
2011 Society for Design and Process Science

Printed in the United States of America

Transactions of the SDPS

AdSCHE: DESIGN OF AN AUCTION-BASED FRAMEWORK

FOR DECENTRALIZED SCHEDULIING

Chun Wang

Concordia Institute for Information Systems Engineering, Concordia University, Montreal, Canada

Decentralized scheduling is one of the newly emerged avenues in scheduling research. It is

concerned with allocating resources to alternative possible uses over time, where competing uses

are represented by autonomous agents. Compared with classical scheduling models, decentralized

scheduling is characterized with the distribution of scheduling knowledge and control, which

introduces new levels of complexities, namely the coordination complexity due to the interaction

problems among agents and the mechanism design complexity due to the self-interested nature of

agents. These complexities intertwine and need to be addressed concurrently. This paper presents

an auction-based framework which tackles coordination and mechanism design complexities

through integrating an iterative bidding protocol, a requirement-based bidding language, and a

constraint-based winner determination approach. Without imposing a time window discretization

on resources the requirement-based bidding language allows bidders to bid for the processing of a

set of jobs with constraints. Prices can be attached to quality attributes of schedules. The winner

determination algorithm uses a depth first branch and bound search. A constraint directed

scheduling procedure is used at each node to verify the feasibility of the allocation. The bidding

procedure is implemented by an ascending auction protocol. Experimental results show that the

proposed auction framework exhibits improved computational properties compared with the

general combinatorial auctions. A case study of applying the framework to decentralized media

content scheduling in narrowcasting is also presented.

Keywords: decentralized scheduling, combinatorial auctions, iterative bidding, bidding languages,

winner determination

1. Introduction

Decentralized scheduling is one of the newly emerged avenues in scheduling research. Compared

with classical scheduling problem models, decentralized scheduling problems differentiate themselves

in the distribution of both scheduling knowledge and control. In a decentralized scheduling problem,

independent entities, e.g., individuals, enterprises, and computational devices, have jobs that need to be

completed during specific time windows. They compete with each other for the resources to schedule

their own jobs according to their respective objectives. Scheduling related information such as jobs,

resources, constraints and objectives are distributed among individual entities. An entity is motivated

by its own objectives and not controlled by other entities or a system wide authority. Many scheduling

problems are inherently decentralized, such as those in supply chain management, production

management, network-based information-processing environments, transportation and distribution

settings, and many other types of service industries. In recent years, automated decentralized

scheduling systems attracted more attention as a result of the significant growth of eMarkets which

have presented tremendous potential in changing the way companies buy and sell goods, integrate their

supply chains, and collaborate with their business partners. In a considerable portion of eMarket

applications, the goods to be sold are processing times of resources, e.g. landing timeslots of airport

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Concordia University Research Repository

https://core.ac.uk/display/211516284?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Journal of Integrated Design and Process Science

runways (Rassenti et al., 1982), machine processing times of a factory (Wellman et al., 2001),

computation and network accessing times of internet resources (Buyya, 2002), and the right to use

railroad tracks (Brewer, 1996). For this type of eMarket applications, decentralized scheduling plays

an essential role in the design and implementation of software trading systems which facilitate the

commercial activities among market participants.

The computational complexity involved in solving scheduling problems has been the central theme

of the classical scheduling theory. Due to the NP-hard nature of scheduling models, the computation

demanded for solving many problems at practical sizes is prohibitive. In addition, decentralized

scheduling presents two other challenges attributable to the distribution of scheduling knowledge and

the distribution of control. In decentralized scheduling, scheduling related information is located in

entities which are distributed across the system. These entities are independent and self-interested
1
. In

other words, no entity has control over other entities. Each entity has the authority to decide how to

deploy its resources in service of its objectives. To recognize the independent and autonomous nature

of the entities, we treat them as agents
2
 in our decentralized scheduling models.

By modelling the processing times available on resources as goods to be sold, decentralized

scheduling problems can be mapped to a type of combinatorial allocation problems to which

combinatorial auctions have been proposed as solution approaches
3
. However, the mapping is not

straightforward since the processing times in decentralized scheduling problems and the goods in

combinatorial allocation problems are essentially different in terms of divisibility. The processing

times are divisible; however, the goods are distinct items, thus, indivisible. One possible mapping

approach is to impose a discretization on the time windows of resources to be scheduled and treat the

time slots generated by the discretization as distinct items (Kutanoglu and Wu, 2006; Wellman et al.,

2001). However, this discretization approach can generate a large number of items if the time windows

in question are not small. For example, a one week time window on 10 resources can be discretized

into more than 100 thousand time slots if the time accuracy we need is in minutes (which is a practical

requirement in many application domains). Generally speaking, in combinatorial auctions the number

of possible bids is exponential in the number of the items to be sold. A large number of items can

inflict heavy computational burdens on software agents in terms of bids evaluation, on the auctioneer in

terms of winner determination, and on the system in terms of communication.

The objective of this research is to design solution approaches to scheduling problems in

decentralized environments. In particular, we propose an integrated framework which consists of a

bidding language, an iterative bidding framework, and a constraint-based winner auction-based model.

The framework is designed to tackle the high computational complexities in terms of bids valuation,

communication, and winner determination. Our approach is to explore the interface between

computational mechanism design and classical scheduling theory in the context of auction-based

decentralized scheduling and enrich both fields by (1) extending classical centralized scheduling

models to decentralized models; (2) embedding scheduling specific problem solving structures and

heuristics in combinatorial auctions in order that computational challenges in auction-based

1
 Self-interest is an assumption of classical economic theory meaning that individuals are motivated in their

actions by self interest. In The Wealth of Nations (Smith, 1937), Adam Smith makes the claim that, within the

system of capitalism, an individual acting for his own good tends also to promote the good of his community. He

attributed this principle to a social mechanism that he called “the invisible hand”.
2
 In this thesis, agents are referred in the context of distributed system engineering. Specifically, agents are

defined as intelligent, rational, and autonomous software artifacts, which are able to cooperate with each other,

reason, and act appropriately with respect to their environment. They may represent individuals, enterprises, or

computational resources in decentralized scheduling environments.
3
 A combinatorial allocation problem is a resource allocation problem, in which a non-empty set of items are to

be allocated across a set of agents. Agents are assumed to value bundles of items. This problem has been studied

in the combinatorial auction literature from various perspectives (de Vries and Vohra, 2003).

Transactions of the SDPS

decentralized scheduling can be addressed effectively. The rest of the paper is structured as follows.

Section 2 reviews related work in the literature. Section 3 defines a decentralized scheduling problem

model: the scheduling auction. Section 4 describes the auction-based decentralized scheduling

(AdSCHE) framework. Computational performance of AdSCHE is also evaluated. In Section 5, we

present a case study of applying AdSCHE to decentralized media content scheduling in the

narrowcasting environment. Section 6 concludes the paper and discusses future research directions.

2. Literature Review

Scheduling can be seen as a class of resource allocation problems in which resources are allocated

to tasks over the time dimension. Many economic-based resource allocation models have been

studied in the literature. While giving a comprehensive review of these models is beyond the scope of

this paper, we summarize four models which are of importance to decentralized scheduling. In

economics, the concept of a set of interrelated goods in balance is called general equilibrium. General

equilibrium theory provides a distributed method for efficiently allocating goods and resources among

agents based on market prices. In applying this general equilibrium based mechanism to decentralized

scheduling, the goods in the markets need to be specified by imposing a discretization on the

continuous timeline to be scheduled on the resources. These goods are discrete ones, which violate the

infinite divisibility of goods condition of general equilibrium theory. Markets with discrete goods and

complementary preferences of agents can lack equilibria (Walsh and Wellman, 1999). The

performance of general equilibrium based market mechanisms on decentralized scheduling is not

guaranteed.

Sequential and simultaneous auctions price bundles as the sum price of the individual items.

However, they do not allow bidders to bid on bundles of items. Sequential auctions suppose that the set

of items are auctioned in sequence. Bidders bid for items in a specific, known order, and can choose

how much (and whether) to bid for an item depending on past successes, failures, prices, and so on.

Sequential auctions are particularly useful in situations where setting up combinatorial or simultaneous

auctions are infeasible. Simultaneous auctions sell multiple items in separate markets simultaneously.

Bidders have to interact with simultaneous but distinct markets in order to obtain a combination of

items sufficient to accomplish their task. Real-world markets quite typically operate separately and

concurrently despite significant interactions in preferences. A typical example is the series of FCC

spectrum auctions (McAfee and McMillan, 1996). In Parkes and Ungar (2000), simultaneous auctions

are designed for decentralized train scheduling problems. A review of the uses of economic theory in

simultaneous auction design can be found in Milgrom (2000). Sequential and simultaneous auctions

tackle the complementarities over resources in the same spirit of general equilibrium theory. These

auctions fail when there are no prices that support an efficient solution (the existence problem) and also

when agents bid cautiously to avoid purchasing an incomplete bundle (the exposure problem).

However, given that these auctions are more practical in terms of computation, they are two important

models worthy of further study.

Combinatorial auctions (CAs) allow bidders to place bids on bundles of items. It addresses

complementary preference issue explicitly. However, the computation required for solving hard

valuation problems and winner determination problems can be prohibitive. In general, CAs are likely to

be practical for smaller size problems. The computational complexities of CAs have been studied by

various researchers (de Vries and Vohra, 2003). Some sophisticated algorithms have produced

promising results (Sandholm, 2002; Sandholm et al., 2005). In terms of applying CAs to scheduling, if

general bundle languages, such as and (Boutilier and Hoos, 2001) are used, the timeline of the

firm’s production resources needs to be discretized into small time units. This timeline discretization

usually results in a large amount of items to be sold in the auction, which leads to bigger size problems.

Applying CAs to a big size scheduling problem can inflict heavy computation burdens on both the

Journal of Integrated Design and Process Science

customer and the firm side. Another limitation with general CAs is the so called “lying auctioneer”

problem (Sandholm, 1999), which partially explains why Vickery auction is not widely used in

practice, even though it has been proposed since 1960’s.

Table 1 Summary of the key characteristics of the economic models

Economic models Key Characteristics Exemplary References

General

equilibrium

mechanisms

Solve resource allocation or scheduling

problems by constructing computational

markets based on general equilibrium theory.

Ygge and Akkemans (1996)

Walsh and Wellman (1999)

Wellman (1995)

Sequential and

simultaneous

auctions

Do not allow bids on bundles of items.

Sequential auctions sell multiple items in

sequence. Simultaneous auctions sell multiple

items in separate markets simultaneously.

Boutilier et al. (1999)

Engelbrecht and Weber (1983)

McAfee and McMillan (1996)

Reeves et al. (2005)

Parkes and Ungar (2001)

Combinatorial

auctions (CAs)

Allow bidders to submit valuations on bundles

of items.

Kutanoglu and Wu (2006)

de Vries and Vohra (2003)

Sandholm et al. (2005)

Sandholm (2002)

Iterative bundle

auctions

Allow bidders to submit multiple bids during

an auction and provides information feedback

to support adaptive and focused eliciation.

Parkes and Ungar (2000)

Bikhchandani and Ostroy (2006)

Kutanoglu and Wu (1999)

Wellman et al. (2001)

Iterative bundle auctions are iterative implementations of CAs. This class of auction has practical

significance because it addresses the computational and informational complexities of CAs by allowing

bidders to reveal their preference information only as necessary as the auction proceeds, and bidders

are not required to submit (and compute) complete and exact information about their private

valuations. With careful design of the structure and components, iterative bundle auctions have the

potential of significantly reducing computational costs in CAs. In addition, iterative auctions specially

designed for scheduling problems have also been proposed in the literature. In Kutanoglu and Wu

(1999), iterative auctions are applied to the job shop scheduling problem. The focus in Kutanoglu and

Wu (1999) is to investigate the links between combinatorial auctions and Lagrangean relaxation, and to

design auctions based on the Lagrangean based decomposition. In Wellman et al. (2001), the properties

of several iterative auction protocols are investigated in the context of decentralized scheduling. In

Mackie-Mason et al. (2004) and Reeves et al. (2005) price prediction and bidding strategies for

simultaneous auctions are studied in the setting of market-based scheduling. The proposed framework

in this paper is an iterative bundle auction specially designed for scheduling problems. In many cases,

iterative auctions present better computational and privacy properties than those of CAs. In addition,

iterative auctions have the potential of accommodating dynamic events, which is required in many real-

world scheduling applications. Compared with existing iterative bundle auctions, the novelty of our

design is that it uses a requirement-based bidding language to represent scheduling domain specific due

date, pricing, and job requirements. Unlike general iterative auctions which use bundle languages, the

requirement-based language avoids imposing timeline discretization, which causes a large amount of

items to be sold in the auction; the adoption of this language also enables the design of more efficient

winner determination algorithms which take advantage of the domain specific information to improve

the search efficiency. Our previous study (Wang et al., 2009a) has shown that, in auction-based

decentralized scheduling, requirement-based languages result in more efficient winner determination

models than bundle languages do. The key characteristics of the four economic models are summarized

in Table 1.

In agent-based manufacturing control literature, the contract net (Smith, 1980) and its later variants

have been applied to scheduling as a class of distributed decision making protocols. Unlike auctions,

Transactions of the SDPS

which usually require a mediator, contract nets are purely distributed models, in which any agent can

act as a manager and subcontract tasks to other agents. Most of the agent-based control systems were

designed for the coordination of production processes within the boundary of an enterprise. References

and reviews of this line of research can be found in Shen et al. (2006).

3. The Scheduling Auction

In this section, we present a scheduling auction model which extends the factory scheduling model

described in Wellman et al. (2001). The scheduling auction is a typical decentralized job shop

scheduling setting. We use this model as the base environment for evaluating the proposed AdSCHE

framework. The scheduling auction consists of a set of agents. Each agent has a set of jobs to be

processed. Each job requires the processing of a sequence of operations . An

operation has a specified processing time , and its execution requires the exclusive use of a

designated resource for the duration of its processing. Each job is constrained by a release time

 by which the job is available for processing, and a deadline by which the job must be completed.

For a feasible schedule with completion time , , the agent obtains a value .

For any completion time outside , . is determined by the agent’s internal

mechanism which is language independent. We assume that, for an agent, is given for any .

There are precedence constraints among operations of a job, but there are no precedence constraints

among jobs. An allocation of processing time to jobs forms a schedule for agent , denoted . An

agent’s valuation over jobs in is additive, that is
. According to the additive

valuation, as long as a schedule completes one job within , its value to the agent is positive. The

objective of the auction is to maximize social welfare, the sum of across all agents.

Figure 1 shows an example of the scheduling auction with three resources controlled

by the auctioneer. Agent A has job1 and job 2 to be processed. Agent B

has job 3 and job 4 to be processed. Arrows with solid lines represent the

precedence constraints between operations; arrows with dotted line link operations to their designated

processing resources. The scheduling auction can be an abstract model of various scheduling settings.

In a manufacturing firm, for example, each sales agent may have a set of jobs to be processed. They

may “compete” with each other for the limited processing resources to satisfy their customers’

requirements. The auction can also be seen as a general model of some agent-based scheduling

environments described in the literature, in which an agent represents only one job (Shen, 2002).

Fig. 1 Example of the Scheduling Auction Model

Journal of Integrated Design and Process Science

4. The AdSCHE

In this section, we propose AdSCHE as a solution framework for auction-based decentralized

scheduling. AdSCHE is a type of ascending combinatorial auctions. Comparing to general iterative

auctions in literature, it uses the requirement-based bidding languages and the constraint-based winner

determination, which are specially designed for decentralized scheduling problems. AdSCHE contains

three major components, requirement-based bidding languages, constraint-based winner determination

algorithms, and an iterative bidding procedure. The requirement-based bidding languages allow an

agent’s bid to be expressed by a requirement of processing a set of jobs with constraints, which avoid

the use of time window discretization approach. The winner determination algorithm is designed for

solving the winner determination problems formulated using the bids expressed in the requirement-

based languages. The iterative bidding procedure reduces agents’ information revelation and adds the

potential of accommodating dynamic changes during the auction process. In the following, we describe

the detailed design of the three components.

4.1. The Requirement-Based Bidding Language

In the scheduling auction, an agent’s valuation on a schedule depends on the extent to which the

schedule satisfies its performance requirement. Ideally, a bidding language should provide the

expressiveness which allows agents to explicitly attach their valuations to performance requirements.

However, and (Boutilier and Hoos, 2001) do not provide such expressiveness since they only

allow an item or a bundle of items in their atomic propositions. We present a requirement-based

bidding language, namely , to address this limitation of general bidding languages in the domain of

scheduling.

As in and , the basic structure of is an atomic proposition. atomic proposition (or bid)

is more expressive in terms of representing scheduling problems. It consists of a description of the job

to be completed, a performance requirement and the price that the agent is willing to pay given the

requirement is satisfied. The performance requirement is defined by a Measure and its Level. Formally,

an atomic proposition can be represented by a 4-tuple .

Job specifies a sequence of operations and their required processing time on resources. In addition, the

release time, deadline of the job and other processing constraints are also specified. For many

scheduling models, existing general scheduling problem description languages, such as the one

proposed in Smith and Becker (1997) can be used to describe the job specification. Since we focus on

resource allocation in this paper, in our scheduling auction model a job is described as a set of resource

and processing time pairs. For example, job 3 in Figure 1 can be presented

as , which means it needs to be processed by ,

and in sequence within the time window , and the processing times are 23, 15 and 18.

Measure is a criterion based on which the quality of a schedule is evaluated. A schedule can be

evaluated by many types of scheduling criteria (Pinedo, 2002). In our scheduling auction, we use the

completion time of a job as the measure.

Level is the range achieved by a schedule in terms of the criterion specified in the Measure. For

example, if the Measure is completion time and Level is , the semantic interpretation of the

performance requirement is that the job is to be completed after time 20 and before 40.

Price is the amount of money that the agent is willing to pay given that the schedule of the jobs

satisfies certain level of performance measure. For example, the atomic proposition
 is interpreted as the agent is willing to pay $100 if the completion

time of the job is within . In direct revelation mechanisms, such as VCG, the price is agent’s

value.

By connecting atomic bids using XOR, we can express an agent’s values on different levels of

Transactions of the SDPS

the performance measure. For example, we can use the following compound bid
 to express the valuation:

If the job is completed between , the agent is willing to pay ; if completed within

 , the price is reduced to . Finally, since the agent has additive valuations over jobs, it

can express them by connecting the XOR bids, each for a job, using the logical connector . In ,

 cannot be used to connect atomic bids from one job because a job can only be scheduled once.

Compared with general languages, the proposed language allows agents to attach their valuations

directly to the performance requirement of a schedule. By avoiding expressing valuations on a large

number of bundles, agents’ valuation and communication complexities are reduced accordingly. The

proposed language also results in efficient winner determination models which improve problem-

solving speed and scalability. A more detailed analysis of the properties of can be found in Wang et

al. (2009a).

4.2. Constraint-Based Winner Determination

We design a branch and bound algorithm for computing the awarded bids from agents. A branch

bound algorithm for winner determination problems can branch on items (Sandholm, 2002) or bids

(Sandholm, 2005). Since distinct items are not modeled in AdSCHE, we propose an algorithmic

framework which branches on bids. Branch-on-bids starts with an empty temporary solution and

gradually adds bids to it along the search path. To detect the unfeasible branches at early stages,

feasibility of the temporary solution needs to be checked when a new bid is added in at each node. For

the combinatorial auctions with distinct items, feasibility checking is easy since as long as any two

winning bids do not share an item, the solution is feasible. However, since is used in AdSCHE,

validating the feasibility of a solution is equal to answering the question: given a collection of jobs

belong to different agents does a schedule exist that allocates the jobs on the resources, such that all

constraints are satisfied? This decision problem is actually a job shop Constraint Satisfaction Problem

which is known to be NP-complete (Garey and Johnson, 1979). For this problem, we propose a branch-

on-bids algorithm embedded with constraint-directed feasibility validation for winner determination in

auction-based decentralized scheduling using requirement-based bidding languages.

The actual algorithm designed is a depth-first tree search. The search starts with an empty temporal

schedule, calledTEMP . Along the path TEMP is expended by adding more bids form AV , which is a set

that constraints available (not winning) bids. The best TEMP found so far is *TEMP . sum is the revenue

of TEMP , which is the summation of prices of bids in TEMP , and *sum be the revenue of *TEMP . h is

an upper bound on how much the bids in AV can contribute. The search is invoked by calling BRANCH-

BOUND-SCHEDULING (bids).

Algorithm 1

function BRANCH-BOUND-SCHEDULING (bids) returns solution

TEMP , *TEMP , and 0* sum

RECURSIVE-BRANCHING (bids , 0)

return *TEMP

function RECURSIVE-BRANCHING (AV , sum)

if *sumsum then sumsum * , TEMPTEMP *

if AV then return

AVbid

bidpriceOfh)(

If *sumhsum , then return

bid SELECT-UNASSIGNED-BID (AV)

Journal of Integrated Design and Process Science

 bidTEMPTEMP , bidAVAV

)(bidpriceOfsumsum

if CHECK-FEASIBILITY (TEMP) returns pass

then RECURSIVE-BRANCHING (AV , sum)

 bidTEMPTEMP ,)(bidpriceOfsumsum

RECURSIVE-BRANCHING (AV , sum)

add bid to AV , return

The function CHECK-FEASIBILITY used in Algorithm 1 validates the feasibility of each node (a

set of winner bids) along the search patch. This checking process is equivalent to solving a job shop

constraint satisfaction problem. We have implemented the CHECK-FEASIBILITY function using a

constraint-directed backtrack search procedure. Usually, a constraint-directed search procedure consists

of propagators, heuristic-commitment techniques and retraction techniques. The feasibility validation

algorithm integrates Constraint-Based Analysis (a propagator, developed in Beck and Fox (1998),

Precedence Constraint Posting (a commitment heuristic, developed in Smith and Cheng (1993)), and a

chronological backtracking. Details of the algorithm can be found in Wang et al. (2009b).

It should be noted that the winner determined algorithm described above allows agents to negotiate

only over a single attribute which is price. For the single attribute negotiation, each agent needs to

submit a simple atomic bid to express the price it is willing to pay for the job to be completed within a

specific completion time interval. To accommodate the multi-attribute bidding protocol proposed in the

next section, we expand the single attribute model by allowing agents to negotiate over both price and

completion time. An agent’s valuation over these two attributes can be expressed by a set of atomic

bids connected by XOR. However, at most one atomic bid of an XOR-Bid can be included in a

provisional schedule. To handle this logic, we add a checking mechanism to the winner determination

algorithm presented above to prevent the algorithm from including more than one atomic bid from the

same XOR-Bid into a provisional schedule. The checking mechanism is implemented in the Select-

Unassigned-Bid (AV) method of Algorithm 1. When the method selects an unassigned bid, it first

checks the current schedule. If there is a bid from the same XOR-Bid has already been included, the

unassigned bid will be excluded from the selection.

4.3. The Iterative Multi-Attribute Bidding Protocol

AdSCHE is a multi-attribute auction framework, which allows the negotiation over price and a non-

price attribute: the completion time of a schedule. In addition, AdSCHE has good privacy preserving

properties. For example, unlike general combinatorial auctions, AdSCHE does not require agents’

knowledge about the resources, such as their capabilities, availabilities and configurations. Also, before

the auction starts, the auctioneer does not have to know what kinds of services that agents will require.

Figure 2 shows a generic view of the bidding and pricing process of AdSCHE. Before the bidding

starts, agents may initialize the ask prices of their processing requirements (jobs and makespan-

intervals) based on “common knowledge” about the cost of the processing requirements. Appropriate

setting-up of initial ask prices can speed up the overall bidding process and, at the same time, maintain

the solution quality. If an agent has no information about the cost of its processing requirements, it can

set the initial ask prices as zero. However, in AdSCHE, agents have the incentive to calculate the right

reserve prices for their processing requirements. For agents, it is irrational to submit any bids below

reserve prices because those bids will be rejected by the auctioneer at the bids screening stage. An

alternative way is to acquire initial ask prices from the auctioneer before the bidding starts. After

setting up the initial ask prices for the processing requirements, agents calculate the utility maximizing

bids based on the ask prices and start the bidding process. In each round of the auction, the auctioneer

first screens out illegal bids (defined in section 4.3.2). Those bids will not be considered in the

Transactions of the SDPS

following winner determination procedure. Then, the auctioneer check the termination condition

(defined in section 4.3.2). If the condition holds, the auctioneer implements the current provisional

schedule and terminates the auction. Otherwise, it uses the winner determination algorithm to compute

a new provisional schedule based on the bids collected. After winner determination, the ask prices of

processing requirements of losing bids are increased by a minimum price increment determined by the

auctioneer and these increased prices are sent out to the agents who own the processing requirements.

Upon receiving the price update, the agents recalculate the utility maximization bids and start a new

round of bidding.

Fig. 2 Overview of the bidding and pricing process in AdSCHE

4.3.1. Bidding

Using the bidding language, each agent can express its values over different completion time

intervals as an XOR-Bid. We assume the reserve prices for processing jobs within different

completion time intervals is common knowledge. For the first round of the bidding, agents use the

reserve prices as ask prices. At the beginning of round t , an agent g selects the set of completion time

intervals that maximize its utility function given the ask prices. It then generates an XOR-Bid that

represents the set of utility maximization completion time intervals. Note that all atomic bids in the

XOR-Bid equally maximize the utility function of agent g given their completion time intervals and

the associated prices. That is for any two atomic bids in the XOR-Bid at round ,

 , where is the agent’s valuation

on the completion time interval , and is the price that the agent bid on

 at round t .

Journal of Integrated Design and Process Science

Given the ask prices, the following bids are allowed for an agent:

 If the agent is notified to be included in the current provisional schedule, it replies with an empty

bid as the acknowledgement.

 If the agent is not included in the current provisional schedule, two types of bids are allowed: (1)

the agent can bid either at or greater than the ask prices; (2) the agent can also bid within the

minimum price increment, denoted by , below the ask price. This is called “ -discount” in

(Parkes, 1999), which allows agents to bid for the completion time intervals priced slightly above

their values. However, if an agent takes this discount, the auctioneer will consider the discounted

bid as the final bid from the agent for the completion time interval and the agent is forbidden from

bidding the completion time interval in future rounds.

Since agents are assumed to be rational in maximizing their utilities, they, in general, do not bid

greater than the ask price. However, if for some reasons (e.g. to reduce computation and/or

communication cost) an agent does not want to bid frequently, it can place a much higher bid (but still

under its value) than the ask price to increase the possibility that its bids will be included in the

provisional schedules for a certain number of consequent rounds.

4.3.2. Termination

After receiving bids from agents, the auctioneer screens out invalid bids, which are defined as

follows:

 Bids are not within the below the ask prices.

 Bids for makespan-intervals that have been bidden by final bids.

 Bids are below the reserve prices.

 Empty bids from agents that are not included in the provisional schedule from last round.

The auctioneer then checks the termination condition against the valid bids. In AdSCHE, the

auction terminates if all valid bids collected by the auctioneer are empty bids. That is, all agents that

bid in the last round are included in the current provisional schedule. No agent is unhappy. After the

auction terminates, the auctioneer implements the final schedule and the agents pay their bidding

prices.

4.3.3. Winner Determination and Price Update

 The auctioneer needs to compute a new provisional schedule in each round as long as the auction is

not terminated. At round , the new provisional schedule tS solves:

k
g
tk

t
g
t

t

lftSCeft

SSNg

kk

g

tbid
S

lfteftp

max

,

, ,max

where is
 is the bidding price of agent g at round for the completion time interval

 ,
g

tS is the part of tS that represents the schedule of the job from agent g at round t , and

 is the completion time of

.

In AdSCHE, prices are attached to the job processing requirements of agents. There is an ask price

for each makespan-interval that an agent may require. For the makespan-interval , of agent

g , the ask price set by the auctioneer at the end of round is
 . At the beginning of

round , if agent g does not bid on
 , the price for of agent g will not

be updated in round , that is

 . On the other hand, if

agent g bids on completion time interval in round with price
 ,

Transactions of the SDPS

the auctioneer will update the ask price for based on the result of winner determination

and whether agent g has taken a discounted bid:

 If agent g wins, the new ask price kk

g

tbidkk

g

task lfteftPlfteftp ,, 1,1, .

 If agent g loses, the new ask price kk

g

tbidkk

g

task lfteftPlfteftp ,, 1,1, .

If kk

g

taskkk

g

tbidkk

g

task lfteftplfteftplfteftp ,,, ,1,, , no matter agent g wins or loses, the

auctioneer will not update the ask price for kk lfteft , because agent g has taken a discounted bid which

the auctioneer considers as the final bid from agent g for makespan interval kk lfteft , . In this case,

agent g will not be allowed to bid on kk lfteft , in future rounds.

Fig. 3 An example of decentralized scheduling problems, in which two agents compete for the

processing of their one-operation jobs

4.3.4. An Example

This section presents a worked example of AdSCHE. As shown in Figure 3, a three hour time

window (from 8:00-11:00) of a resource is being scheduled. Agents have single-operation jobs to be

processed. An agent’s job is defined by its duration (length), its release time, its deadline, and the

prices (expressed in dollars) the agent places on the different completion times of the job. For example,

if the job of Agent#1 can be finished by 10:00, the agent is willing to pay $5; if the job is completed

anywhere between 10:00 and 11:00, the agent is willing to pay $2. To complete its job, the agent must

acquire a period of processing times no less than the length of its job, within its feasible time window

(the time period between its release time and its deadline).

Table 2 Bidding process of applying AdSCHE to an example decentralized scheduling problem

Round Ask Prices Bid Prices Allocation Auctioneer Objective

Agent-1 Agent-2 Agent-1 Agent-2

Agent-
1

Agent-
2

Revenue value.

 (8,10] (10,11] (8,9] (9,11] (8,10] (10,11] (8,9] (9,11]

 $5 $2 $6 $2 $5 $2 $6 $2

1 2 2 1 1 2 1 (8,10] 2 5

2 2 2 3 1 2 3 (8,9] 3 6

3 4 2 3 1 4 3 (8,10] 4 5

4 4 2 5 1 4 5 1 (8,9] 5 6

5
6 2 5 1 5 2 5 1 (10,11] (8,9] 7 8

Journal of Integrated Design and Process Science

For this example and other decentralized scheduling problems, we may construct an auction in

which an agent can bid time periods or their combinations within its feasible time window for

processing its jobs. By doing so, we are mapping the decentralized scheduling problem to a type of

combinatorial auction problems, for which the goods to be sold are continuous processing time periods

and no time window discretization is imposed on resources. AdSCHE is the auction framework

designed for this type of combinatorial auction problems. In Figure 3, Agent #1’s valuation can be

expressed by XOR-Bid: , where is the job of Agent #1; Agent #2’s

valuation can be expressed by XOR-Bid where is the job of Agent #2.

Assume that the resource has the reserve price of 1 dollar an hour and the price increment . The

ask prices, bid prices and allocation of each round of the auction are shown in Table 2. The process is

described as follows:

1) At round #1 the agents use the reserve prices for their job requirements as the ask prices. Agent1

bids on makespan-interval (8,10] and Agent2 bids on makespan-interval (8,9] because given the

current ask prices, these two makespan-intervals maximize agents’ utility functions. The auctioneer

includes only Agent1 into the provisional schedule because the two bids from agents cannot coexist in

a schedule and Agent1’s bid maximize auctioneer’s revenue. The auctioneer increases the ask price of

Agent2’s makespan-interval (8,9] to $3.

2) Round #2 repeat the process of round #1. In these rounds each agent only has one makespan-

interval that maximizes its utility function. So it only submits a bid at each round. However, in round

#4, both makespan-intervals (8,9] and (9,11] maximize Agent #2’s utility function, therefore, at this

round, Agent #2 submits an XOR-Bid: .
3) At round #5, Agent #2 repeats its bid because it was included in the provisional schedule in

round #4. The ask price for Agent1’s (8,10] has been increased to $6 which is $1 above its value on

(8,10] because the minimum price increment is $2. In this case Agent1 can place a bid on (8,10]at any

price from $4 to $5. However it will not be allowed to increase the price in the rounds after. As shown

in Table 2, Agent #1 bids $5 on (8,10] and the final schedule turns out to be that Agent #2 precedes

Agent #1, which is optimal.

4.4. Computational Evaluation

This section evaluates AdSCHE through computational analysis. We first introduce the metrics used

to evaluate AdSCHE’s performance.

4.4.1. Metrics

As mentioned at the beginning of this section, we evaluate the iterative bidding framework in terms

of efficiency, computation (running time), revenue and information revelation. These metrics were

developed in (Parkes, 1999) for testing the performance of iBundle, an iterative combinatorial auction

for general combinatorial auction problems. We redefine them in the context of decentralized

scheduling.

Efficiency of Scheduling, , is measured as the ratio of the value of the final schedule to the

value of the optimal schedule that maximizes total value across the agents:

 ,

where is the optimal schedule given customers’ valuations.

Running Time of Auction refers to the computation time needed to terminate the auction on a

decentralized scheduling problem instance.

Information Revelation for customer , , is measured as the sum of the final price bid by the

customer for all due dates in its valuation function, as a fraction of the sum of the true values of each

due date.

Transactions of the SDPS

 ,

The overall auction information revelation is computed as the average information revelation over

all agents. The auction often terminates before agents have revealed complete information about their

values for due dates. The information revelation metric is designed to measure the extent to which an

agent has revealed its value for each due dates to the auctioneer during the auction.

4.4.2. Comparison Results

AdSCHE is tested on a set of scheduling auction problems with multiple completion-time-interval

valuations, which are generated based on the single completion-time-interval benchmark problem set

used in Wang et al. (2009b). We take problem instances of the single completion-time-interval set and

add two more completion-time-interval valuations to each problem instance to generate a multiple

completion-time-interval set. The first completion-time-interval added represents a delay up to 20%

and the agent’s value on the delayed makespan decreases 20%. The second added represents a 20% to

40% delay and, accordingly, the agent’s value decreases 40% on the delayed makespan. For example,

if the single completion-time-interval valuation of agent g on a set of jobs can be represented as an

atomic bid, the multiple-makespan-interval valuation of the agent can be represented as

an XOR-Bid . By this way, we generated 9

groups of decentralized scheduling problem instances.

 Fig. 4 Efficiency performance of AdSCHE over 9 problem sets with bid increment

Fig. 5 Information revelation performance of AdSCHE over 9 problem sets with bid increment

4 and 2

We compare AdSCHE with a Generalized Vickery Auction (GVA) in which agents report their

complete valuations over different makespan-intervals at the beginning of the auction and the

auctioneer computes the optimal schedule for agents. In both AdSCHE and the GVA, We have used

the same constraint-based winner determination algorithm. Therefore, the comparison results presented

82

84

86

88

90

92

94

96

98

100

102

1 2 3 4 5 6 7 8 9

Problem set

E
ff

ic
ie

n
c
y
 (

%
)

AdSCHE

GVA

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9

Problem set

In
fo

rm
at

io
n

 R
ev

el
at

io
n

 (
%

)

increment=2

increment=4

Journal of Integrated Design and Process Science

in this section only reflect the difference between the iterative bidding structure (in AdSCHE) and the

one-shot bidding structure (in GVA) in the context of auction-based decentralized scheduling.

Figure 4 plots the efficiency of AdSCHE over the 9 problem sets with bid increment 4 .

Compared to GVA (100% efficiency), on average, AdSCHE can achieve more than 90% efficiency.

This efficiency level is comparable to some iterative auctions such as AUSM (Ledyard, et al., 1997)

and RAD (DeMartini et al., 1999). However, it is not as good as iBundle. Figure 5 plots the

Information Revelation performance of AdSCHE. Compared to GVA which requires 100%

Information Revelation, AdSCHE requires less than 50% at increment=2 and increment=4. Bigger

increment value requires slightly more Information Revelation. This makes sense because bigger

increments may pass some low price equilibrium point which smaller increments may find.

Fig. 6 Run time (in seconds) of GVA and AdSCHE as the problem difficulty is increased. (a)

problem sets #1, #2, and #3; (b) problem sets #4, #5, and #6; (c) problem sets #7, #8, and #9)

Figure 6 compares the run time increases between AdSCHE and GVA as the number of bids

increases from 6 to 8. We classify the problem sets into 3 groups as shown in (a), (b), and (c). All 3

groups demonstrate similar run time increasing pattern as problem difficulty (number of bids)

increases. On average, AdSCHE is more than 10 times faster than GVA with the cost of losing 6%-

10% efficiency as shown in Figure 6. We have set an 8000 seconds time limit. The computation times

of GVA for half of 8-bid instances in group (b) and all 8-bid instances in group (a) have reached the

limit. We did not test instances with more than 8 bids.

Fig. 7 A narrowcasting environment

Transactions of the SDPS

5. A Case Study

This section presents a case study regarding the application of AdSCHE to decentralized media

content scheduling in narrowcasting. Narrowcasting is a newly emerged technology which enables

companies and organizations to target audiences with an unprecedented level of customization and

timeliness through media devices such as commercial digital displays. Figure 7 shows a distributed

narrowcasting environment in which a number of displays are located in various types of places in a

community including stadiums, hospitals, shopping centers, gas stations, schools, and train stations,

etc. The displays are connected to the Narrowcasting Management System through high speed

network. Main functionalities of the management system include promotion planning, media content

scheduling and media file distribution. Customers who want to use the network to deliver messages to

their audiences are also connected to the management System.

Table 3 The media content scheduling problem configuration

Customer Content Location
 Repetition

limit
Earliest

starting Time Due Date
Length (in
minutes) Value

A

1
1

4 8:00 AM 8:30 AM 8 $24

2
5

2 8:00 AM
8:30 AM

4 $34

3
4

2 8:00 AM
8:30 AM

6 $44

4
3

2 8:00 AM
8:30 AM

14 $54

5
2

2 8:00 AM
8:30 AM

4 $24

B

1
5

1 8:10 AM
8:30 AM

8 $50

2
2

1 8:10 AM
8:30 AM

6 $50

3
1

1 8:10 AM
8:30 AM

7 $50

4
3

1 8:10 AM
8:30 AM

15 $50

5
4

1 8:10 AM
8:30 AM

10 $50

C

1
4

1 8:00 AM 8:35 AM 5 $34

2
1

1 8:00 AM
8:35 AM

4 $34

3
2

1 8:00 AM
8:35 AM

9 $34

4
3

1 8:00 AM
8:35 AM

9 $34

5
5

1 8:00 AM
8:35 AM

5 $34

D

1
1

1 8:00 AM
8:35 AM

6 $52

2
5

1 8:00 AM
8:35 AM

11 $52

3
2

1 8:00 AM
8:35 AM

9 $52

4
3

1 8:00 AM
8:35 AM

15 $52

5
4

1 8:00 AM
8:35 AM

3 $52

We demonstrate the applicability of AdSCHE to decentralized media content scheduling problems

using a multiple display problem setting. Consider a decentralized content scheduling problem with 4

customers who need promotion service at 5 different locations for a morning advertising time window

from 8:00AM to 8:45AM. We assume that one location has a single display to be scheduled. Each

customer has a specific content file for a location. A content file has an earliest starting time, after

which the content can be displayed, and a due date, which is the preferred time before which the

displaying of the content is finished. The customer has a fixed value on a piece of content as long as it

is displayed between its earliest starting time and its due date. The customer’s value on a piece content

decreases 20% if the finishing time of displaying delays by 20% according to the due date. The value

Journal of Integrated Design and Process Science

will decreases 40% if the finishing time delays 40%. The customer’s value reaches zero for any delays

greater than 40% or any finishing times later than 8:45AM. A piece of content can be displayed

multiple times within the advertising time window. However, the customer has a limit on how many

times she wants the content to be displayed. There are no complements or substitutes in terms of a

customer’s valuation on her different pieces of media content and copies of the same piece of media

content. The customer wants her contents to be displayed as much as possible as long as the cost of

displaying is below her valuation. Table 3 shows the detailed configuration of this problem. The value

column refers to the value that a customer has on the displaying of a piece of content between the

earliest starting time and due date. The objective is to compute a promotion schedule over five displays

such that the customers’ location, earliest starting time, and deadline requirements are satisfied, the

sum of customers’ promotion values is maximized.

The bid structure in this case study is more complicated than that in the single display example in

Section 4.3.4. Since customers have multiple pieces of content to be displayed and the customer’s

value varies based on the finishing times of displaying, they need to construct three bids for each piece

of content to express the valuations on meeting due date, 20% delay, and 40% delay respectively. In

addition, if a piece of content may be displayed multiple times, bids are also need to be constructed to

represent the multiple copies of the content.

All bids from a customer need to be joined by OR and XOR connectives. For example, the

valuation of customer A on content 2 can be represented using the following bid, in which the

valuations for two copies of content A-2 are joined by an OR connective:

4.20$,42:8,00:8,5,2

2.27$,36:8,00:8,5,2

34$,30:8,00:8,5,2

4.20$,42:8,00:8,5,2

2.27$,36:8,00:8,5,2

34$,30:8,00:8,5,2

AMAMlocationA

XORAMAMlocationA

XORAMAMlocationA

OR

AMAMlocationA

XORAMAMlocationA

XORAMAMlocationA

A complete valuation of customer A consists of bids for all 5 pieces of content joined by OR

connectives.

Figure 8 shows the promotion schedule generated by AdSCHE. In the schedule, content A-1

(content 1 from customer A), A-2, A-3, A-5 are displayed two times. B-4 losses in the bidding,

therefore, it is not included in the schedule. The minimum bid increment is set to be $4 and the auction

terminates at round 31 with an overall value of $929.

Fig. 8 Promotion schedule for the multiple display media content scheduling case

We have demonstrated how AdSCHE can be applied to the decentralized media content scheduling

model. The advantage of applying AdSCHE to this domain is that the complicated customer content

displaying requirements, such as location, earliest starting time, latest finishing time, and times to be

displayed, can be concisely captured by the requirement based bidding language. Also, the language

allows customers to express different promotion values based on the completion times of content

Transactions of the SDPS

displaying. However, the media content scheduling problem is less-constrained compared to other

scheduling problems, such as decentralized job shop scheduling, since there are no precedence

constraints between content copies. For the less-constrained problems, constraint-based winner

determination may not be effective
4
. For large scale problems, the lack of efficiency in winner

determination may lead to unpractical solving times. In future research, we will expand AdSCHE to

meet the requirements raised from large industry scale decentralized media content scheduling

problems. In particular, winner determination algorithms designed toward the media content

scheduling formulation and approximate winner determination algorithms will be considered.

6. Conclusion and future work

In many combinatorial auction problems, the items to be sold are processing times of resources. As

these problems primarily concern the allocation of jobs on resources overtime in decentralized

environments, they fall into the category of decentralized scheduling problems. The proposed AdSCHE

framework promises to outperform general combinatorial auctions on decentralized scheduling

problems by utilizing scheduling domain specific bidding languages and winner determination

algorithms. Our analysis and experiments show that AdSCHE posses good computational properties in

terms of agents’ valuation, communication and winner determination. We outline three directions that

can be pursued in terms of expanding the current work from the perspective of improving its

applicability to real world scale applications.

First, we will continue improving the efficiency of the constraint-based winner determination. The

actual algorithms developed in the thesis have demonstrated good performance in auction-based

decentralized scheduling. However, it can be further improved along several directions. For example,

more sophisticated branching and bids ordering heuristics can be introduced. In addition, more

heuristics from classical scheduling theory can be embedded to boost the performance of the approach

on well studied scheduling problem models. We will also explore the possibility of introducing

approximate and heuristic algorithms for the winner determination problem. While these algorithms

can come with different flavors, those that preserve incentive compatibility are worth of investigation.

Another important future direction is to expand the current AdSCHE model to support online

decentralized scheduling environments. In many decentralized scheduling environments, for example,

supply chain or service industries, customers’ requests for processing a set of jobs may be received

over time. Furthermore, customers may need the response (e.g. price and due date quotations) to their

requests immediately or within a short period of time. In these cases, it is not practical to synchronize

the customers’ requirements and ask all customers to start the bidding process at a predefined time

point. By allowing customers to submit their requests at any time, we have introduced the dynamic

version of decentralized scheduling problems. Developing scheduling systems for dynamic scheduling

problems presents new challenges, that is, the system needs to repair the schedule or redo the

scheduling whenever a dynamic event makes the original scheduling infeasible. For AdSCHE, the

iterative bidding procedure adopted has provided a good potential in accommodating dynamic events.

Since bidding proceeds in rounds, a newly arriving agent may pick a round in the process and join in

the bidding. One avenue worth exploring is to build the support for dynamic scheduling within the

iterative bidding structure.

At the current stage, we have considered the situation where agents participate in one auction at a

time. However, in some scheduling applications, agents are typically interested in obtaining multiple

schedulable resources from several markets. To complete the job, an agent needs to secure all the

resources required. The strong complementarities among resources induced by such preferences pose

strategic problems for bidding agents. While each market can be constructed using an AdSCHE

4
 It is observed in the computational study for constraint-based winner determination that problems with tight

constraints tend to be solved quicker by the constraint-based winner determination algorithm (Wang et al., 2009).

Journal of Integrated Design and Process Science

system, exploring agents’ bidding policies, which allows coordination across separate auction-based

scheduling markets, would be another step toward practical approaches to real world decentralized

scheduling applications

7. References

Beck, J.C. and Fox, M.S. “A Generic Framework for Constraint-Directed Search and Scheduling,” AI

Magazine, vol. 19, No. 4, pp. 101-130, 1998.

Boutilier, C., Goldszmidt, M., and Sabata, B., "Sequential auctions for the allocation of resources with

complementarities," in Proc. 16th International Joint Conference on Artificial Intelligence (IJCAI-99),

Stockholm, 1999, pp. 527-534.

Boutilier C. and Hoos, H. H., "Bidding languages for combinatorial auctions," in Proc. 17th International

Joint Conference on Artificial Intelligence, Seattle, Washington, 2001, pp. 1211–1217

Brewer, P. J. and Plott, C. R., "A binary conflict ascending price (BICAP) mechanism for the decentralized

allocation of the right to use railroad tracks," International Journal of Industrial Organization, vol. 14, pp. 857-

886, 1996

Buyya, R., Abramson, D., Giddy, J., and Stockinger, H., “Economic models for resource management and

scheduling in Grid computing,” Concurrency and Computation: Practice and Experience, vol. 14, pp. 1507-1542,

2002.

DeMartini, C., Kwasnica, A. M., Ledyard, J. O., and Porter, D., “A new and improved design for multi-object

iterative auctions,” Technical report SSWP 1054, CalTech, March 1999.

de Vries, S. and Vohra, R.V., “Combinatorial Auctions: Survey,” INFORMS journal on Computing, vol.15,

no.3, pp.284-309, 2003.

Engelbrecht-Wiggans, R. and Weber, R. J., "A sequential auction involving asymmetrically-informed

bidders," International Journal of Game Theory, vol. 12, pp. 123-127, 1983.

Garey, M.R. and Johnson, D. S., Computers and Intractability, a Guide to the Theory of NP-Completeness,

W. H. Freeman Company, 1979.

Kutanoglu, E. and Wu, S. D., "On combinatorial auction and Lagrangean relaxation for distributed resource

scheduling," IIE Transactions, vol. 31, pp. 813-826, 1999.

Kutanoglu, E. and Wu, S. D., "Incentive compatible, collaborative production scheduling with simple

communication among distributed agents," International Journal of Production Research, vol. 44, pp. 421-446,

2006.

Ledyard, J.O., Porter, D., and Rangel, A., “Experiments testing multiobject allocation mechanisms,” Journal

of Economic and Management Strategy, vol. 6, pp. 639-675, 1997.

Mackie-Mason, J. K., Osepayshvili, A., Reeves, D. M., and Wellman, M. P., "Price prediction strategies for

market-based scheduling," in Proc. 14th International Conference on Automated Planning and Scheduling,

Whistler, BC, 2004.

McAfee, R. P. and McMillan, J., "Analyzing the airwaves auction," The Journal of Economic Perspectives,

vol. 10, pp. 159-175, 1996.

Milgrom, P., "Putting auction theory to work: the simultaneous ascending auction," Journal of Political

Economy, vol. 108, pp. 245-272, 2000.

Parkes, D. C., “iBundle: An Efficient Ascending Price Bundle Auction,”

In Proc. 1st ACM Conf. on Electronic Commerce (EC-99), pp. 148-157, 1999.

Parkes, D. C. and Ungar, L. H., "Iterative combinatorial auctions: theory and practice," in Proc. 17th National

Conference on Artificial Intelligence, Austin, TX. , 2000, pp. 74–81.

Parkes, D. C. and Ungar, L. H., "An auction-based method for decentralized train scheduling," in Proc. 5th

International Conference on Autonomous Agents, Montreal, Quebec, 2001, pp. 43-50.

Pinedo, M., Scheduling: Theory, Algorithms, and Systems: Prentice Hall, 2002.

Transactions of the SDPS

Rassenti, S. J., Smith V. L., and Bulfin, R. L., “A Combinatorial Auction Mechanism for Airport Time Slot

Allocation,” Bell Journal of Economics, vol. 13, no. 2, pp. 402-417, 1982.

Reeves, D. M., Wellman, M. P., MacKie-Mason, J. K., and Osepayshvili, A., "Exploring bidding strategies

for market-based scheduling," Decision Support Systems, vol. 39, pp. 67-85, 2005.

Sandholm, T., "Distributed rational decision making," in Multiagent Systems: A Modern Approach to

Distributed Artificial Intelligence, Cambridge, MA: MIT Press, 1999.

Sandholm, T., "Algorithm for optimal winner determination in combinatorial auctions," Artificial

Intelligence, vol. 135, pp. 1-54, 2002.

Sandholm, T., Suri, S., Gilpin, A., and Levine, D., "CABOB: a fast optimal algorithm for winner

determination in combinatorial auctions," Management Science, vol. 51, pp. 374-390, 2005.

Shen, W., "Distributed manufacturing scheduling using intelligent agents," IEEE intelligent systems, pp. 88-

94, 2002.

Shen, W., Wang, L., and Qi, H., "Agent-based distributed manufacturing process planning and scheduling: a

state-of-the-art survey," IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and

Reviews, vol. 36, pp. 563-577, 2006.

Smith, A., The wealth of nations, Cannan edition (Modern Library, New York), 1937.

Smith, R. G., "The contract net protocol: High-level communication and control in a distributed problem

solver," IEEE Transactions on computers, vol. 100, pp. 1104-1113, 1980.

Smith, S.F. and Cheng, C., “Slack-Based Heuristics for Constraint Satisfaction Scheduling,” In Proceedings

of 11th National Conference on Artificial Intelligence. Washington D.C., July 1993.

Smith, S.F. and Becker, M.A., "An Ontology for Constructing Scheduling Systems", Working Notes of 1997

AAAI Symposium on Ontological Engineering, Stanford, CA, March. AAAI Press

Walsh, W. E. and Wellman, M. P., "Efficiency and equilibrium in task allocation economies with hierarchical

dependencies," in Proc. 6th International Joint Conference on Artificial Intelligence, Stockholm, 1999, pp. 520-

526.

Wang, C., Ghenniwa, H., and Shen, W., "Bidding languages for auction-based distributed scheduling," in

Proc. 2009 IEEE International Conference on Systems, Man, and Cybernetics San Antonio, Texas, 2009a, pp.

4518-4523.

Wang, C., Ghenniwa, H. H., and Shen, W. Constraint-based winner determination for auction-based

scheduling. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans 39(3), 609-618,

2009b.

Wellman, M. P., "A computational market model for distributed configuration design," AI EDAM, vol. 9, pp.

125-133, 1995.

Wellman, M. P., W. E. Walsh, P. R. Wurman, and J. K. MacKie-Mason, “Auction Protocols for Decentralized

Scheduling”, Games and Economic Behavior, vol.35, no.1-2, pp.271-303, 2001.

8. Authors’ Biographies

Dr. Chun Wang received the B.Eng. degree from Huazhong University of Science and

Technology, Wuhan, China, in 1990, and the M.E.Sc. and Ph.D. degrees in computer engineering from

The University of Western Ontario, in 2004 and 2007, respectively. He is currently an Assistant

Professor with Concordia Institute for Information Systems Engineering, Concordia University,

Montreal, QC, Canada. He has many years of experience in the software industry. From 1990 to 2000,

he was a Software Engineer and a Project Manager with the China National Petroleum Company,

Liaoning China. His research focuses on distributed systems, electronic supply chain management,

services engineering, algorithmic mechanism design, and multiagent systems.

