2 research outputs found

    AdSCHE: DESIGN OF AN AUCTION-BASED FRAMEWORK FOR DECENTRALIZED SCHEDULING

    Get PDF
    Decentralized scheduling is one of the newly emerged avenues in scheduling research. It is concerned with allocating resources to alternative possible uses over time, where competing uses are represented by autonomous agents. Compared with classical scheduling models, decentralized scheduling is characterized with the distribution of scheduling knowledge and control, which introduces new levels of complexities, namely the coordination complexity due to the interaction problems among agents and the mechanism design complexity due to the self-interested nature of agents. These complexities intertwine and need to be addressed concurrently. This paper presents an auction-based framework which tackles coordination and mechanism design complexities through integrating an iterative bidding protocol, a requirement-based bidding language, and a constraint-based winner determination approach. Without imposing a time window discretization on resources the requirement-based bidding language allows bidders to bid for the processing of a set of jobs with constraints. Prices can be attached to quality attributes of schedules. The winner determination algorithm uses a depth-first branch and bound search. A constraint directed scheduling procedure is used at each node to verify the feasibility of the allocation. The bidding procedure is implemented by an ascending auction protocol. Experimental results show that the proposed auction framework exhibits improved computational properties compared with the general combinatorial auctions. A case study of applying the framework to decentralized media content scheduling in narrowcasting is also presented

    A Free Exchange e-Marketplace for Digital Services

    Get PDF
    The digital era is witnessing a remarkable evolution of digital services. While the prospects are countless, the e-marketplaces of digital services are encountering inherent game-theoretic and computational challenges that restrict the rational choices of bidders. Our work examines the limited bidding scope and the inefficiencies of present exchange e-marketplaces. To meet challenges, a free exchange e-marketplace is proposed that follows the free market economy. The free exchange model includes a new bidding language and a double auction mechanism. The rule-based bidding language enables the flexible expression of preferences and strategic conduct. The bidding message holds the attribute-valuations and bidding rules of the selected services. The free exchange deliberates on attributes and logical bidding rules for automatic deduction and formation of elicited services and bids that result in a more rapid self-managed multiple exchange trades. The double auction uses forward and reverse generalized second price auctions for the symmetric matching of multiple digital services of identical attributes and different quality levels. The proposed double auction uses tractable heuristics that secure exchange profitability, improve truthful bidding and deliver stable social efficiency. While the strongest properties of symmetric exchanges are unfeasible game-theoretically, the free exchange converges rapidly to the social efficiency, Nash truthful stability, and weak budget balance by multiple quality-levels cross-matching, constant learning and informs at repetitive thick trades. The empirical findings validate the soundness and viability of the free exchange
    corecore