construction of an isomorphism H1 → H2 from an isomorphism I(H1)→ I(H2) is essentially gotten
by reading all the preceding equations in reverse.

3V = |V| for hypergraphs and |VL| + |VR| for bipartite graphs; E = |E| for hypergraphs and |E| for bipartite
graphs.

15

Our k-WL procedure is to apply standard (graph) k-WL to I(H), then applying I−1 to get
back a refined colored hypergraph.

Finally, we recall the k-WL procedure as applied to a vertex-colored graph. If the graph is bipar-
tite and we want to preserve the bipartition (VL, VR)—as in our setting—we assume that the vertices
in VL have distinct colors from those in VR. Given a vertex-colored graph G = (V,E, χ : V → C), k-
WL refinement is the following procedure. Each k-tuple of vertices (v1, . . . , vk) is initially assigned
a color according to its colored, ordered isomorphism type; that is, two such k-tuples (v1, . . . , vk)
and (u1, . . . , uk) are given the same initial color iff (1) χ(vi) = χ(ui) for all i = 1, . . . , k, (2) vi = vj
iff ui = uj for all i, j ∈ [k], and (3) (vi, vj) ∈ E(G) iff (ui, uj) ∈ E(G) for all i, j ∈ [k]. Two k-tuples
v = (v1, . . . , vk) and u are said to be i-neighbors if they are equal except that vi 6= ui. In each
step of the refinement procedure, the coloring is refined as follows: the new color of a tuple v is
a k-tuple of multisets, where the i-th multiset is the multiset of colors of all the i-neighbors of v.
At each stage, the coloring partitions V k; the procedure terminates when this partition doesn’t
change upon further refinement. Once the coloring on V k has stabilized, we get a new coloring on
V = V (G) by defining χ′(v) for v ∈ V to be the color of the diagonal k-tuple (v, v, . . . , v) ∈ V k.
We denote the resulting colored graph by WL(k,G). From G, WL(k,G) can be trivially computed
in time O(k2n2k+1); the current best-known running time is still O(k2nk+1 log n) [IL, Section 4.9].
For more details on running time, implementation, and the properties of k-WL on graphs, see, e. g.,
[W1,WL, IL,AFKV,DGR].

3.4 Extracting characteristic structure

Each color class of vertices of WL(k,H(g)
χ (φ)) provides (by lifting from φs/∂φs to φs along the

natural projection) characteristic subsets of G, but not necessarily characteristic subgroups; it is
only the latter which can be used to refine the filter φ. To get characteristic subgroups instead, we
consider the subgroup generated by all the vertices in a given color class. We now write out this
procedure more formally.

Let χ′ denote the refined coloring function of WL(k,H(g)
χ (φ)). For each s ∈ N

d, let χ′
s denote

the restriction of χ′ to the vertices in PG0(Ls). For each color c in the image of χ′
s, let Xs,c =

∑

x∈PG0(Ls):χ′(x)=c〈x〉 be the subgroup of Ls generated by the elements that are colored c. Finally,
let πs : φs → φs/∂φs = Ls be the natural projection; we lift Xs,c to a characteristic subgroup of φs
(and hence of G) as π−1(Xs,c).

Finally, the set of new characteristic subgroups we consider is

S = {π−1
s (Xs,c) : s ∈ N

d, c ∈ N} − {φs : s ∈ N
d}. (3.3)

If S 6= ∅, its members may be supplied to Theorem 3.4 to refine φ, in which case step 3 of Algorithm 1
is repeated. If not, then our colored hypergraph is now stable and Algorithm 1 terminates.

3.5 Refining filters

One filter φ refines another filter ψ on the same group if the image of φ contains that of ψ (the image
is the collection of all subgroups in the filter). If φ is a characteristic filter and H is a characteristic
subgroup such that ∂φs 6 H 6 φs for some s, then φ can be refined to a characteristic filter that
includes H. This was first introduced in [W3], and shown to be computable in polynomial time by
Maglione [M3]:

Theorem 3.4 ([M3, Theorem 1]). Let φ be a filter on G, and H �G such that there exists s ∈ N
d

with ∂φs < H < φs. Then a filter refining φ and including H can be computed in polynomial time.
Furthermore, if φ and H are characteristic, then so is the refined filter.

16

We proceed sequentially through the characteristic subgroups of S, refining φ as we go.

3.6 Proof of Theorem A

For part (i), let s ∈ N
d − {0}. Observe, if Step 3 (c) was omitted from Algorithm 1, then colors

would only be assigned to hyperedges on points in fixed layers. In that case, moreover, the color
of a hyperedge in layer Ls is determined completely by pairs t, u ∈ N

d with t+ u = s; the coloring
function χ does not depend at all on layers v ∈ ∂φs. That is to say, if Step 3 (c) is omitted, then

H(g)
χ (φ) restricted to N/φs would be identical to the colored hypergraph based on φ truncated at

φs. Step 3 (c) colors edges between layers using information from layers ‘lower’ in the filter; this
means the restricted hypergraph is a refinement of the hypergraph on the truncated filter.

For part (ii), let G and G′ be two finite groups. Suppose we first construct H(g)
χ (φ). Next, we

construct H(g)
χ′ (φ′) introducing new color for χ′ only when it is new to both colored hypergraphs.

Evidently, if G ∼= G′, then H(g)
χ (φ) and H(g)

χ′ (φ′) are isomorphic with identical color sets.
Finally, we analyze the running time. Computing the Fitting subgroup O∞(G) and the initial

characteristic filter can be done in poly(|G|) time, even by naive algorithms (which can be improved
significantly when G is given by generating permutations, generating matrices, or black-box gener-

ators). Building the hypergraph H(g)
χ (φ) can be done in time linear in the number of hyperedges,

which is the number of codimension-g subspaces of each layer Ls, which is ∼ |Ls|O(g), and thus
in total is at most |G|O(g). The hyperedges can then be colored in poly(|G|) × |G|O(g) = |G|O(g)

time using the isotopism and isometry algorithms (Theorem 2.2). As with k-WL for graphs, k-WL
for hypergraphs can be computed in |V + E|O(k), which in our case is |G|O(gk). Extracting the

characteristic subgroups from WL(k,H(g)
χ (φ)) can easily be done in poly(|G|) time, and refining

the filter φ can then be done in poly(|G|) time as well [M3] (reproduced as Theorem 3.4 above).
The only remaining question is how many times the main refinement loop can run. Because we
only refine when a characteristic subgroup K is found which lies strictly in between some φs and
∂φs, and the indices |φs : K| and |K : ∂φs| are both at least 2, refinement can happen at most
log2 |G| times. Thus the total running time is |G|O(gk) log |G| = |G|O(gk).

3.7 Incorporating additional invariants

Our algorithm is not particular to the initial characteristic filter we choose. In any given group
class, further characteristic subgroups (or subsets, or collections of subgroups) may be available
which could be used to refine the filter, either at the beginning, or in each iteration of the main
loop of Algorithm 1. We give two examples here without much discussion, just to illustrate the
concept, without detracting from the main foci of the paper.

First, it may be the case that some of the bimaps Ls×Lt → Ls+t are defined over a field larger
than Zp, i. e., Fpk for some k > 1. If this is true for sufficiently many of the bimaps, we may be
able to treat some layers Ls entirely over Fpk , thus reducing their dimension by k, and reducing the
number of vertices in the corresponding factor of the hypergraph by a factor of k in the exponent
(from pkℓ to pℓ).

Second, as G acts on N by conjugation, and the layers of φ are Aut(G)-invariant, for each s ∈ N
d

we can compute a linear representation of G/N on the elementary abelian layer Ls := φs/∂φs. Us-
ing standard module machinery—for example, the version of the Meataxe algorithm described
in [HR]—in time polynomial in log |G| each G/N -module may be decomposed first into indecom-
posable summands, and then into isotypic components. The collection of isotypic components is a
characteristic subset of subgroups—namely, they can be permuted amongst themselves by the action

17

of Aut(G), but that’s it. We can either group these into Aut(G)-orbits of isotypic components to
get characteristic subgroups to refine the filters, or keep the characteristic subset of subgroups and
incorporate it into Rosenbaum’s composition series isomorphism technique, discussed in Section 4.

3.8 The procedure through an example

We examine the procedure with a toy example as follows. Consider the following alternating matrix
tuple in Λ(4, 3)3, which was also considered in [BOW].

A = (A1, A2, A3) =

0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

,

0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

,

0 0 0 1
0 0 0 0
0 0 0 0
−1 0 0 0

.

We construct a bipartite graph GA = (L ∪ R,E), where L = PG0(F
3
3), and R = PG1(F3

3), so
that for v ∈ L and U ∈ R, (v, U) ∈ E if and only if v ∈ U . In particular, note that |L| = |U | = 13.

For each v ∈ L = PG0(F
3
3), we choose a non-zero vector on v as its representative. So

L = {(0, 0, 1), (0, 1, 0), (0, 1, 1), (0, 1, 2), (1, 0, 0), (1, 0, 1),

(1, 0, 2), (1, 1, 0), (1, 1, 1), (1, 1, 2), (1, 2, 0), (1, 2, 1), (1, 2, 2)}.

For each U ∈ R = PG1(F
3
3), since U is a 2-dimensional subspace of F3

3, we choose one defining
linear equation u∗, u ∈ F

3
3, as its representative. So U is also

U = {(0, 0, 1), (0, 1, 0), (0, 1, 1), (0, 1, 2), (1, 0, 0), (1, 0, 1),

(1, 0, 2), (1, 1, 0), (1, 1, 1), (1, 1, 2), (1, 2, 0), (1, 2, 1), (1, 2, 2)}.

In this notation, v = (v1, v2, v3) ∈ L connects to u = (u1, u2, u3) ∈ U , if and only if v1u1 + v2u2 +
v3u3 = 0.

For v = (v1, v2, v3)t ∈ L, we define Av = v1A1 + v2A2 + v3A3 in Λ(4, 3). We use rk(Av) to give
v the vertex color. Using red for rank 2 and blue for rank 4, we have

L = {(0, 0, 1), (0, 1, 0), (0, 1, 1), (0, 1, 2), (1, 0, 0), (1, 0, 1),

(1, 0, 2), (1, 1, 0), (1, 1, 1), (1, 1, 2), (1, 2, 0), (1, 2, 1), (1, 2, 2)}.

The first step of refinement uses the colors on the L side to color the vertices on the U side.
For example, (0, 0, 1) on the U side is adjacent to (1, 0, 0), (0, 1, 0), (1, 1, 0), (1, 2, 0). So (0, 0, 1)
obtains the color as “3 blues and 1 red”, or 3B1R for short. We therefore let blue for 4B, green be
3B1R, and red for 2B2R. We then have

U = {(0, 0, 1), (0, 1, 0), (0, 1, 1), (0, 1, 2), (1, 0, 0), (1, 0, 1),

(1, 0, 2), (1, 1, 0), (1, 1, 1), (1, 1, 2), (1, 2, 0), (1, 2, 1), (1, 2, 2)}.

Note that these colors, which comes from genus-1 information, already gives the genus-2 isomor-
phism types.

The second refinement uses the colors of the U side to recolor the vertices on the L side. For
example, (1, 1, 1) on the L side is adjacent to (1, 1, 1), (1, 2, 0), (1, 0, 2), (0, 1, 2) on the U side. So

18

(1, 1, 1) obtains the color as “2 blues and 2 reds”, or 2B2R for short. We therefore let red for 3R1G,
blue for 1R2G1B, and green for 2R2B. We then have

L = {(0, 0, 1), (0, 1, 0), (0, 1, 1), (0, 1, 2), (1, 0, 0), (1, 0, 1),

(1, 0, 2), (1, 1, 0), (1, 1, 1), (1, 1, 2), (1, 2, 0), (1, 2, 1), (1, 2, 2)}.

It can be checked that we reach at a stable coloring after this step.
Note that these colors suggest the green points form a characteristic set. This characteristic set

would generate the whole group, so it does not yield a non-trivial characteristic subgroup. However,
this characteristic set is already interesting, because it does suggest that the Weisfeiler–Leman
procedure, or even the naive refinement, gives non-trivial information regarding group elements
under the action of automorphisms. We discuss how to take advantage of such characteristic
subsets in isomorphism testing in the next section.

4 Isomorphism testing using the filter and hypergraph

Our colored hypergraph and filter constructions can be used to refine the composition-series iso-
morphism method of Rosenbaum and Wagner [RW], thereby speeding up the resulting isomorphism
test. Here, we present an isomorphism algorithm which runs in poly(|G|) time if the filter output
by Algorithm 1 with k, g 6 O(1) also has “width” at most O(1) (defined below). Though we claim
no asymptotic improvements in the worst case, we expect our test to perform well for many specific
group classes, as well as for groups chosen randomly (including groups selected from the random
model we discuss in detail in the following section). In practice, one should also apply Rosenbaum’s
bidirectional collision technique [R2] to get a square-root speed-up, but this causes no new technical
difficulties.

In fact, the running time we get is n(1/2)width(φg,k)+O(1) + nO(gk). We note that the largest that
both g and the width can be is log n; if we allow g to be near-maximal (take kg = log n/ log log n),
and this results in a filter whose width is just slightly less than maximal, say, O(log n/ log log n),
then the entire algorithm runs in time nO(logn/ log logn), asymptotically beating the trivial algorithm
by a log log n factor in the exponent. Because this is such a generous bound on kg and a weak
desired outcome for the width, we expect this runtime to hold for many classes of groups.

We begin with a simple version, building up to Theorem B in steps.

4.1 Simple version: choose composition series compatible with the filter

We begin by recalling the composition-series isomorphism technique of Rosenbaum and Wagner
[RW], and show the simplest way to incorporate our characteristic filter into that technique. (Re-
call that, although we are not using the colored hypergraph here directly, it contributed to the
construction of the filter.) Composition Series Isomorphism is the following problem: given two
groups G,H, and a composition series of each 1 �G1 � · · ·�Gm = G and 1 �H1 � · · ·�Hm = H,
decide whether there an isomorphism ϕ : G → H such that ϕ(Gi) = Hi for all i = 1, . . . ,m.
Rosenbaum and Wagner [RW] show how to reduce p-group isomorphism to Composition Series
Isomorphism, and then how to reduce the resulting Composition Series Isomorphism Problem to
Graph Isomorphism on graphs of degree at most p+O(1); Rosenbaum more generally showed how
to reduce GpI to Composition Series Isomorphism in n(1/2) logn+o(logn) time. Luks [L1] showed how
to solve Composition Series Isomorphism in poly(n) time. Recall the socle series of a group G is
defined as follows: the socle Soc(G) is the subgroup generated by all minimal normal subgroups.
Soc(G) is always a direct product of simple groups. We then recursively define Soci+1(G) to be

19

the preimage of Soc(G/Soci(G)) in G, that is, if πi : G → G/Soci(G) is the natural projection,
then Soci+1(G) = π−1

i (Soc(G/Soci(G))). The reduction is to pick a composition series for G that
is compatible with its socle series, and then to try all possible composition series for H compat-
ible with its socle series. One of the keys to their running time is to show that the number of
composition series compatible with the socle series is bounded by n(1/2) logn.

Within O∞(G), we refine the socle series with our characteristic filter. Without loss of generality,
we may assume that the restriction of our characteristic filter φ to the Fitting subgroup O∞(G)
refines the socle series of O∞(G). If it doesn’t originally, we may further refine it using the socle
series, then iterate the main loop of Algorithm 1 until it stabilizes again. Our algorithm here is
to reduce to Composition Series Isomorphism, but to only consider composition series that are
compatible both with our filter φ and with the socle series. If the filter has many small layers, this
will cut down the number of composition series that need to be considered, thus reducing—for such
groups—the dominant factor in the running time of [RW,R2,R3].

To illustrate the potential savings, we define the width of a filter φ with elementary abelian
layers to be the maximum dimension of any layer:

width(φ) := max
s

dimps(φs/∂φs).

Then we have:

Theorem 4.1. Let N be a solvable group of order n, and φN be a characteristic filter on N
computable in time t(n). Then isomorphism of N with any group can be tested, and an isomorphism
found, in time n(1/2)maxP width(φP)+O(1) + t(n).

In particular, using the characteristic filter φg,k output by Algorithm 1 with parameters g and
k, isomorphism of solvable groups can be solved in time

n(1/2)width(φg,k)+O(1) + nO(kg).

Proof. The outline of the algorithm follows Rosenbaum–Wagner [RW], also using Luks’s polynomial-
time algorithm for Composition Series Isomorphism [L1]; the key difference here is that we only
consider composition series which refine our characteristic filter φ, rather than more general com-
position series as in Rosenbaum and Wagner. The runtime of their algorithm is a product of the
running time to enumerate the desired composition series, and the time to solve Composition Se-
ries Isomorphism. Our improvement is in the first step. So we only need calculate the number of
composition series of N compatible with φg,k. In our case, we must first compute the filter φ, which
takes time t(n).

Let M be a second solvable group. Enumerating the composition series of M compatible with
φM can be achieved as follows. Go through s ∈ N

d in lexicographic order, starting with the
lexicographically largest s such that φs 6= 1. Within each layer Ls = φs/∂φs we choose all possible
composition series. By [RW, Lemma 3.1], this can be done in time |Ls|(1/2) logps |Ls| 6 |Ls|1/2width(φ).
Taking the product over all layers, we get a bound of |M |(1/2)width(φ). For each such composition
series, we then use Luks’s poly(|M |)-time algorithm for Composition Series Isomorphism, yielding
the stated result.

For the “in particular,” we compute φg,k using Algorithm 1, which takes nO(gk) time.

4.2 Intermediate version: choose composition series compatible with the filter
and hypergraph

The vertex coloring of the hypergraph H(g,k)
χ (φ) may inform us of characteristic subsets that are

not subgroups. Although the filter has been refined as much as possible (in particular, any one

20

of the color classes of the hypergraph in a given layer Ls must generate the whole layer), we can
nonetheless take advantage of these characteristic subsets in the preceding algorithm, by further
restricting the composition series that we need to consider.

Towards this end, for each layer Ls let Cs denote the smallest color class in Ls, and define the
color ratio of a layer Ls as |Ls|/|Cs|. Finally, define the color ratio of a solvable group N as

color-ratio(N) :=
∏

s∈Nd

color-ratio(Ls) =
∏

s

|Ls|
|Cs|

=
|N |

∏

s |Cs|
.

We now restate (a slightly refined version) of Theorem B:

Theorem B (Refined). Let N be a solvable group of order n. Let φ = φg,k and H(g,k)
χ (φ) be the

filter and colored hypergraph for N output by Algorithm 1 with parameters g, k. In each layer Ls,
let Cs denote the smallest color class. Then isomorphism of N with any group can be tested, and
an isomorphism found, in time

∏

s∈Nd

min{|Ls|1/2, |Cs|}

width(φg,k)

poly(n) + nO(gk)

6

(

n

color-ratio(N)

)width(φg,k)

poly(n) + nO(gk).

Proof of Theorem B. The outline of the algorithm is the same as in Theorem 4.1; the key difference
is how we enumerate composition series within each layer Ls (and how many we enumerate). To
see how to take advantage of the size of the smallest color class Cs ⊆ Ls, we must recall the details
of Rosenbaum & Wagner’s Lemma 3.1 [RW], on enumerating composition series. In the algorithm
of Theorem 4.1 above we have already taken care of the ordering of the layers, so the only difference
here will be on how we enumerate the part of the composition series within each layer Ls. That
is, we may assume that we have already built a composition series of ∂φs, which we now want to
extend to a composition series of φs. Since the subgroup generated by Cs would be a characteristic
subgroup of Ls, and φ has already been refined according to the coloring χ on H, it must be the case
that Cs generates all of Ls. Thus we may select only those composition series where the generator
of each step of the composition series comes from Cs. Since any generating set (and hence any
composition series) for Ls has size logps |Ls| 6 width(φ), the number of choices of composition
series where all the generators in the series are chosen from Cs is bounded by

|Cs|(|Cs| − 1)(|Cs| − 2) · · · (|Cs| − logps |Ls|+ 1) 6 |Cs|width(φ).

This analysis already gives the second bound in the statement of the theorem. To get the more
refined bound, within each layer Ls, if |Cs| < |Ls|1/2, then we employ the above strategy, and
otherwise we use the |Ls|(1/2) logps |Ls| 6 |Ls|(1/2)width(φ) strategy from Rosenbaum–Wagner [RW].

4.3 Advanced version: refine the filter and hypergraph as you go (individualize
and refine)

Finally, we give a version of the individualize-and-refine paradigm from Graph Isomorphism as
applied to composition series that are compatible with our filter and colored hypergraph. The
algorithm is similar to that from the previous section, except now, each time we pick a subgroup

21

in our composition series, we give a new color to the corresponding vertex in our hypergraph, and
then we run more iterations of the main loop of Algorithm 1 until the filter and hypergraph again
stabilize, before we pick the next subgroup in our composition series. This can potentially have the
effect of reducing the width of the layers and/or the size of the smallest color class in each layer as
we go.

In somewhat more detail: compute the filter φ and colored hypergraph H(g,k)
χ (φ) as before. We

build up a composition series in G and simultaneously keep a list of partial composition series in H
that we want to test for isomorphism in the end. Suppose we are at the point where we already have
built a composition series up to ∂φs in G, and we have a list L of composition series up to ∂φs in H.
Then we extend the partial composition series of G by picking an element of Cs (the smallest color
class in Ls). We then color the corresponding vertex in H a new color, and refine bothH and φ until
stabilization (as in the main loop of Algorithm 1). Within H, we try each element of Cs in turn,
refining the filter and hypergraph for H. If for any x ∈ Cs(H) the refinement does not agree with
the refinement we got in G, we throw it away, otherwise we extend our composition series for H by
the subgroup generated by x and ∂φs, and add this new partial composition series to our list L. This
comes at a multiplicative cost of |Cs|. We then continue this process within the (potentially new,
smaller Cs) until we get a composition series that now includes all of φs. The total multiplicative
cost within the layer Ls is thus at most |Cs|(|Cs|−1) · · · (|Cs|− logps |Ls|+ 1) 6 |Cs|width(φ), so this
at most squares the total running time from Theorem B.

Thus, asymptotically, we get a similar worst-case upper bound. We could state a more refined
upper bound along the lines of Theorem B, but the definitions involved are somewhat delicate
and recursive (because they depend on how the width and the color-ratio change as the algorithm
progresses). Nonetheless, in practice, we expect this individualize-and-refine technique to perform
much better, as the layers and color class should decrease in size as the algorithm progresses.

5 A random model of groups

Inspired by a suggestion of A. Mann [M4, Question 8] (answered in [KTW]), we describe here a
model for random finite groups. We first give a simplified model that samples only random finite
nilpotent groups. Later we extend this to sample solvable, semisimple, and general finite groups.

5.1 A model for random finite nilpotent groups

As a first approximation we choose ℓ random upper unitriangular (d× d)-matrices u1, . . . , uℓ, over
the integers modulo a fixed positive integer b. The ui are drawn according to a fixed distribution
µ(d, b). Later we shall discuss the effect of µ on the group theory, but first we survey the possible
outcomes.

An immediate observation is that U = 〈u1, . . . , uℓ〉 is a subgroup of the full group of upper
unitriangular matrices. Therefore, U is nilpotent of order at most bd

2/2. In particular, if Up
denotes the Sylow p-subgroup of U , then U =

∏

p|bUp. The choice of ℓ generators also has a
fingerprint within the structure of our groups U . In particular by Burnside’s Basis Theorem, for
each p|b,

|Up : [Up, Up]U
p
p | 6 pℓ.

Thus, there is a certain amount of structure which is fixed by the choice of parameters (d, b, ℓ).
Nevertheless, the coverage asserted in Theorem C shows the diversity of these groups.

22

5.2 General model

To sample a more general class of groups, we add terms to the block-diagonal. Sampling random
invertible square matrices will almost always generate the entire general linear group. As noted in
Section 1, a more nuanced approach is called for.

Our strategy is as follows:

(a) Add solvable groups by selecting any matrix that is diagonalizable over the algebraic closure.
We call this a random toral subgroup.

(b) From the classification of finite simple groups we can select at random, according to a fixed
distribution, a non-abelian finite simple group T and let T 6 S/Z(S) 6 Aut(T)—that is, choose
S, a (possibly trivial) central extension of an almost simple group. Then we form the group
algebra A = (Z/b)〈S〉. We then sample from the minimal left ideals I of A. This defines a
linear representation ρ : T → End(I) where I is a Z/b-module. It is a straightforward exercise
to see that endomorphisms of finite modules are representable as chequered matrices. We copy
the image of a generating set for S into chequered matrices, and then place this on the block
diagonal. We repeat until we exceed a bound on d.

(c) Add permutation to the block diagonal to any two terms with isomorphic representations.

(d) As a final step we now sample block upper unitriangular matrices.

It is important to proceed in this order to avoid redundant choices. The number of variability
of the simple modules represented on the block diagonal is again controlled by the distribution and
that can have substantial impact on the resulting group.

Proposition 5.1. The class of groups sampled includes: A permutation group P , central extensions
Sa of almost simple groups, P ≀ (S1 × · · · × Ss) ⋉ U where U is sampled as above and L(U) is a
∏

a Ta-module.

5.3 Coverage: Proof of Theorem C

For (i) consider matrices of the form uij = I + aijEij. If 1 6 i < d/2 6 j 6 d then all such uij
commute and are independent. So fix a divisor chain e1| · · · |es|b and coefficients aij (in some index
order) having additive order eim+j , it follows that these uij generate an abelian group with the
specified invariants.

For (ii-iii), let Rv : U → W whereRv(u) = u∗v, represented as a matrix. Let Ū be representation
of U as in (i), and likewise with W̄ . Then

Bh(∗) ∼=

1 u w
0 Ir Rv
0 0 Is

∣

∣

∣

∣

∣

∣

u ∈ Ū , v ∈ V,w ∈ W̄

Br(∗) ∼=

1 u w
0 Ir Ru
0 0 Is

∣

∣

∣

∣

∣

∣

u ∈ Ū , w ∈ W̄

For the count note that it suffices to count the number of distinct bilinear maps ∗ : U×V W .
As Higman demonstrates [H2], there are pdimU dimV dimW /|GL(U) × GL(V) × GL(W)| ∈ pΘ(n3)

such maps.

23

Finally, for a given list of groups sampled in smaller dimensions, form block diagonal represen-
tations. This affords the direct product of the list. For subdirect products take a subgroup of the
block-diagonal group. This completes the proof of Theorem C.

5.4 The importance of the right distribution

If we sample dense matrices when we shall call the result the dense random subgroup model for the
general linear group GL(d,Fp). While this is an easy model to reason about it is also fairly rigid,
as the following result illustrates.

Theorem 5.2. If u1, . . . , uℓ are chosen uniformly at random from the group of upper uni-triangular
matrices Ud(Z/b) and ℓ ∈ Ω(

√
d) then

Pr
(

|〈u1, . . . , uℓ〉| = bℓ+(d−2
2)
)

→ 1.

In fact we shall prove the following stronger claim: with high probability, such groups 〈u1, . . . , uℓ〉
contain the group of commutators of Ud(Z/b).

In this model, groups can range widely in isomorphism types, one does not see much variability
in coarse isomorphism invariants such as group order, numbers of subgroups or quotients, conjugacy
classes, and so forth.

Our proof of Theorem 5.2 relies on some details of Sims’ proof on the asymptotic upper bound
on the number of isomorphism types of p-groups [S]. It begins as follows. For a group G let γi(G)
be the ith term in the lower central series. Every p-group G has a subgroup H 6 G such that
γ2(H)γ3(G) = γ2(G) and where d(H) the least number of group elements to generate H, is minimal
with that property [BNV, Proposition 3.8]. We call d(H) the the Sims’ rank of G.

Definition 5.3. A Sims subgroup of a nilpotent group G is a subgroup H 6 G minimal with
respect to γ2(H)γ3(G) = γ2(G). The Sims rank of G is the minimum number of generators needed
to generate a Sims subgroup.

Fix G = U(d, k), V = G/γ2(G) ∼= F
d−1, W = γ2(G)/γ3(G) ∼= F

d−2. Then there is a bimap
∗ : V × V W given by commutation:

[(γ2(G)x), (γ2(G)y)] ≡ [x, y] (mod γ3(G)). (5.4)

Fix a subgroup H of G, and put U = Hγ2(G)/γ2(G). Observe that H is a Sims subgroup if, and
only if, [U,U] = [V, V]. Also observe that after taking natural bases for F

d−1 and F
d−2, the bimap

∗ can be represented as follows. Let [,] : Fd−1 × F
d−1 F

d−2 be defined, in a parametrized form,
by [u, v] = uBvt where

B =

0 f1
−f1 0 −f2

−f2
. . .

. . .
. . . fd−2

−fd−2 0

. (5.5)

That is, B could be understood as a 3-tensor of size (d − 1) × (d − 1) × (d − 2), whose ith frontal
slice is given according to fi.

24

Proof of Theorem 5.2. Our approach is to show that a subgroup generated by enough elements is a
Sims subgroup. To do this it suffices to show that for most sufficiently large dimensions, the bilinear
map of (5.5) has the property that most X 6 F

d−1 satisfy [X,X] = F
d−2. For notation we let

V = F
d−1 with basis {e1, . . . , ed−1} and W = F

d−2 with basis {f1 = [e1, e2], . . . , fd−2 = [ed−2, ed−1]}.
If X 6 V is the row span of the full rank (s × (d− 1))-matrix M then

(MBM †)ij =

d−2
∑

k=1

(MikMj(k+1) −Mi(k+1)Mjk)fk.

This defines a natural 3-tensor of size s× s× (d− 2) by

mi,j,k = (MikMj(k+1) −Mi(k+1)Mjk).

Notice [X,X] = W if, and only if, 〈∑kmijkfk|1 6 i, j 6 s〉 = W . That is, if we flatten the tensor
into a (s2 × (d− 2))-matrix m̃, as follows,

m̃(s·(i−1)+j),k = (MikMj(k+1) −Mi(k+1)Mjk) = det

[

Mik Mi(k+1)

Mjk Mj(k+1)

]

;

then we are asking that m̃ is of full rank. Now we argue that for s > 2
√
d this is the expected

behavior.
By our model, each entry in M is drawn independently at random. However the entries of m

(and therefore m̃) are dependent. Nevertheless, we can observe that the values of mijk are almost
independent of k. Certianly mijk is independent of mijk′ if |k − k′| > 1. Also, if k′ = k + 1, if
mijk 6= 0 then nothing can be said about mij(k+1). Even if mijk = 0 it may be impossible to predict
mij(k+1), the exception is when Mi(k+1) = 0 = Mj(k+1). So there is 1/q2 chance of dependence
between with the exception of pairs of 0. Each such dependency will be compensated for by adding
a row j′ such that Mj′(k+1) 6= 0. Thus mij′k will be independent of mij′(k+1). Since the selection
of a nonzero entry is a 1 − 1/q > 1/2 event the addition of one row is highly likely to break
dependence. Thus, at a cost of sampling O(

√
d) rows we obtain with high probability a matrix M

whose associated matrix m̃ is full rank.

5.5 Sparsity

For added variation a different distribution is required, one which favors sparse matrices. Fix
positive integers b and d. Let wt(u) be the number of non-zero values in the upper unitriangular
u. Fix a distribution µ on Z/b − {0} and a distribution ν on {1, . . . ,

(

n−1
2

)

}. Define a (b, d, µ, ν)-

random triangular matrix as an α :
(d
2

)

→ Z/b sampled according to a distribution |supp α| = k
with probability ν(k) and for each {i, j} ∈ supp α, αi,j is sampled according to µ. Notice α uniquely
determines an upper unitriangular matrix:

u(α) = Id +

d
∑

i=1

d
∑

j=i+1

αijEij . (5.6)

The distribution ν describes how large the support of α is expected to be, and µ describes what
non-zero values in Z/b will be used as entries.

Finally define a (µ, ν)-random unitriangular group as the group generated by independently
sampling ℓ upper unitriangular (d × d)-matrices over Z/b according to their (µ, ν)-distribution.
The precise outcomes of this distribution appear intricate. Through some empirical testing (e.g.
Figure 1.2) we have produced the following question:

25

If ν(|A|)→ 0 for |A| > C, does log |〈u1, . . . , uℓ〉| approach a discrete Gaussian distribu-
tion on {1, . . . ,

(d
2

)

}?

Our model makes several constraining choices in order that it avoids the analysis that would
otherwise create rather similar groups. The cost of this is that we can so far only offer heuristic
explanations for the behavior. Even so, we explain what we understand and encourage a thorough
exploration in the future.

The first question is what to expect the length of the block diagonal to be in U . Suppose we
assume that the block diagional is chosen uniformly at a partition of d. From Vershik’s theorem [V],
the shape of the tableaux of random partition of d with at least

√
d terms tends to O(e−t). That

implies that there are relatively few large blocks as those are in the tail of the random distribution.
Thus there would be many blocks of small size. This however requires one justify that sampling U
at random samples partitions of d uniformly at random. That need not be the case. So we ask

Is the typical sparsely sample group 〈u1, . . . , uℓ〉 convex (tending toward the middle) or
concave (tending away from the middle)?

The answer to this speaks to the expected nilpotence class of the groups U . The length of this
block diagonal is a bound on the nilpotence class. For example, if there are just two blocks, then

U 6

{[

Ia ∗
0 Ib

]}

implies that U is abelian. In general, if F denotes the subspace flag determining the block structure
of U , then the nilpotence class of U is at most |F| − 1.

To see a reason that sparse matrices should sample a wider class of groups than dense matrices
we consider a sufficient condition to avoid being a Sims subgroup.

Lemma 5.7. Fix an alternating bimap [,] : V × V W with W = [V, V]. Let π1, . . . , πd−2 be a
basis of W ∗ and define (u, v)i = πi[u, v]. For X 6 V , if there exists an i such that (X|X)i = 0,
then [X,X] 6= W .

Proof. If (X|X)i = 0 then for u ∈W with πi(u) = 1, u /∈ [X,X].

Now here is the situation. The maps (|)i : V × V K are alternating bilinear forms, possibly
degenerate. The subspaces X 6 V with (X|X)i are what are known as totally isotropic. The
number of maximal totally isotropic subspaces of V is qO(m2) where m = dimV − dim{v : (v|V) =
0}. Therefore the smaller the radical the much large the number of totally isotropic subspaces
there are and therefore the less likely that a subspace X generates W . So as we move towards
bimaps for unipotent hulls for flags of fixed length at least 3, then the commutator involved will
have quotients to alternating forms with large numbers of totally isotropic subspaces. Thus more
subspaces will fail to generate W . As result, fewer subgroups will be Sims subgroups. This however
is only a crude guide to the number of Sims subgroups and we encourage an actual analysis with
better insights.

5.6 WL-refinement in our random model

So now let us consider the effects of refinement in our random model. Our proof is in two parts.
Either our unipotent groups U have long block diagonal series or it has bounded class. In the
former case we reduce the refinement analysis to a result of Maglione [M3]. In the later case we
appeal to classical results on nonsingular products. In either case we discover refinements. We aim
to prove Theorem D.

26

Refinements for many blocks. First let us consider groups with many blocks.

Theorem 5.8. The refinement length of a random subgroup U 6 U(d, p) is on average at Ω(ℓ2)
where ℓ is the length of is generalized eigen 1-space flag.

Primarily we want to appeal to the following. Note that in this case we do not apply the
Weisfeiler–Leman procedure developed in this paper; instead, it will be used in the next setting.

Theorem 5.9 (Maglione [M2]). The group U(d, p) has an (adjoint) characteristic filter refinement
of length Θ(d2).

However we do not have the group U(d, p). Instead, we have a subgroup sampled at random
either with dense or sparse matrices. First we dispense with the dense case.

Corollary 5.10. A subgroup H 6 U(d, p) generated by dense matrices u1, . . . , uℓ with ℓ > 2
√
d has

on average a characteristic filter refinement of length Θ(d2).

Proof. By Theorem 5.2, H is almost certainly a Sims subgroups of U(d, p) and therefore [H,H] =
[U(d, p), U(d, p)]. As a scholium to Maglione’s theorem we observe that the adjoint filter refinement
of U(d, p) can be defined as refinement through terms Ls for s < (2, 0, . . . , 0) in the filter. As a
result these same terms appear in the filter of H and so H refines to a length of Ω(d2− d) = Ω(d2).
Since logp |H| ∈ O(d2) the result follows.

Next we need to consider the sparse case as this is where our model presides. What we do is
demonstrate a form of Morita condensation theory that transports our sparse problem into a dense
problem [W4]. What we observe is that each right-hand edge j of block on the block diagonal of
U is defined by the presence of an element u ∈ U with a non-zero value uij, otherwise the block
would be wider. We select one such row is for each block s, and one such column js. Thus out
of the (ℓ × ℓ)-block matrix u ∈ U , we create an (ℓ × ℓ)-matrix by copying the entire in uisjs . For
example

1 0 a13 a14 a15 a16
0 1 a23 a24 a25 a26

1 a34 a35 a36
1 0 0
0 1 0
0 0 1

7→

1 a13 a15
1 a35

1

 .

This may seem a bit unnatural but in fact it is applying a functorial property not on the level
of groups but on the level of the enveloping algebra of the matrices and more importantly on the
level of bilinear maps. While this function has no relationship in the context of groups, it is by
considering the associated ring context that we see that we have simply performed a condensation
of modules, that is we have changed to an equivalent category. So for each of the blocks B1, . . . Bd
we let es be the (ds × ds) matrix with zero in every position except jj. Set e = e1 ⊕ · · · ⊕ eℓ. Then
eue is matrix with at most ℓ× ℓ nonzero entries. Removing the all zero rows and columns produces
an (ℓ× ℓ)-matrix. In the example above,

e =

1 0
0 0

1

0 0 0
0 1 0
0 0 0

27

In particular this induces a functorial Morita condensation of each bilinear map Ls × Lt Ls+t,
see [W4]. We therefore denote this group eUe to remind us of the natural process to create this
smaller matrix group.

Having applied this transform, notice eUe is now a dense subgroup of U(ℓ, p). Therefore we
arrive at the following.

Proof of Theorem 5.8. Suppose U 6 U(d, p) generate by random matrices u1, . . . , ut. If the ui are
dense then by Corollary 5.10 there is a computable filter refinement of length O(ℓ2) where ℓ is the
number of blocks of U . If on the other hand the ui are sparse, then eUe has a refinement of length
Ω(ℓ2). As the map U 7→ eUe is functorial in the bilinear maps used to select refinement, it follows
that U also has a refinement of length Ω(ℓ2).

Refinements for few blocks. The last case to concern us is when U has a bounded number
of blocks on the diagonal, but that the number of blocks is at least 3. (Otherwise the group U is
abelian which is the first case of Theorem D.) Because the number of blocks is bounded at least
one block has dimension proportional to d as d→∞.

Let us consider coloring with g = 1. This means that with a selected layer Ls × Lt Ls+t we
consider labels on 1-dimensional subspaces 〈x〉 6 Ls by labeling the restriction 〈x〉 × Lt Ls+t.
One observes this structure is nothing more than a linear transformation Lt → Ls+t and is thus
defined up to change of basis solely by the rank of the transformation. Therefore to each element
of PG0(Ls) we record the rank of the associated matrix. We do likewise with PG(Lt). Finally we
label the edges between PG(Ls) and PG(Lt) by whether or not the pair of points commutes.

In order to model this behavior in colors we make the following observation. Treating x = (x1 :
· · · : xd) as homogeneous point in d variables, the evaluation [x,−] : Lt → Ls+t produces a matrix
M(x) with entries in F[x1, . . . , xd]. The rank of this matrix changes as we evaluate x but certainly
there are two natural states: either M(x) has rank at most r or it does not. If M(x) has rank
at most r then all (r × r)-minors must vanish, and this produces a polynomial number degree r-
polynomials that must all vanish on x. That is to say, the condition of the rank of M(x) is a variety
(or more generally a scheme). It is in fact a determinantal variety and the subject of considerable
study in the algebraic community as well as the computer science community [H1, FSEDS]. It is
important to observe that many results in the field are only known over algebraically closed fields.
However it is known that these varieties are reduced and irreducible [H1]. Therefore to count points
we can use Lang–Weil theorem [LW1], but that requires that we allow for a large field. So this
portion of our estimate assume b→∞ and d→∞.

Let us assume for now that M(x) has points, i.e. that for some x ∈ PG0(Ls), [x,−] does not
have full rank, and for other points it does. Thus our vertex set has (at least) 2 colors, say white if
[x,−] has full rank and black otherwise. We do the same for PG(Lt). Recall that we are including
a hyperedge (x, y, [x, y]) only if [x, y] 6= 0.

Now consider the situation. The number of black points is in general a solution to a system of
random nonlinear homogeneous polynomials of degree r. That this is nonlinear means we can expect
that the number of black points is not a subspace. Now the points in PG(Lt) not connected to black
points x are the points y ∈ x⊥ := ker[x,−]. In particular we have a nonlinear set parameterizing a
subspace arrangement within PG(Lt). If we write the generator matrix of each subspace ker[x,−]
it will be the dual of a linear combination of the matrices used to define [,], which we sampled at
random. Therefore we have a random subspace arrangement. In general this incidence relation is
not equitable, so proper refinements will be discovered in the WL-refinement process.

With that we have proved the following.

28

Theorem 5.11. If U 6 U(d, p) has a bounded number of blocks and d, p are large, then there exists
a proper refinement of the standard filter.

To remove the assumption that d, p are large here, the following interesting question needs to
be addressed.

Let A1, . . . , Am be random n × n matrices over Fq. What is the typical number of
non-full-rank matrices in the linear span of Ai’s?

5.7 Proof of Theorem D

Let us supposeG is sampled according to our model. Let U be the intersection of G with U(d, p) and
begin with the initial filter of our introduction. Then if U is abelian we are in case (i). Otherwise U
has at least 3 blocks so we can use either Theorem 5.8 for the case of large blocks, or Theorem 5.11
in the case of small blocks. In either case we obtain a proper refinement. Note that after refinement
of the bounded number of blocks several times we cross over to the large number of blocks and so
the result follows.

6 Testing pseudo-isometry of alternating bilinear maps

6.1 The simplified main algorithm

In this subsection we formally describe the simplified main algorithm presented in Section 1.4, that
is Algorithm 2. We also discuss some important adjustments used in the implementation. We need
the following observation, which follows easily by computing the closure of the given generating
set.

Observation 6.1. Let C1, . . . , Ct ∈ GL(n, q), and let G be the group generated by Ci’s. Let s ∈ N.
Then there exists an algorithm that either reports that |G| > s, or lists all elements in G, in time
poly(s, n, log q).

Let us first examine the running time of Algorithm 2.

Proposition 6.2. Algorithm 2 runs in time poly(qcm, s, n).

Proof. If Algorithm 2 outputs |Aut(A)| > s, then its running time is determined by Theorem 2.3
(2) and Observation 6.1, which together require poly(s, n, log q).

If |Aut(A)| 6 s, we analyze the two For-loops at Step 4 and Step 4.c, respectively. The first
loop adds a multiplicative factor of qcm, since enumerating a single element in H costs qm. The
second loop adds a multiplicative factor of s, due to the fact that | Isom(A,B)| = |Aut(A)| 6 s, as
Isom(A,B) is a coset of Aut(A). Other steps can be carried out in time poly(n, log q). Therefore
the overall running time is upper bounded by poly(qcm, s, n).

We then prove the correctness of Algorithm 2, in the case that it does not report |Aut(A)| > s.

Proposition 6.3. If Algorithm 2 does not report |Aut(A)| > s, then it lists the set of pseudo-
isometries (possibly empty) between G and H. In particular, |ΨIsom(G,H)| 6 qcm · s.

Proof. By Step 4.c, every T added to L is a pseudo-isometry. We are left to show that L contains
all the pseudo-isometries. For this, take any pseudo-isometry T . Since the linear spans of T tGT
and H are the same, we know T tAT is equal to some B ∈ Hc. So when enumerating this B in Step
4, T will pass all the tests in the following, and then be added to L. This concludes the proof.

29

Algorithm 2 The first average-case algorithm for alternating space isometry.

Input: G = (G1, . . . , Gm) ∈ Λ(n, q)m, H = (H1, . . . ,Hm) ∈ Λ(n, q)m, c, s ∈ N, and q is odd.

Output: Either (1) |Aut(A)| > s, where A = (G1, . . . , Gc), or (2) ΨIsom(G,H).

Algorithm procedure:

1. Set L← {}. Set A = (G1, . . . , Gc), the first c matrices from G.

2. Use Theorem 2.3 (2) to compute a generating set for Aut(A).

3. Use Observation 6.1 with input s and the generating set of Aut(A).

(If |Aut(A)| > s, we terminate the algorithm and report that “|Aut(A)| > s.”)

4. Put H = 〈H〉, the linear span of H; for every B = (B1, . . . , Bc) ∈ Hc, do the following.

a. Use Theorem 2.1 (2) to decide whether A and B are isometric.

b. If not, go to the next B. Otherwise, we get the non-empty coset Isom(A,B).

c. For every T ∈ Isom(A,B), do the following.

Test whether the linear spans of T tGT and H are the same. If not, go to the
next T . If so, add T into L.

5. Output L.

It remains to specify the choices of c and s in Algorithm 2 in the average-case analysis. This is
stated in the following, whose proof will be deferred to Section 6.3.

Proposition 6.4. Let c := 20. For all but at most 1/qΩ(n) fraction of A = (G1, . . . , Gc) ∈ Λ(n, q)c,
we have |Aut(A)| 6 s := qn.

Combining Propositions 6.2, 6.3 and 6.4, we have the following theorem.

Theorem 6.5. Let m > 20, and let Fq be a finite field of odd size. For all but at most 1/qΩ(n)

fraction of G = (G1, . . . , Gm) ∈ Λ(n, q)m, Algorithm 2 tests the isometry of G with an arbitrary
H ∈ Λ(n, q)m in time qO(n+m).

Implementation details. We now explain some issues in the implementation of Algorithm 2.
To make this algorithm suitable for practical purposes, recall that the algorithm’s running time

is dominated by the two For-loops which give multiplicative factors of qcm and s, respectively. For
the average-case analysis we used c = 20, but having this standing on the exponent is too expensive.
In practice, actually using c = 3 already imposes a severe restriction on s, the order of Aut(A). So
we use c = 3 in the implementation which gives a reasonable performance.

But having q3m in the For-loop is still too demanding. Indeed, in practice the tolerable enu-
meration is around 510, namely q = 5 and 10 on the exponent. So with c = 3, the range of m is
still severely limited. (Interestingly, the algorithm seems to have a better dependence on n.) It is
most desirable if we could let c = 1, namely simply qm.

To achieve that we use the following heuristic. Note that if G1, . . . , Gc are low-rank matrices,
then we will only need to match them with the low-rank matrices from H. Our experiement shows
that, for a random G over Fq when q is a small constant, the number of low-rank (i.e. non-full-rank)
matrices in G is expected to be small (i.e. much smaller than qm) and non-zero (i.e. no less than
3) at the same time. So we can use qm · poly(n, log q) to choose 3 low-rank matrices from G. Then

30

use qm ·poly(n, log q) to compute the set of low-rank matrices from H, denoted as Hc. We can then
replace enumerating Hc with Hcl , which in general is much smaller.

6.2 The main algorithm

To state our algorithm, we need the concept of adjoint algebra. For two tuples of alternating
matrices G,H ∈ Λ(n,F)m, the adjoint algebra of G is defined as

Adj(G) = {(A,D) ∈ M(n,F)⊕M(n,F) : AG = GD},
and the adjoint space from G to H is

Adj(G,H) = {(A,D) ∈ M(n,F)⊕M(n,F) : AG = HD}.
Clearly, if T ∈ Aut(G), then (T t, T−1) ∈ Adj(G). Furthermore, if G and H are isometric, then
|Adj(G,H)| = |Adj(G)|.

We now introduce the algorithm (see Algorithm 3) that supports Theorem E. We point out
that Algorithm 3 differs from the algorithm presented in Section 1.4 in two places.

1. The first and major difference is to replace the uses of Aut(G) and Isom(G,H) with Adj(G)
and Adj(G,H), thereby avoiding using Theorem 2.1 (2) and Theorem 2.3 (2). Since Adj(G)
and Adj(G,H) are easy to compute over any field, this resolves the characteristic-2 field
issue. Furthermore, Adj(G) and Adj(G,H) are also easier to analyze. But Adj(G) and
Adj(G,H) could be larger than Aut(G) and Isom(G,H), so they are less useful from the
practical viewpoint.

2. The second place is step 2 in Algorithm 3: instead of just using the first c matrices as in
the algorithm presented in Section 1.4, Algorithm 3 slices the m matrices of G into ⌊m/c⌋
segments of c-tuples of matrices, and tries each segment until it finds one segment with a
small adjoint algebra. This step helps in improving the average-case analysis, and can be
applied to the algorithm presented in Section 1.4 as well.

Let us first examine the running time of Algorithm 3.

Proposition 6.6. Algorithm 3 runs in time poly(qcm, s, n).

Proof. If Algorithm 3 outputs “G does not satisfy the generic condition,” then it just executes the
For-loop in Step 3, which together runs in time poly(m,n, log q).

Otherwise, there are two For-loops at Step 4 and Step 4.c, which add multiplicative factors
qcm and s, respectively. Other steps can be carried out in time poly(n, log q). Therefore the whole
algorithm runs in time poly(qcm, s, n).

We then prove the correctness of Algorithm 3 in the case that that it does not report “G does
not satisfy the generic condition.”

Proposition 6.7. Suppose that Algorithm 3 does not report “G does not satisfy the generic con-
dition.” Then the algorithm lists the set of pseudo-isometries (possibly empty). In particular,
|ΨIsom(G,H)| 6 qcm · s.
Proof. By Step 5.c, every T added to L is a pseudo-isometry. So we are left to show that L contains
all the pseudo-isometries. For this, take an arbitrary pseudo-isometry T . Then T sends A to some
B ∈ Hc, i.e., T tAT = B. In particular, (T t, T−1) ∈ Adj(A,B). So when enumerating this B ∈ Hc,
(T t, T−1) will pass all the tests in the following, and then be added to L. This concludes the
proof.

31

Algorithm 3 The second average-case algorithm for alternating space isometry.

Input: G = (G1, . . . , Gm) ∈ Λ(n, q)m, H = (H1, . . . ,Hm) ∈ Λ(n, q)m and c, s ∈ N.

Output: Either (1) |Aut(A)| > s; or (2) ΨIsom(G,H) as a set, which may be empty.

Algorithm procedure: 1. Set L← {}. Set F ← false.

2. For i = 1, . . . , ⌊m/c⌋, do the following.

a. Set A = (Gc(i−1)+1, . . . , Gci).

b. Compute a linear basis of Adj(A) ⊆ M(n, q)⊕M(n, q).

c. If |Adj(A)| 6 s, set F to be true, and break the For-loop.

3. If F = false, return “G does not satisfy the generic condition.” and terminate.

Otherwise,

4. Put H = 〈H〉, the linear span of H; for every B = (B1, . . . , Bc) ∈ Hc, do the following.

a. Compute a linear basis for Adj(A,B) ⊆ M(n, q)⊕M(n, q).

b. If |Adj(A,B)| > s, go to the next B.

c. For every (T, S) ∈ Adj(A,B), do the following.

If S and T are invertible and S = T−t, test whether the linear spans of TGT t

and H are the same. If not, go to the next (T, S). If so, add T t into L.

5. Output L.

Therefore, to prove Theorem E, the key is to analyze when a random G satisfies the generic
condition as in Algorithm 3.

Proposition 6.8. Let m > c = 20, and let ℓ = ⌊m/20⌋ ∈ N. For all but at most 1/qΩ(n·ℓ) =
1/qΩ(nm) fraction of G = (G1, . . . , Gm) ∈ Λ(n, q)m, there exists some i ∈ [ℓ], such that, letting
A = (Gc(i−1)+1,...,c(i−1)), we have |Adj(A)| 6 qn.

Clearly, Theorem E follows from Propositions 6.6, 6.7, and 6.8.

6.3 The average-case analysis

We now formulate the key proposition that supports the proof of Proposition 6.8.

Proposition 6.9. Let c = 20. For all but at most 1/qΩ(n) fraction of A = (G1, . . . , Gc) ∈ Λ(n, q)c,
we have |Adj(A)| 6 qn.

Given Proposition 6.9, we easily obtain the following.

Proof of Proposition 6.4. This is because, if T ∈ Aut(A), then (T t, T−1) ∈ Adj(A). So |Aut(A)| 6
|Adj(A)|.

Proof of Proposition 6.8. We slice G into ℓ = ⌊m/c⌋ segments, where each segment consists of
c random alternating matrices. Each segment is some A ∈ Λ(n, q)c, with Pr[|Adj(A)| > qn] 6
1/qΩ(n). Since each Gi is chosen independently and uniformly at random, the probability of every
(Gc(i−1)+1, . . . , Gci), i ∈ [ℓ], with |Adj((Gc(i−1)+1, . . . , Gc(i−1)+c))| > qn, is upper bounded by

(1/qΩ(n))ℓ = 1/qΩ(nm).

32

The rest of this subsection is devoted to the proof of Proposition 6.9. For this we need the
following from [LQ]. Given a tuple A = (A1, . . . , Ar) ∈ M(n, q)r, define the image of U 6 F

n
q under

A as A(U) := 〈∪ri=1Ai(U)〉.

Definition 6.10. We say A = (A1, . . . , Ar) ∈ M(n, q)r is stable, if for any nonzero, proper U 6 F
n
q ,

we have dim(A(U)) > dim(U).

Proposition 6.11 ([LQ, Proposition 10 in arXiv version]). If A ∈ M(n, q)r is stable, then |Adj(A)| 6
qn.

A key technical result in [LQ] is that, a random A ∈ M(n, q)4 is stable with probability 1− 1
qΩ(n)

[LQ, Proposition 20 in arXiv version]. However, we cannot directly apply that result to prove
Proposition 6.9, because here we have alternating matrices instead of general matrices. So we have
to run the arguments for the proof of [LQ, Proposition 20 in arXiv version] again, and carefully
adjust some of the details there to accommodate the structure of alternating matrices.

To start with, we need the following easy linear algebraic result, which suggests the connection
between random alternating matrices and random general matrices.

Lemma 6.12. Let d ∈ Z
+ and d > 2. Given two random alternating matrix X,Y ∈ Λ(d, q), we

can construct a matrix P ∈ M(d×(d−1), q), whose columns are linear combinations of the columns
of X and Y , such that P is a random matrix from M(d × (d− 1), q).

Proof. Let X and Y be given as

X =

0 x1,2 x1,3 . . . x1,d
−x1,2 0 x2,3 . . . x2,d
−x1,3 −x2,3 0 . . . x3,d

...
...

...
. . .

...
−x1,d −x2,d −x3,d . . . 0

, Y =

0 y1,2 y1,3 . . . y1,d
−y1,2 0 y2,3 . . . y2,d
−y1,3 −y2,3 0 . . . y3,d

...
...

...
. . .

...
−y1,d −y2,d −y3,d . . . 0

,

where each xi,j and yi,j are independent random variables from Fq. Define

M =

y1,2 x1,2 + y1,3 x1,3 + y1,4 . . . x1,d−1 + y1,d x1,d
−x1,2 y2,3 x2,3 + y2,4 . . . x2,d−1 + y2,d x2,d − y1,2

−x1,3 − y2,3 −x2,3 y3,4 . . . x3,d−1 + y3,d x3,d − y1,3
...

...
...

. . .
...

...
−x1,d − y2,d −x2,d − y3,d −x3,d − y4,d . . . −xd,d−1 −y1,d

:=

z1,1 z1,2 z1,3 . . . z1,d−1 z1,d
z2,1 z2,2 z2,3 . . . z2,d−1 z2,d
z3,1 z3,2 z3,3 . . . z3,d−1 z3,d

...
...

...
. . .

...
...

zd,1 zd,2 zd,3 . . . zd,d−1 zd,d

,

be the matrix obtained by adding the (i+ 1)th column of Y to the ith column of X for i ∈ [d− 1],
and add the first column of Y to the dth column of X. Let P be the d× (d−1) matrix consisting of
the first (d−1) columns of M . We need to show that P is uniformly sampled from M(n× (d−1), q)
as X and Y are uniformaly sampled from Λ(d, q).

To see this, first note that for any two random variable x and y, which are chosen independently
and uniformly at random from F

d
q , x± y are also new random variables which are chosen uniformly

33

at random from F
d
q , and is independent with either x or y. Thus each zi,j is again a random variable

which is chosen uniformly at random from F
d
q for i, j ∈ [d].

We then exploit the linear relations among the zi,j’s. In fact, we only need to focus on the
anti-diagonal directions, as

z1,i + z2,i−1 + · · ·+ zi,1 + zi+1,d + zi+2,d−1 + · · ·+ zd,i+1 = 0

for any i ∈ [d]. Thus, we can view z1,i, z2,i−1, · · · , zi,1, zi+2,d−1, . . . , zd,i+1 (note the missing zi+1,d)
to be mutually independent for each i ∈ [d], then every entry in P can be viewed as chosen
independently and uniformly at random. This can be verified in a straightforward way, and we can
conclude the proof.

Remark 6.13. Following the similar argument, if we would like to get an d × d random matrix
over Fq, we can in turn do the following: take two d × d random alternating matrices X and Y
and construct M as in Lemma 6.3. We then take another two random alternating matrices Z and
W . We add up the first column of Z and W , of which each coordinates can be viewed as chosen
independently and uniformly at random. We replace the last column of M by the new random
vector, which gives an d× d random matrix.

We are now ready to prove Proposition 6.9.

Proof of Proposition 6.9. Given Proposition 6.11, we need upper bound the probability of a random
A ∈ Λ(n, q)c, such that A is not stable, by 1/qΩ(n).

By the union bound, we know that

Pr[A ∈ Λ(n, q)c is not stable] 6
∑

U6F
n
q ,

16dim(U)6n−1

Pr[A ∈ Λ(n, q)c,dim(A(U)) 6 dim(U)].
(6.14)

We first simplify the right-hand-side. For a non-zero, proper U 6 F
n
q , let AU := {A ∈ Λ(n, q)r :

dim(A(U)) 6 dim(U)}. Clearly,

Pr[A ∈ Λ(n, q)c,dim(A(U)) 6 dim(U)] =
|AU |
|Λ(n, q)c| .

We show that for any two dimension-d subspaces U and V , |AU | = |AV |. To see this, let
T ∈ GL(n, q) be any invertible matrix that sends V to U . Note that T further induces a linear
map from Λ(n, q)r to itself by sending A to T tAT . Since T is invertible, this map is a bijection.
Moreover, for any A ∈ AU , we claim that T tAT ∈ AV . This is because

dim((T tAT)(V)) = dim((T tA)(U)) = dim(A(U)) 6 dim(U) = dim(V),

where the second equality holds since left and right multiplying invertible matrices does not change
the rank of a matrix. To summarize, if dim(U) = dim(V), then

Pr[A ∈ Λ(n, q)c,dim(A(U)) 6 dim(U)] = Pr[A ∈ Λ(n, q)c,dim(A(V)) 6 dim(V)].

The right-hand-side of 6.14 can be then simplified as

Pr[A ∈ Λ(n, q)c is not stable] 6

n−1
∑

d=1

[

n

d

]

q

· Pr[A ∈ Λ(n, q)c,dim(A(Ud)) 6 d]. (6.15)

34

where Ud is the d-dimensional subspace of Fnq spanned by the first d standard basis e1, . . . , ed.
The next goal is to upper bound

[n
d

]

q
Pr[A ∈ Λ(n, q)c,dim(A(Ud)) 6 d] for d = 1, . . . , n − 1.

Let Adi be the n × d matrices consists of the first d columns of Ai for i ∈ [c]. (Note that the
superscript here does not denote exponentiation.) Let Ad = [Ad1, · · · , Adc] ∈ M(n × cd, q). Then
dim(A(Ud)) is just the rank of Ad. Note that for i ∈ [c], the first d row of Adi can be viewed as a
random alternating matrix from Λ(d, q), and the last n−d rows of Adi can be viewed as a (n−d)×d
random matrix. Moreover, these two matrices can be viewed as being chosen independently.

By Lemma 6.12 together with Remark 6.13, there exist a series of column operations represented
by an invertible matrix R ∈ GL(cd× cd, q), such that the following holds. Let V d ∈ M(n×5d, q) be
the matrix consists of the first 5d columns of AdR. Then V d can be viewed as chosen independently
and uniformly at random from M(n × 5d, q), as A is chosen uniformly at random from Λ(n, q)c.
Note that when d = 1, the first row of Adi is 0 for all i ∈ [c]. This degenerate case suggest us to
consider V 1 as randomly choosing from M((n− 1)× 5, q). Note that

Pr[A ∈ Λ(n, q)c,dim(A(U1)) 6 1] 6 Pr[V 1 ∈M((n − 1)× 5, q), rk(V 1) 6 1]

and
Pr[A ∈ Λ(n, q)c,dim(A(Ud)) 6 d] 6 Pr[V d ∈M(n× 5d, q), rk(V d) 6 d]

for 2 6 d 6 n− 1.
We consider how to construct an (n− 1)× 5 matrix such that its rank is not larger than 1. One

way to do so is to pick one column fix its coordinates; then let the rest 4 columns be scalar of the
picked ones. This procedure gives the bound

Pr[V 1 ∈M((n− 1)× 5, q), rk(V 1) 6 1] 6

(5
1

)

· qn−1 · q5−1

q5(n−1)
=

5

q4n−8
.

So we have
[

n

1

]

q

· Pr[A ∈ Λ(n, q)c,dim(A(U1)) 6 1] 6
5

q3n−8
. (6.16)

Using the same idea, we deal with 2 6 d 6 n− 1. All possible V d such that rk(V d) 6 d can be
constructed by first choosing d columns in V d and fixing their entries, and then choosing the other
columns from their linear span. This gives the bound

Pr[V d ∈M(n× 5d, q), rk(V d) 6 d] 6

(

5d
d

)

× qnd × q4d2

q5nd
6

1

q4nd−4d2−5d
,

where the last inequality uses
(5d
d

)

6 25d 6 q5d. For d 6 n
2 , we upper bound

[n
d

]

q
by qnd. This gives

that
[

n

d

]

q

Pr[A ∈ Λ(n, q)c,dim(A(Ud)) 6 d] 6
1

q3nd−4d2−5d
6

1

q6n−26
. (6.17)

For n
2 < d 6 n− 2, we upper bound

[n
d

]

q
by qn(n−d). This gives that

[

n

d

]

q

Pr[A ∈ Λ(n, q)c,dim(A(Ud)) 6 d] 6
1

q5nd−n2−4d2−5d
6

1

qn−6
. (6.18)

For d = n− 1, we note that Pr[V d ∈M(n× 5(n− 1), q), rk(V d) 6 n− 1] is the probability that V d

is not of rank n when n > 2 [LQ, Fact 4 in arXiv version]. This gives the bound
[

n

n− 1

]

q

Pr[A ∈ Λ(n, q)c,dim(A(Ud)) 6 d] 6
n× n

q5(n−1)−n+1
=

n2

q4(n−1)
. (6.19)

35

Combining equations from 6.14 to 6.19, we have

Pr[A ∈ Λ(n, q)c is not stable] 6
∑

U6Fn
q ,

16dim(U)6n−1

Pr[A ∈ Λ(n, q)c,dim(A(U)) 6 d]

6

n−1
∑

d=1

[

n

d

]

q

Pr[A ∈ Λ(n, q)c,dim(A(Ud)) 6 d] 6
1

qΩ(n)
,

which concludes the proof.

Remark 6.20 (Upgrading to the linear algebraic Erdős-Rényi model). In [LQ], the linear alge-
braic Erdős-Rényi model, LinER(n,m, q), was introduced as the uniform distribution over all m-
dimensional subspaces of Λ(n, q). Randomly sampling m-tuples of n× n alternating matrices was
termed as the naive model in [LQ]. It was also shown in [LQ] that the analysis in the naive model
can be upgraded, with a mild loss in the parameters, to an analysis in LinER(n,m, q). Such an
upgrade can also be done similarly for the analysis here, though with a little bit more work than
in [LQ]. We omit the details.

7 On testing isomorphism of groups with genus 2 radicals

In this section we show how to combine the methods of [GQ] for groups with abelian radicals
and the methods of [BMW1] to study subclasses of groups whose solvable radicals are p-groups
of class 2. Recall that p-groups of class 2 are considered as difficult as the general case for group
isomorphism, so we did not expect to beat the nlogn bound for this entire class. However, as a
corollary of the results in this section, we give an nO(log logn)-time isomorphism test for a class of
groups whose radicals have genus 2. We shall work throughout with the following class of groups:

Let G be the class of groups G whose solvable radical, Rad(G), is a p-group of exponent
p 6= 2 and class 2 upon which G acts as inner automorphisms of Rad(G).

In [GQ] the classical strategy of using actions and cohomology was formally analyzed, showing
that GpI “splits” into two problems: Action Compatibility (ActComp), and Cohomology Class
Isomorphism (CohoIso); we state their definitions in the relevant sections below. When G has a
normal subgroup N we may consider G as an extension of N by Q = G/N ; both ActComp and
CohoIso have as their witnesses certainly elements of Aut(N)×Aut(Q)× (Q→ N), and two groups
are isomorphic if, and only if, there is a witness that works simultaneously for ActComp and CohoIso

(see [GQ] for a leisurely exposition). Furthermore, ActComp and CohoIso each reduce to GpI.
The two key cases to handle first are the extreme situations with regards to this natural splitting:

semi-direct products, where the isomorphism problems reduce to just ActComp; and “central”
products (or rather, where G/Rad(G) acts trivially on the radical Rad(G)), where the problem
reduces to (nonabelian) CohoIso. The class G that we consider here is of the second type of extreme
situation. We expect the first yield to techniques in [GQ, Section 3], perhaps using methods to
solve isometry [IQ], but we are not yet able to see a clear path to this case.

7.1 Preliminaries on genus 2 groups

We briefly recall definitions and results on the automorphism group of groups of genus 2; see
[BMW1] for details. For any groupG, let Z = Z(G) andG′ = [G,G]; then we define the commutator
map of G as ◦G : G/Z × G/Z → G′. Two groups G,H are isoclinic if there are isomorphisms

36

ϕ : G/Z(G) → H/Z(H) and ϕ̂ : G′ → H ′ such that gϕ1 ◦H gϕ2 = (g1 ◦G g2)ϕ̂. When G,H are
nilpotent of class 2, their commutator maps are in fact Z-bilinear (note that in this case G/Z(G) is
abelian), and the groups are isoclinic iff ◦G and ◦H are pseudo-isometric, by definition (recall §2).
Given a bilinear map ◦ : U × V →W (U, V,W abelian groups), its centroid is

C(◦) := {(ϕ,ψ, ρ) ∈ End(U)× End(V)× End(W) : (∀u ∈ U, v ∈ V)[uϕ ◦ v = (u ◦ v)ρ = u ◦ (vψ)]};
the centroid is the largest ring of scalars over which ◦ is bilinear. A nilpotent group G of class
2 is isoclinic to a direct product H1 × · · · × Hs of directly indecomposable groups; the genus of
G is the maximum rank of [Hi,Hi] as a C(◦Hi

)-module. Although the concept of genus is fully
general, we focus on p-groups of exponent p and class 2; in this case isoclinism and isomorphism
coincide, and centrally indecomposable p-groups of class 2 and exponent p have their centroids a
finite field of characteristic p. For a biadditive map ◦ : U×U → V , let ΨIsom(◦) denote its group of
pseudo-isometries; if ◦ is bilinear over a field F, let ΨIsomF(◦) = ΨIsom(◦) ∩ (GLF(U)×GLF(V)).
Given a finite field F of characteristic p, its Galois group denoted Gal(F), consists of those field
automorphisms of F that act trivially on the prime subfield Zp 6 F; Gal(F) is cyclic of order
[F : Zp] = logp |F|, generated by the Frobenius automorphism a 7→ ap.

Proposition 7.1 (See, e. g., [BMW1, Prop. 2.4]). Let P be a p-group of class 2 and exponent p
satisfying Z(P) = [P,P]. Then Aut(P) = ΨIsom(◦P) ⋉ Hom(P/Z(P), Z(P)). If ◦P is F-bilinear,
then ΨIsomF(◦P) � ΨIsom(◦P), with quotient ΨIsom(◦P)/ΨIsomF(◦P) ∼= Gal(F).

Note that elements of ΨIsomF(◦P)⋉Hom(P/Z(P), Z(P)) are faithfully represented by matrices
(

αV dα
0 αZ

)

, where αV ∈ Aut(P/Z(P)), αZ ∈ Aut(Z(P)), and dα : P/Z(P)→ Z(P) is linear.

Recall that a map α : V → W of F-vector spaces is F-semilinear if it is additive (α(v + v′) =
α(v) + α(v′)) and it is “twisted” linear, that is, α(λv) = λγα(v), where γ ∈ Gal(F). From the
preceding, it follows immediately that:

Observation 7.2. Let P be a p-group of class 2 and exponent p such that ◦P is F-bilinear. For
any α ∈ Aut(P), the induced automorphisms on [P,P] and P/[P,P] are both F-semilinear.

Observation 7.3. If P is a p-group of class 2 and exponent p such that Z(P) 6= [P,P], then
P ∼= Q × A, where Q is characteristic subgroup of P and satisfies Z(Q) = [Q,Q], and A is an
elementary abelian p-group. Moreover, Q and A and the isomorphism P ∼= Q×A can be constructed
in polynomial time in the number of generators, even when the groups are given as a black box.

Standard proof sketch. Z(P) > [P,P] since P is of class 2. Since P is of exponent p, Z(P) is
elementary abelian, and thus is a vector space Z

e
p. Let {g1, . . . , gs} be a generating set of P . Let

Q = 〈gi : gi /∈ Z(P)〉. Then Q ∩ Z(P) = [P,P]. Let A be a Zp-linear complement to [P,P] in
Z(P).

Theorem 7.4 ([BMW1, IQ]). Let P be a p-group of class 2, exponent p 6= 2, and genus g. Given
α ∈ Aut(Z(P)), one can test whether α extends to an automorphism α̂ ∈ Aut(P) in poly-logarithmic
time when g 6 2, and in polynomial time otherwise.

Proof. When g = 2, the result is immediate from [BMW1, Thm. 3.22], and their comments about its
constructive nature (see [BMW1, §6.2]). In general, this is an isometry problem, which is solvable
in polynomial time [IQ].

Theorem 7.5. Isomorphism of p-groups of class 2, exponent p 6= 2, and genus 6 2 can be decided
in poly-logarithmic time [BMW1, Thm. 1.1], and of genus 6

√

log |G| can be decided in polynomial
time [IQ, Thm. 3].

37

7.2 Testing isomorphism in the class G
Our goal in this final section is to prove Theorem F, which for convenience we now recall:

Theorem F. Let G be the class of groups G defined at the start of Section 7. Given groups G1, G2

of order n, it can be decided in poly(n) time if they lie in G. If so, isomorphism can be decided,
and a generating set for Aut(Gi) found, in time nO(g+log logn), where g is the genus of Rad(G).

We will need the following two results from Grochow–Qiao [GQ], which first require a few
concepts we haven’t yet discussed. Recall that a pair of subgroups H1,H2 6 G is a central decom-
position of G if 〈H1,H2〉 = G and [H1,H2] = 1. Given two groups M1,M2 and an isomorphism
ϕ : Y1 → Y2 between two subgroups Yi 6 Z(Mi), the quotient of M1×M2 by {(y−1, ϕ(y)) : y ∈ Y1}
is the central product of M1 and M2 along ϕ, denoted M1×ϕM2, and ϕ is called the amalgamating
map. In this case, {M1,M2} is a central decomposition of M1 ×ϕM2; conversely, if {H1,H2} is a
central decomposition of a group G, then there exist Yi 6 Z(Hi) and an isomorphism ϕ : Y1 → Y2
such that G ∼= H1 ×ϕ H2.

Lemma 7.6 ([GQ, Lem. 3.10]). Let N �G, and suppose G acts on N as inner automorphisms of
N . Then there is a subgroup H 6 G, constructible in time poly(|G|), such that H ∩ N = Z(N),
H/N = Q, and {N,H} is a central decomposition of G. We denote this subgroup H by G|Z(N).

Proposition 7.7 (Special case of [GQ, Prop. 3.13]). Let Gi (i = 1, 2) be a group such that
Rad(Gi) = P is a p-group of class 2, exponent p, and genus 2, and such that Q = Gi/Rad(Gi) acts
on Rad(Gi) by inner automorphisms of Rad(Gi). Suppose that G1|Z(P)

∼= G2|Z(P) (as in Lem. 7.6),

which we denote by Q̂, and let ϕi : Z(P)→ Z(Q̂) be the corresponding amalgamating maps. Then
G1
∼= G2 iff there exist (α, β) ∈ Aut(P)×Aut(Q̂) such that ϕ1 = β−1|Z(Q̂) ◦ ϕ2 ◦ α|Z(P).

Proposition 7.8 (See [GQ, §6.1.2, p. 1186]). Let G be a group with Rad(G) = Z(G), and let Q =
G/Z(G) an elementary abelian group. Given β ∈ Aut(Q), one can compute in poly dimZ(G) time
a single α ∈ Aut(Z(G)) and a basis of a linear subspace L ⊆ End(Z(G)) such that (β, γ) ∈ Aut(G)
iff γ ∈ α+ L.

Proof of Thm. F. Let G1, G2 be groups satisfying the hypotheses. In poly(|G|) time, find Rad(Gi)
and denote this by P ′

i . By Lem. 7.6, construct Q̂i = Gi|Z(P ′

i)
and the amalgamating maps

ϕ′
i : Z(P ′

i) → Z(Q̂i). Using Thm. 7.5 [BMW1, IQ], decide whether P ′
1
∼= P ′

2; if not, then G1 6∼= G2

and we can stop, and if so, then let ρ′ : P ′
1 → P ′

2 be such an isomorphism.
Note (Observation 7.3) that it may be the case that P ′

i
∼= Pi × Ai for some abelian groups Ai;

if this is the case, we can find Pi and Ai such that Z(Pi) = [Pi, Pi] in polynomial time. Replace P ′
i

by Pi and replace ρ′ by ρ := ρ′|P1 ; this will not hurt us later because Pi is characteristic in P ′
i , and

therefore also in Gi. Intuitively, the only place that Ai interacts with P ′
i is as a direct product, and

the only way Ai interacts with Q̂i is as a subgroup of its center, where Ai still appears.
Next, since Q̂i is a group with Rad(Q̂i) 6 Z(Q̂i), by [GQ] we can decide whether Q̂1

∼= Q̂2

in time nO(log logn); if not, then G1 6∼= G2 and we can stop, and if so, let τ : Q̂1 → Q̂2 be such an
isomorphism. Let ϕ1 = ϕ′

1 and ϕ2 = τ−1 ◦ϕ′
2 ◦ρ−1. These are both isomorphisms Z(P1)→ Z(Q̂1),

so from now on we let P = P1 and Q̂ = Q̂1, and we have Gi ∼= P ×ϕ′

i
Q̂ for i = 1, 2.

Now, by Proposition 7.7, G1
∼= G2 iff there exists (α, β) ∈ Aut(P)×Aut(Q̂) such that

ϕ′
1 = β−1|Z(Q̂) ◦ ϕ′

2 ◦ α|Z(P). (7.9)

By Observation 7.2, α|Z(P) is F-semilinear, and since P has genus g, Z(P) ∼= F
g. Enumerate

ΓL(Fg); for each α ∈ ΓL(Fg), check whether α extends to an automorphism of P (Theorem 7.4

38

[BMW1, IQ]). Let Q = Q̂/Z(Q̂) = Q̂/Rad(Q̂). Enumerate γ ∈ Aut(Q). For each α ∈ ΓL(Fg) that
extends to an automorphism of P , and each γ ∈ Aut(Q), we seek β ∈ Aut(Z(Q̂)) such that (γ, β)
induces an automorphism of Q̂ and (α, β) satisfies (7.9). By Proposition 7.8, the set of such γ such
that (γ, β) is an automorphism of Q̂ is an affine linear space β0 +B, where B is a linear subspace of
End(Z(Q̂)), and we can compute γ0 and a basis for B in polynomial time. Once α is fixed, (7.9) is
linear in β. Intersecting the linear space which solves (7.9) with the affine space β0 +B is standard
linear algebra, and can thus be computed in polynomial time.

To summarize, for each α ∈ AutF(Z(P)) ∼= ΓLg(F) and each γ ∈ Aut(Q), we can compute a
single element and generating set for those β such that α extends to an automorphism P , (β, γ) ∈
Aut(Q̂), and (α, β) satisfy (7.9). Taking the union over all choices in ΓLg(F) and Aut(Q) gives us
the coset of isomorphisms G1 → G2.

Analysis of running time. When g 6 O(log log |G|), we have |ΓLg(F)| ∼ |Gal(F)| · Fg2 =

k(pk)g
2

= k(pkg)g = k|Z(P)|g 6 |G|g+o(1) where |G| > |F| = pk, so their number is not too
large, and ΓLg(F) is easily enumerated in nO(g) time. By [BCGQ], Aut(Q) can be listed in time
nO(log logn). Since we are enumerating over both of these, we take their product nO(g+log logn), which
ends up dominating the runtime. By [GQ], isomorphism of Q̂1 and Q̂2 can be tested in nO(log logn)

time. The rest is polynomial time or poly-logarithmic time by previous results, or linear algebra
(poly-logarithmic time in |G|).

Remark 7.10. There is some hope when g 6 2 in Theorem F—due to the poly-logarithmic iso-
morphism test of [BMW1]—to improve this poly-logarithmic time. However, a prerequisite is first
solving isomorphism of groups with no abelian normal subgroups in poly-logarithmic time, rather
than just polynomial [BCQ].

Acknowledgments

The authors would like to acknowledge V. Arvind and M. Grohe for useful comments on hypergraph
k-WL, Avinoam Mann for discussions on random generation of p-groups, and László Babai and
Xiaorui Sun for discussions on average-case algorithms for testing isomorphism of p-groups of class 2
and exponent p. P. A. B. was partially supported by NSF grant DMS-1620362. J. A. G. was partially
supported by NSF grant DMS-1750319. Y. L. was partially supported by ERC Consolidator Grant
615307-QPROGRESS. Y. Q. was partially supported by the Australian Research Council DECRA
DE150100720. J. B. W. was partially supported by NSF grant DMS-1620454. P. A. B. and J. B. W.
also acknowledge the Hausdorff Institute for Mathematics, and the University of Auckland where
some of this research was conducted. P. A. B., J. A. G., J. B. W., and Y. Q. also acknowledge the
Santa Fe Institute, where some of this research was conducted.

References

[A] Sergei I. Adian, Unsolvability of some algorithmic problems in the theory of groups, Trudy Moskovskogo
Matematicheskogo Obshchestva 6 (1957), 231–298.

[AFKV] V. Arvind, Frank Fuhlbrück, Johannes Köbler, and Oleg Verbitsky, On Weisfeiler–Leman invariance: Sub-
graph counts and related graph properties. arXiv:1811.04801, 2018.

[B1] László Babai, Graph isomorphism in quasipolynomial time [extended abstract], Proceedings of the 48th
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, pp. 684–697. arXiv:1512.03547,
version 2.

[B2] , Lecture on graph isomorphism, 1979.

39

[B3] Reinhold Baer, Groups with abelian central quotient group, Transactions of the American Mathematical
Society 44 (1938), no. 3, 357–386.

[BB] László Babai and Robert Beals, A polynomial-time theory of black box groups I, London Mathematical
Society Lecture Note Series (1999), 30–64.

[B1] Jan Böker, Color refinement, homomorphisms, and hypergraphs. arXiv: 1903.12432, 2019.

[B2] William W. Boone, The word problem, Annals of Mathematics (1959), 207–265.

[B3] H.R. Brahana, Metabelian groups and trilinear forms, Duke Mathematical Journal 1 (1935), no. 2, 185–197.

[BCGQ] László Babai, Paolo Codenotti, Joshua A. Grochow, and Youming Qiao, Code equivalence and group isomor-
phism, Proceedings of the Twenty-Second Annual ACM–SIAM Symposium on Discrete Algorithms SODA
2011, pp. 1395–1408.

[BCQ] László Babai, Paolo Codenotti, and Youming Qiao, Polynomial-time isomorphism test for groups with no
abelian normal subgroups - (extended abstract), Automata, languages, and programming - 39th international
colloquium, ICALP 2012, pp. 51–62.

[BES] László Babai, Paul Erdős, and Stanley M. Selkow, Random graph isomorphism, SIAM J. Comput. 9 (1980),
no. 3, 628–635.

[BJP] W. Bosma, J. J. Cannon, and C. Playoust, The Magma algebra system I: the user language, J. Symb.
Comput. (1997), 235–265.

[BMW1] Peter A. Brooksbank, Joshua Maglione, and James B. Wilson, A fast isomorphism test for groups whose
Lie algebra has genus 2, J. Algebra 473 (2017), 545–590.

[BMW2] , Thetensor.space, GitHub, 2019.

[BNV] Simon R. Blackburn, Peter M. Neumann, and Geetha Venkataraman, Enumeration of finite groups, Cam-
bridge Tracts in Mathematics, vol. 173, Cambridge University Press, Cambridge, 2007.

[BOW] Peter A. Brooksbank, Eamonn A. O’Brien, and James B. Wilson, Isomorphism testing of graded algebras.
arXiv:1708.08873, 2017.

[BS] L. Babai and E. Szemeredi, On the complexity of matrix group problems I, Proceedings of the 25th annual
symposium on foundations of computer science, SFCS 1984, pp. 229–240.

[BW] Peter A. Brooksbank and James B. Wilson, Computing isometry groups of Hermitian maps, Trans. Amer.
Math. Soc. 364 (2012), no. 4, 1975–1996.

[CFI] Jin-Yi Cai, Martin Fürer, and Neil Immerman, An optimal lower bound on the number of variables for
graph identifications, Combinatorica 12 (1992), no. 4, 389–410.

[CH] John Cannon and Derek F. Holt, Automorphism group computation and isomorphism testing in finite groups,
J. Symbolic Comput. 35 (2003), no. 3, 241–267.

[DGR] Holger Dell, Martin Grohe, and Gaurav Rattan, Lovász meets Weisfeiler and Leman, 45th international
colloquium on automata, languages, and programming, ICALP 2018, pp. 40:1–40:14.

[FSEDS] Jean-Charles Faugère, Mohab Safey El Din, and Pierre-Jean Spaenlehauer, On the complexity of the gen-
eralized MinRank problem, J. Symbolic Comput. 55 (2013), 30–58.

[G1] Robert Gilmon, Algorithmic search in group theory. arXiv:1812.08116, 2018.

[G2] M. Gromov, Random walk in random groups, Geom. Funct. Anal. 13 (2003), no. 1, 73–146.

[GQ] Joshua A. Grochow and Youming Qiao, Algorithms for group isomorphism via group extensions and coho-
mology, SIAM J. Comput. 46 (2017), no. 4, 1153–1216.

[H1] J. Harris, Algebraic geometry, Graduate Texts in Mathematics 133 (1992).

[H2] Graham Higman, Enumerating p-groups. I: Inequalities, Proceedings of the London Mathematical Society
3 (1960), no. 1, 24–30.

[HL] Hermann Heineken and Hans Liebeck, The occurrence of finite groups in the automorphism group of nilpotent
groups of class 2, Arch. Math. (Basel) 25 (1974), 8–16.

[HM] Geir T. Helleloid and Ursula Martin, The automorphism group of a finite p-group is almost always a p-group,
J. Algebra 312 (2007), no. 1, 294–329.

[HR] Derek F. Holt and Sarah Rees, Testing modules for irreducibility, J. Austral. Math. Soc. 1 (1994), 1–16.

[IL] Neil Immerman and Eric S. Lander, Describing graphs: a first-order approach to graph canonization, Com-
plexity theory retrospective—in honor of Juris Hartmanis on the occasion of his 60th birthday, 1990, pp. 59–
81.

40

[IQ] Gábor Ivanyos and Youming Qiao, Algorithms based on ∗-algebras, and their applications to isomorphism
of polynomials with one secret, group isomorphism, and polynomial identity testing, Proceedings of the
twenty-ninth annual ACM-SIAM symposium on discrete algorithms, SODA 2018, pp. 2357–2376.

[KL] William M. Kantor and Alexander Lubotzky, The probability of generating a finite classical group, Geom.
Dedicata 36 (1990), no. 1, 67–87.

[KS] Neeraj Kayal and Nitin Saxena, Complexity of ring morphism problems, Computational Complexity 15

(2006), no. 4, 342–390.

[KTW] Martin Kassabov, Brady Tyburski, and James B. Wilson, The number of isomorphism types of subgroups
of simple groups is maximum possible. (in preparation).

[LGR] Francois Le Gall and David J. Rosenbaum, On the group and color isomorphism problems. arXiv:1609.08253,
2016.

[L1] Eugene M. Luks, Group isomorphism with fixed subnormal chains. arXiv: 1511.00151, 2015.

[L2] , Hypergraph isomorphism and structural equivalence of boolean functions, Proceedings of the thirty-
first annual ACM symposium on theory of computing STOC 1999, pp. 652–658.

[L3] , Permutation groups and polynomial-time computation, Groups and Computation, 1993.

[LQ] Yinan Li and Youming Qiao, Linear algebraic analogues of the graph isomorphism problem and the erdős-
rényi model, 58th IEEE annual symposium on foundations of computer science, FOCS 2017, pp. 463–474.

[LV] Ruvim Lipyanski and Natalia Vanetik, On Borel complexity of the isomorphism problems for graph related
classes of Lie algebras and finite p-groups, J. Algebra Appl. 14 (2015), no. 5, 1550078, 15.

[LW1] Serge Lang and André Weil, Number of points of varieties in finite fields, American Journal of Mathematics
76 (1954), no. 4, 819–827.

[LW2] Mark L. Lewis and James B. Wilson, Isomorphism in expanding families of indistinguishable groups, Groups
Complex. Cryptol. 4 (2012), no. 1, 73–110.

[M1] Joshua Maglione, Compatible filters for isomorphism testing. arXiv:1805.03732, 2018.

[M2] , Longer nilpotent series for classical unipotent subgroups, J. Group Theory 18 (2015), no. 4, 569–
585. MR3365818

[M3] , Efficient characteristic refinements for finite groups, J. Symbolic Comput. 80 (2017), 511–520.

[M4] Avinoam Mann, Some questions about p-groups, J. Austral. Math. Soc. Ser. A 67 (1999), no. 3, 356–379.

[N] P.S. Novikov, On algorithmic undecidability of the word problem in the theory of groups, Trudy Mat. Inst.
Steklov 44 (1955), 1–144.

[R1] Michael O. Rabin, Recursive unsolvability of group theoretic problems, Annals of Mathematics (1958), 172–
194.

[R2] David J. Rosenbaum, Bidirectional collision detection and faster deterministic isomorphism testing. arXiv:
1304.3935, 2013.

[R3] , Breaking the nlog n barrier for solvable-group isomorphism, Proceedings of the Twenty-fourth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 13, pp. 1054–1073.

[RW] David J. Rosenbaum and Fabian Wagner, Beating the generator-enumeration bound for p-group isomor-
phism, Theoret. Comput. Sci. 593 (2015), 16–25.

[S] Charles C. Sims, Enumerating p-groups, Proceedings of the London Mathematical Society 3 (1965), no. 1,
151–166.

[V] A.M. Vershik, Statistical mechanics of combinatorial partitions, an their limit shapes, V.A. Steklov Institute
of Mathematics, Russian Academy of Sciences.

[WL] Boris Weisfeiler and Andrei A. Lehman, A reduction of a graph to a canonical form and an algebra aris-
ing during this reduction, Nauchno-Technicheskaya Informatsia 2 (1968), no. 9, 12–16. English translation
available at https://www.iti.zcu.cz/wl2018/wlpaper.html.

[W1] B. Weisfeiler (ed.), On construction and identification of graphs, Lecture Notes in Mathematics, vol. 558,
Springer-Verlag, 1976. With contributions by A. Lehman, G. M. Adelson-Velsky, V. Arlazaraov, I. Faragev,
A. Uskov, I. Zuev, M. Rosenfeld, and B. Weisfeiler.

[W2] James B. Wilson, The threshold for subgroup profiles to agree is Ω(log n). arXiv:1612.01444.

[W3] , More characteristic subgroups, Lie rings, and isomorphism tests for p-groups, J. Group Theory 16

(2013), no. 6, 875–897. MR3198722

[W4] , Skolem–Noether for nilpotent products, arXiv preprint arXiv:1507.04406 (2015).

41

https://www.iti.zcu.cz/wl2018/wlpaper.html

	1 Introduction
	1.1 The context of this work
	1.2 An outline of the Weisfeiler–Leman procedure for groups
	1.3 An outline of the random model
	1.4 Testing pseudo-isometry of alternating bilinear maps
	1.5 On groups with genus-2 radicals

	2 Preliminaries
	3 The colored hypergraph algorithm
	3.1 Coloring within layers: low-genus quotients and restrictions
	3.2 Coloring between layers
	3.3 The Weisfeiler–Leman procedure
	3.4 Extracting characteristic structure
	3.5 Refining filters
	3.6 Proof of Theorem A
	3.7 Incorporating additional invariants
	3.8 The procedure through an example

	4 Isomorphism testing using the filter and hypergraph
	4.1 Simple version: choose composition series compatible with the filter
	4.2 Intermediate version: choose composition series compatible with the filter and hypergraph
	4.3 Advanced version: refine the filter and hypergraph as you go (individualize and refine)

	5 A random model of groups
	5.1 A model for random finite nilpotent groups
	5.2 General model
	5.3 Coverage: Proof of Theorem C
	5.4 The importance of the right distribution
	5.5 Sparsity
	5.6 WL-refinement in our random model
	5.7 Proof of Theorem D

	6 Testing pseudo-isometry of alternating bilinear maps
	6.1 The simplified main algorithm
	6.2 The main algorithm
	6.3 The average-case analysis

	7 On testing isomorphism of groups with genus 2 radicals
	7.1 Preliminaries on genus 2 groups
	7.2 Testing isomorphism in the class G

