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Decentralized scheduling is one of the newly emerged avenues in scheduling research. It is 

concerned with allocating resources to alternative possible uses over time, where competing uses 

are represented by autonomous agents. Compared with classical scheduling models, decentralized 

scheduling is characterized with the distribution of scheduling knowledge and control, which 

introduces new levels of complexities, namely the coordination complexity due to the interaction 

problems among agents and the mechanism design complexity due to the self-interested nature of 

agents. These complexities intertwine and need to be addressed concurrently. This paper presents 

an auction-based framework which tackles coordination and mechanism design complexities 

through integrating an iterative bidding protocol, a requirement-based bidding language, and a 

constraint-based winner determination approach. Without imposing a time window discretization 

on resources the requirement-based bidding language allows bidders to bid for the processing of a 

set of jobs with constraints. Prices can be attached to quality attributes of schedules. The winner 

determination algorithm uses a depth first branch and bound search. A constraint directed 

scheduling procedure is used at each node to verify the feasibility of the allocation. The bidding 

procedure is implemented by an ascending auction protocol. Experimental results show that the 

proposed auction framework exhibits improved computational properties compared with the 

general combinatorial auctions. A case study of applying the framework to decentralized media 

content scheduling in narrowcasting is also presented.  

Keywords: decentralized scheduling, combinatorial auctions, iterative bidding, bidding languages, 

winner determination 

1. Introduction 

Decentralized scheduling is one of the newly emerged avenues in scheduling research. Compared 

with classical scheduling problem models, decentralized scheduling problems differentiate themselves 

in the distribution of both scheduling knowledge and control. In a decentralized scheduling problem, 

independent entities, e.g., individuals, enterprises, and computational devices, have jobs that need to be 

completed during specific time windows. They compete with each other for the resources to schedule 

their own jobs according to their respective objectives. Scheduling related information such as jobs, 

resources, constraints and objectives are distributed among individual entities. An entity is motivated 

by its own objectives and not controlled by other entities or a system wide authority. Many scheduling 

problems are inherently decentralized, such as those in supply chain management, production 

management, network-based information-processing environments, transportation and distribution 

settings, and many other types of service industries. In recent years, automated decentralized 

scheduling systems attracted more attention as a result of the significant growth of eMarkets which 

have presented tremendous potential in changing the way companies buy and sell goods, integrate their 

supply chains, and collaborate with their business partners. In a considerable portion of eMarket 

applications, the goods to be sold are processing times of resources, e.g. landing timeslots of airport 
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runways (Rassenti et al., 1982), machine processing times of a factory (Wellman et al., 2001), 

computation and network accessing times of internet resources (Buyya, 2002), and the right to use 

railroad tracks (Brewer, 1996).  For this type of eMarket applications, decentralized scheduling plays 

an essential role in the design and implementation of software trading systems which facilitate the 

commercial activities among market participants.  

The computational complexity involved in solving scheduling problems has been the central theme 

of the classical scheduling theory. Due to the NP-hard nature of scheduling models, the computation 

demanded for solving many problems at practical sizes is prohibitive. In addition, decentralized 

scheduling presents two other challenges attributable to the distribution of scheduling knowledge and 

the distribution of control. In decentralized scheduling, scheduling related information is located in 

entities which are distributed across the system. These entities are independent and self-interested
1
. In 

other words, no entity has control over other entities. Each entity has the authority to decide how to 

deploy its resources in service of its objectives. To recognize the independent and autonomous nature 

of the entities, we treat them as agents
2
 in our decentralized scheduling models.  

By modelling the processing times available on resources as goods to be sold, decentralized 

scheduling problems can be mapped to a type of combinatorial allocation problems to which 

combinatorial auctions have been proposed as solution approaches
3
. However, the mapping is not 

straightforward since the processing times in decentralized scheduling problems and the goods in 

combinatorial allocation problems are essentially different in terms of divisibility. The processing 

times are divisible; however, the goods are distinct items, thus, indivisible. One possible mapping 

approach is to impose a discretization on the time windows of resources to be scheduled and treat the 

time slots generated by the discretization as distinct items (Kutanoglu and Wu, 2006; Wellman et al., 

2001). However, this discretization approach can generate a large number of items if the time windows 

in question are not small.  For example, a one week time window on 10 resources can be discretized 

into more than 100 thousand time slots if the time accuracy we need is in minutes (which is a practical 

requirement in many application domains). Generally speaking, in combinatorial auctions the number 

of possible bids is exponential in the number of the items to be sold. A large number of items can 

inflict heavy computational burdens on software agents in terms of bids evaluation, on the auctioneer in 

terms of winner determination, and on the system in terms of communication. 

The objective of this research is to design solution approaches to scheduling problems in 

decentralized environments. In particular, we propose an integrated framework which consists of a 

bidding language, an iterative bidding framework, and a constraint-based winner auction-based model.  

The framework is designed to tackle the high computational complexities in terms of bids valuation, 

communication, and winner determination. Our approach is to explore the interface between 

computational mechanism design and classical scheduling theory in the context of auction-based 

decentralized scheduling and enrich both fields by (1) extending classical centralized scheduling 

models to decentralized models; (2) embedding scheduling specific problem solving structures and 

heuristics in combinatorial auctions in order that computational challenges in auction-based 

                                                      
1
 Self-interest is an assumption of classical economic theory meaning that individuals are motivated in their 

actions by self interest. In The Wealth of Nations (Smith, 1937), Adam Smith makes the claim that, within the 

system of capitalism, an individual acting for his own good tends also to promote the good of his community. He 

attributed this principle to a social mechanism that he called “the invisible hand”.   
2
 In this thesis, agents are referred in the context of distributed system engineering. Specifically, agents are 

defined as intelligent, rational, and autonomous software artifacts, which are able to cooperate with each other, 

reason, and act appropriately with respect to their environment. They may represent individuals, enterprises, or 

computational resources in decentralized scheduling environments.  
3
 A combinatorial allocation problem is a resource allocation problem, in which a non-empty set of items are to 

be allocated across a set of agents. Agents are assumed to value bundles of items. This problem has been studied 

in the combinatorial auction literature from various perspectives (de Vries and Vohra, 2003). 
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decentralized scheduling can be addressed effectively. The rest of the paper is structured as follows. 

Section 2 reviews related work in the literature. Section 3 defines a decentralized scheduling problem 

model: the scheduling auction. Section 4 describes the auction-based decentralized scheduling 

(AdSCHE) framework. Computational performance of AdSCHE is also evaluated. In Section 5, we 

present a case study of applying AdSCHE to decentralized media content scheduling in the 

narrowcasting environment. Section 6 concludes the paper and discusses future research directions.  

2. Literature Review 

Scheduling can be seen as a class of resource allocation problems in which resources are allocated 

to tasks over the time dimension. Many economic-based resource allocation models have been 

studied in the literature.  While giving a comprehensive review of these models is beyond the scope of 

this paper, we summarize four models which are of importance to decentralized scheduling. In 

economics, the concept of a set of interrelated goods in balance is called general equilibrium. General 

equilibrium theory provides a distributed method for efficiently allocating goods and resources among 

agents based on market prices. In applying this general equilibrium based mechanism to decentralized 

scheduling, the goods in the markets need to be specified by imposing a discretization on the 

continuous timeline to be scheduled on the resources. These goods are discrete ones, which violate the 

infinite divisibility of goods condition of general equilibrium theory. Markets with discrete goods and 

complementary preferences of agents can lack equilibria (Walsh and Wellman, 1999). The 

performance of general equilibrium based market mechanisms on decentralized scheduling is not 

guaranteed.  

Sequential and simultaneous auctions price bundles as the sum price of the individual items. 

However, they do not allow bidders to bid on bundles of items. Sequential auctions suppose that the set 

of items are auctioned in sequence. Bidders bid for items in a specific, known order, and can choose 

how much (and whether) to bid for an item depending on past successes, failures, prices, and so on. 

Sequential auctions are particularly useful in situations where setting up combinatorial or simultaneous 

auctions are infeasible. Simultaneous auctions sell multiple items in separate markets simultaneously. 

Bidders have to interact with simultaneous but distinct markets in order to obtain a combination of 

items sufficient to accomplish their task. Real-world markets quite typically operate separately and 

concurrently despite significant interactions in preferences. A typical example is the series of FCC 

spectrum auctions (McAfee and McMillan, 1996). In Parkes and Ungar (2000), simultaneous auctions 

are designed for decentralized train scheduling problems. A review of the uses of economic theory in 

simultaneous auction design can be found in Milgrom (2000). Sequential and simultaneous auctions 

tackle the complementarities over resources in the same spirit of general equilibrium theory. These 

auctions fail when there are no prices that support an efficient solution (the existence problem) and also 

when agents bid cautiously to avoid purchasing an incomplete bundle (the exposure problem). 

However, given that these auctions are more practical in terms of computation, they are two important 

models worthy of further study.  

Combinatorial auctions (CAs) allow bidders to place bids on bundles of items. It addresses 

complementary preference issue explicitly. However, the computation required for solving hard 

valuation problems and winner determination problems can be prohibitive. In general, CAs are likely to 

be practical for smaller size problems. The computational complexities of CAs have been studied by 

various researchers (de Vries and Vohra, 2003). Some sophisticated algorithms have produced 

promising results (Sandholm, 2002; Sandholm et al., 2005). In terms of applying CAs to scheduling, if 

general bundle languages, such as     and     (Boutilier and Hoos, 2001) are used, the timeline of the 

firm’s production resources needs to be discretized into small time units. This timeline discretization 

usually results in a large amount of items to be sold in the auction, which leads to bigger size problems.  

Applying CAs to a big size scheduling problem can inflict heavy computation burdens on both the 
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customer and the firm side. Another limitation with general CAs is the so called “lying auctioneer” 

problem (Sandholm, 1999), which partially explains why Vickery auction is not widely used in 

practice, even though it has been proposed since 1960’s.  

Table 1  Summary of the key characteristics of the economic models 

Economic models Key Characteristics Exemplary References 

General 

equilibrium 

mechanisms 

Solve resource allocation or scheduling 

problems by constructing computational 

markets based on general equilibrium theory.  

Ygge and Akkemans (1996) 

Walsh and Wellman (1999) 

Wellman (1995) 

Sequential and 

simultaneous 

auctions 

Do not allow bids on bundles of items. 

Sequential auctions sell multiple items in 

sequence. Simultaneous auctions sell multiple 

items in separate markets simultaneously. 

Boutilier et al. (1999) 

Engelbrecht and Weber (1983) 

McAfee and McMillan (1996) 

Reeves et al. (2005) 

Parkes and Ungar (2001) 

Combinatorial 

auctions (CAs) 

Allow bidders to submit valuations on bundles 

of items.  

Kutanoglu and Wu (2006) 

de Vries and Vohra (2003) 

Sandholm et al. (2005) 

Sandholm (2002) 

Iterative bundle 

auctions 

Allow bidders to submit multiple bids during 

an auction and provides information feedback 

to support adaptive and focused eliciation.   

Parkes and Ungar (2000) 

Bikhchandani and Ostroy (2006) 

Kutanoglu and Wu (1999) 

Wellman et al. (2001) 

Iterative bundle auctions are iterative implementations of CAs. This class of auction has practical 

significance because it addresses the computational and informational complexities of CAs by allowing 

bidders to reveal their preference information only as necessary as the auction proceeds, and bidders 

are not required to submit (and compute) complete and exact information about their private 

valuations. With careful design of the structure and components, iterative bundle auctions have the 

potential of significantly reducing computational costs in CAs. In addition, iterative auctions specially 

designed for scheduling problems have also been proposed in the literature. In Kutanoglu and Wu 

(1999), iterative auctions are applied to the job shop scheduling problem. The focus in Kutanoglu and 

Wu (1999) is to investigate the links between combinatorial auctions and Lagrangean relaxation, and to 

design auctions based on the Lagrangean based decomposition. In Wellman et al. (2001), the properties 

of several iterative auction protocols are investigated in the context of decentralized scheduling. In 

Mackie-Mason et al. (2004) and Reeves et al. (2005) price prediction and bidding strategies for 

simultaneous auctions are studied in the setting of market-based scheduling. The proposed framework 

in this paper is an iterative bundle auction specially designed for scheduling problems. In many cases, 

iterative auctions present better computational and privacy properties than those of CAs. In addition, 

iterative auctions have the potential of accommodating dynamic events, which is required in many real-

world scheduling applications. Compared with existing iterative bundle auctions, the novelty of our 

design is that it uses a requirement-based bidding language to represent scheduling domain specific due 

date, pricing, and job requirements. Unlike general iterative auctions which use bundle languages, the 

requirement-based language avoids imposing timeline discretization, which causes a large amount of 

items to be sold in the auction; the adoption of this language also enables the design of more efficient 

winner determination algorithms which take advantage of the domain specific information to improve 

the search efficiency. Our previous study (Wang et al., 2009a) has shown that, in auction-based 

decentralized scheduling, requirement-based languages result in more efficient winner determination 

models than bundle languages do. The key characteristics of the four economic models are summarized 

in Table 1.   

In agent-based manufacturing control literature, the contract net (Smith, 1980) and its later variants 

have been applied to scheduling as a class of distributed decision making protocols. Unlike auctions, 
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which usually require a mediator, contract nets are purely distributed models, in which any agent can 

act as a manager and subcontract tasks to other agents. Most of the agent-based control systems were 

designed for the coordination of production processes within the boundary of an enterprise. References 

and reviews of this line of research can be found in Shen et al. (2006). 

3. The Scheduling Auction  

In this section, we present a scheduling auction model which extends the factory scheduling model 

described in Wellman et al. (2001). The scheduling auction is a typical decentralized job shop 

scheduling setting. We use this model as the base environment for evaluating the proposed AdSCHE 

framework. The scheduling auction consists of a set of agents. Each agent   has a set of jobs    to be 

processed. Each job      requires the processing of a sequence of operations              . An 

operation      has a specified processing time     , and its execution requires the exclusive use of a 

designated resource for the duration of its processing. Each job      is constrained by a release time 

   by which the job is available for processing, and a deadline    by which the job must be completed. 

For a feasible schedule with completion time   ,          , the agent obtains a value         . 

For any completion time outside        ,          .        is determined by the agent’s internal 

mechanism which is language independent. We assume that, for an agent,        is given for any   . 

There are precedence constraints among operations of a job, but there are no precedence constraints 

among jobs. An allocation of processing time to jobs forms a schedule for agent  , denoted   . An 

agent’s valuation over jobs in    is additive, that is                   
. According to the additive 

valuation, as long as a schedule completes one job within        , its value to the agent is positive. The 

objective of the auction is to maximize social welfare, the sum of        across all agents. 

 

 
Figure 1 shows an example of the scheduling auction with three resources            controlled 

by the auctioneer. Agent A has job1                 and job 2             to be processed. Agent B 

has job 3                  and job 4             to be processed. Arrows with solid lines represent the 

precedence constraints between operations; arrows with dotted line link operations to their designated 

processing resources. The scheduling auction can be an abstract model of various scheduling settings. 

In a manufacturing firm, for example, each sales agent may have a set of jobs to be processed. They 

may “compete” with each other for the limited processing resources to satisfy their customers’ 

requirements. The auction can also be seen as a general model of some agent-based scheduling 

environments described in the literature, in which an agent represents only one job (Shen, 2002).  

Fig. 1 Example of the Scheduling Auction Model 
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4. The AdSCHE 

In this section, we propose AdSCHE as a solution framework for auction-based decentralized 

scheduling. AdSCHE is a type of ascending combinatorial auctions. Comparing to general iterative 

auctions in literature, it uses the requirement-based bidding languages and the constraint-based winner 

determination, which are specially designed for decentralized scheduling problems. AdSCHE contains 

three major components, requirement-based bidding languages, constraint-based winner determination 

algorithms, and an iterative bidding procedure. The requirement-based bidding languages allow an 

agent’s bid to be expressed by a requirement of processing a set of jobs with constraints, which avoid 

the use of time window discretization approach. The winner determination algorithm is designed for 

solving the winner determination problems formulated using the bids expressed in the requirement-

based languages. The iterative bidding procedure reduces agents’ information revelation and adds the 

potential of accommodating dynamic changes during the auction process. In the following, we describe 

the detailed design of the three components. 

4.1. The Requirement-Based Bidding Language  

In the scheduling auction, an agent’s valuation on a schedule depends on the extent to which the 

schedule satisfies its performance requirement. Ideally, a bidding language should provide the 

expressiveness which allows agents to explicitly attach their valuations to performance requirements. 

However,     and     (Boutilier and Hoos, 2001) do not provide such expressiveness since they only 

allow an item or a bundle of items in their atomic propositions. We present a requirement-based 

bidding language, namely   , to address this limitation of general bidding languages in the domain of 

scheduling.  

As in     and    , the basic structure of    is an atomic proposition.     atomic proposition (or bid) 

is more expressive in terms of representing scheduling problems. It consists of a description of the job 

to be completed, a performance requirement and the price that the agent is willing to pay given the 

requirement is satisfied. The performance requirement is defined by a Measure and its Level. Formally, 

an atomic proposition can be represented by a 4-tuple                          . 

Job specifies a sequence of operations and their required processing time on resources. In addition, the 

release time, deadline of the job and other processing constraints are also specified. For many 

scheduling models, existing general scheduling problem description languages, such as the one 

proposed in Smith and Becker (1997) can be used to describe the job specification. Since we focus on 

resource allocation in this paper, in our scheduling auction model a job is described as a set of resource 

and processing time pairs. For example, job 3 in Figure 1 can be presented 

as                                         , which means it needs to be processed by   ,    

and    in sequence within the time window        ,  and the processing times are 23, 15 and 18.  

Measure is a criterion based on which the quality of a schedule is evaluated. A schedule can be 

evaluated by many types of scheduling criteria (Pinedo, 2002). In our scheduling auction, we use the 

completion time of a job as the measure.  

Level is the range achieved by a schedule in terms of the criterion specified in the Measure. For 

example, if the Measure is completion time and Level is        , the semantic interpretation of the 

performance requirement is that the job is to be completed after time 20 and before 40. 

Price is the amount of money that the agent is willing to pay given that the schedule of the jobs 

satisfies certain level of performance measure. For example, the atomic proposition 
                              is interpreted as the agent is willing to pay $100 if the completion 

time of the job is within        . In direct revelation mechanisms, such as VCG, the price is agent’s 

value.   

By connecting    atomic bids using XOR, we can express an agent’s values on different levels of 
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the performance measure. For example, we can use the following compound bid  
                                                                    to express the valuation: 

If the job is completed between         , the agent is willing to pay    ; if completed within 

         , the price is reduced to      . Finally, since the agent has additive valuations over jobs, it 

can express them by connecting the XOR bids, each for a job, using the logical connector   . In   , 

   cannot be used to connect atomic bids from one job because a job can only be scheduled once. 

Compared with general languages, the proposed language allows agents to attach their valuations 

directly to the performance requirement of a schedule. By avoiding expressing valuations on a large 

number of bundles, agents’ valuation and communication complexities are reduced accordingly. The 

proposed language also results in efficient winner determination models which improve problem-

solving speed and scalability. A more detailed analysis of the properties of    can be found in Wang et 

al. (2009a). 

4.2. Constraint-Based Winner Determination  

We design a branch and bound algorithm for computing the awarded bids from agents. A branch 

bound algorithm for winner determination problems can branch on items (Sandholm, 2002) or bids 

(Sandholm, 2005). Since distinct items are not modeled in AdSCHE, we propose an algorithmic 

framework which branches on bids. Branch-on-bids starts with an empty temporary solution and 

gradually adds bids to it along the search path. To detect the unfeasible branches at early stages, 

feasibility of the temporary solution needs to be checked when a new bid is added in at each node. For 

the combinatorial auctions with distinct items, feasibility checking is easy since as long as any two 

winning bids do not share an item, the solution is feasible. However, since   is used in AdSCHE, 

validating the feasibility of a solution is equal to answering the question: given a collection of jobs 

belong to different agents does a schedule exist that allocates the jobs on the resources, such that all 

constraints are satisfied? This decision problem is actually a job shop Constraint Satisfaction Problem 

which is known to be NP-complete (Garey and Johnson, 1979). For this problem, we propose a branch-

on-bids algorithm embedded with constraint-directed feasibility validation for winner determination in 

auction-based decentralized scheduling using requirement-based bidding languages.  

The actual algorithm designed is a depth-first tree search. The search starts with an empty temporal 

schedule, calledTEMP . Along the path TEMP is expended by adding more bids form AV , which is a set 

that constraints available (not winning) bids.  The best TEMP found so far is *TEMP . sum is the revenue 

of TEMP , which is the summation of prices of bids in TEMP , and *sum be the revenue of *TEMP . h is 

an upper bound on how much the bids in AV can contribute. The search is invoked by calling BRANCH-

BOUND-SCHEDULING (bids). 

Algorithm 1 

function BRANCH-BOUND-SCHEDULING ( bids) returns solution 

TEMP , *TEMP , and 0* sum  

RECURSIVE-BRANCHING ( bids , 0 ) 

return *TEMP  

function RECURSIVE-BRANCHING ( AV , sum )  

if *sumsum   then sumsum * , TEMPTEMP *  

if AV  then return 






AVbid

bidpriceOfh )(  

If  *sumhsum  , then return 

bid SELECT-UNASSIGNED-BID ( AV ) 
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 bidTEMPTEMP   ,  bidAVAV   

)(bidpriceOfsumsum   

if  CHECK-FEASIBILITY ( TEMP )  returns pass 

then RECURSIVE-BRANCHING ( AV , sum ) 

 bidTEMPTEMP  , )(bidpriceOfsumsum   

RECURSIVE-BRANCHING ( AV , sum ) 

add bid to AV ,  return 

The function CHECK-FEASIBILITY used in Algorithm 1 validates the feasibility of each node (a 

set of winner bids) along the search patch. This checking process is equivalent to solving a job shop 

constraint satisfaction problem. We have implemented the CHECK-FEASIBILITY function using a 

constraint-directed backtrack search procedure. Usually, a constraint-directed search procedure consists 

of propagators, heuristic-commitment techniques and retraction techniques. The feasibility validation 

algorithm integrates Constraint-Based Analysis (a propagator, developed in Beck and Fox (1998), 

Precedence Constraint Posting (a commitment heuristic, developed in Smith and Cheng (1993)), and a 

chronological backtracking. Details of the algorithm can be found in Wang et al. (2009b). 

It should be noted that the winner determined algorithm described above allows agents to negotiate 

only over a single attribute which is price. For the single attribute negotiation, each agent needs to 

submit a simple atomic bid to express the price it is willing to pay for the job to be completed within a 

specific completion time interval. To accommodate the multi-attribute bidding protocol proposed in the 

next section, we expand the single attribute model by allowing agents to negotiate over both price and 

completion time. An agent’s valuation over these two attributes can be expressed by a set of atomic 

bids connected by XOR. However, at most one atomic bid of an XOR-Bid can be included in a 

provisional schedule. To handle this logic, we add a checking mechanism to the winner determination 

algorithm presented above to prevent the algorithm from including more than one atomic bid from the 

same XOR-Bid into a provisional schedule. The checking mechanism is implemented in the Select-

Unassigned-Bid ( AV ) method of Algorithm 1. When the method selects an unassigned bid, it first 

checks the current schedule. If there is a bid from the same XOR-Bid has already been included, the 

unassigned bid will be excluded from the selection. 

4.3. The Iterative Multi-Attribute Bidding Protocol 

AdSCHE is a multi-attribute auction framework, which allows the negotiation over price and a non-

price attribute: the completion time of a schedule. In addition, AdSCHE has good privacy preserving 

properties. For example, unlike general combinatorial auctions, AdSCHE does not require agents’ 

knowledge about the resources, such as their capabilities, availabilities and configurations. Also, before 

the auction starts, the auctioneer does not have to know what kinds of services that agents will require.  

Figure 2 shows a generic view of the bidding and pricing process of AdSCHE.  Before the bidding 

starts, agents may initialize the ask prices of their processing requirements (jobs and makespan-

intervals) based on “common knowledge” about the cost of the processing requirements. Appropriate 

setting-up of initial ask prices can speed up the overall bidding process and, at the same time, maintain 

the solution quality. If an agent has no information about the cost of its processing requirements, it can 

set the initial ask prices as zero. However, in AdSCHE, agents have the incentive to calculate the right 

reserve prices for their processing requirements. For agents, it is irrational to submit any bids below 

reserve prices because those bids will be rejected by the auctioneer at the bids screening stage. An 

alternative way is to acquire initial ask prices from the auctioneer before the bidding starts.  After 

setting up the initial ask prices for the processing requirements, agents calculate the utility maximizing 

bids based on the ask prices and start the bidding process. In each round of the auction, the auctioneer 

first screens out illegal bids (defined in section 4.3.2). Those bids will not be considered in the 
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following winner determination procedure. Then, the auctioneer check the termination condition 

(defined in section 4.3.2). If the condition holds, the auctioneer implements the current provisional 

schedule and terminates the auction. Otherwise, it uses the winner determination algorithm to compute 

a new provisional schedule based on the bids collected. After winner determination, the ask prices of 

processing requirements of losing bids are increased by a minimum price increment determined by the 

auctioneer and these increased prices are sent out to the agents who own the processing requirements. 

Upon receiving the price update, the agents recalculate the utility maximization bids and start a new 

round of bidding.  

 

Fig. 2 Overview of the bidding and pricing process in AdSCHE 

4.3.1. Bidding  

Using the    bidding language, each agent can express its values over different completion time 

intervals as an XOR-Bid.  We assume the reserve prices for processing jobs within different 

completion time intervals is common knowledge. For the first round of the bidding, agents use the 

reserve prices as ask prices. At the beginning of round t , an agent g selects the set of completion time 

intervals that maximize its utility function given the ask prices. It then generates an XOR-Bid that 

represents the set of utility maximization completion time intervals.  Note that all atomic bids in the 

XOR-Bid equally maximize the utility function of agent g given their completion time intervals and 

the associated prices. That is for any two atomic bids in the XOR-Bid at round  ,               

                                                 , where              is the agent’s valuation 

on the completion time interval            , and                   is the price that the agent bid on 

            at round t .  
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Given the ask prices, the following bids are allowed for an agent: 

 If the agent is notified to be included in the current provisional schedule, it replies with an empty 

bid as the acknowledgement. 

 If the agent is not included in the current provisional schedule, two types of bids are allowed: (1) 

the agent can bid either at or greater than the ask prices; (2) the agent can also bid within the 

minimum price increment, denoted by  , below the ask price. This is called “  -discount” in 

(Parkes, 1999), which allows agents to bid for the completion time intervals priced slightly above 

their values. However, if an agent takes this discount, the auctioneer will consider the discounted 

bid as the final bid from the agent for the completion time interval and the agent is forbidden from 

bidding the completion time interval in future rounds.  

Since agents are assumed to be rational in maximizing their utilities, they, in general, do not bid 

greater than the ask price. However, if for some reasons (e.g. to reduce computation and/or 

communication cost) an agent does not want to bid frequently, it can place a much higher bid (but still 

under its value) than the ask price to increase the possibility that its bids will be included in the 

provisional schedules for a certain number of consequent rounds. 

4.3.2. Termination 

After receiving bids from agents, the auctioneer screens out invalid bids, which are defined as 

follows: 

 Bids are not within the   below the ask prices. 

 Bids for makespan-intervals that have been bidden by final bids.   

 Bids are below the reserve prices. 

 Empty bids from agents that are not included in the provisional schedule from last round. 

The auctioneer then checks the termination condition against the valid bids. In AdSCHE, the 

auction terminates if all valid bids collected by the auctioneer are empty bids. That is, all agents that 

bid in the last round are included in the current provisional schedule. No agent is unhappy. After the 

auction terminates, the auctioneer implements the final schedule and the agents pay their bidding 

prices.  

4.3.3. Winner Determination and Price Update 

 The auctioneer needs to compute a new provisional schedule in each round as long as the auction is 

not terminated. At round  , the new provisional schedule tS solves:  
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where is       
             is the bidding price of agent g at round   for the completion time interval 

           , 
g

tS is the part of tS  that represents the schedule of the job from agent g at round t , and  

       
 
 is the completion time of   

 
. 

In AdSCHE, prices are attached to the job processing requirements of agents. There is an ask price 

for each makespan-interval that an agent may require. For the makespan-interval            ,  of agent

g , the ask price set by the auctioneer at the end of round   is       
            . At the beginning of 

round    , if agent g  does not bid on       
            , the price for             of agent g will not 

be updated in round    , that is         
                    

            . On the other hand, if 

agent g  bids on completion time interval              in round     with price         
            , 
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the auctioneer will update the ask price for              based on the result of winner determination 

and whether agent g  has taken a discounted bid: 

 If agent g  wins, the new ask price    kk

g

tbidkk

g

task lfteftPlfteftp ,, 1,1,   . 

 If agent g  loses, the new ask price       kk

g

tbidkk

g

task lfteftPlfteftp ,, 1,1, . 

If         kk

g

taskkk

g

tbidkk

g

task lfteftplfteftplfteftp ,,, ,1,, , no matter agent g  wins or loses, the 

auctioneer will not update the ask price for  kk lfteft ,  because agent g  has taken a discounted bid which 

the auctioneer considers as the final bid from agent g  for makespan interval  kk lfteft , . In this case, 

agent g will not be allowed to bid on  kk lfteft ,  in future rounds. 

 

Fig. 3 An example of decentralized scheduling problems, in which two agents compete for the 

processing of their one-operation jobs  

4.3.4. An Example 

This section presents a worked example of AdSCHE. As shown in Figure 3, a three hour time 

window (from 8:00-11:00) of a resource is being scheduled. Agents have single-operation jobs to be 

processed. An agent’s job is defined by its duration (length), its release time, its deadline, and the 

prices (expressed in dollars) the agent places on the different completion times of the job. For example, 

if the job of Agent#1 can be finished by 10:00, the agent is willing to pay $5; if the job is completed 

anywhere between 10:00 and 11:00, the agent is willing to pay $2.  To complete its job, the agent must 

acquire a period of processing times no less than the length of its job, within its feasible time window 

(the time period between its release time and its deadline).  

Table 2 Bidding process of applying AdSCHE to an example decentralized scheduling problem 

Round Ask Prices Bid Prices Allocation Auctioneer Objective 

# Agent-1 Agent-2 Agent-1 Agent-2 

Agent-
1 

Agent-
2 

Revenue value. 

  (8,10] (10,11] (8,9] (9,11] (8,10] (10,11] (8,9] (9,11]     

  $5  $2  $6  $2  $5  $2  $6  $2      

1 2 2 1 1 2   1   (8,10]   2 5 

2 2 2 3 1 2   3     (8,9] 3 6 

3 4 2 3 1 4   3   (8,10]   4 5 

4 4 2 5 1 4   5 1   (8,9] 5 6 

5 
6 2 5 1 5 2 5 1 (10,11] (8,9] 7 8 
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For this example and other decentralized scheduling problems, we may construct an auction in 

which an agent can bid time periods or their combinations within its feasible time window for 

processing its jobs. By doing so, we are mapping the decentralized scheduling problem to a type of 

combinatorial auction problems, for which the goods to be sold are continuous processing time periods 

and no time window discretization is imposed on resources. AdSCHE is the auction framework 

designed for this type of combinatorial auction problems. In Figure 3, Agent #1’s valuation can be 

expressed by XOR-Bid:                             , where   is the job of Agent #1;  Agent #2’s 

valuation can be expressed by XOR-Bid                            where   is the job of Agent #2. 

Assume that the resource has the reserve price of 1 dollar an hour and the price increment     . The 

ask prices, bid prices and allocation of each round of the auction are shown in Table 2. The process is 

described as follows: 

1) At round #1 the agents use the reserve prices for their job requirements as the ask prices. Agent1 

bids on makespan-interval (8,10] and Agent2 bids on makespan-interval (8,9] because given the 

current ask prices, these two makespan-intervals maximize agents’ utility functions.   The auctioneer 

includes only Agent1 into the provisional schedule because the two bids from agents cannot coexist in 

a schedule and Agent1’s bid maximize auctioneer’s revenue. The auctioneer increases the ask price of 

Agent2’s makespan-interval (8,9] to $3. 

2) Round #2&#3 repeat the process of round #1. In these rounds each agent only has one makespan-

interval that maximizes its utility function. So it only submits a bid at each round. However, in round 

#4, both makespan-intervals (8,9] and (9,11] maximize Agent #2’s utility function, therefore, at this 

round, Agent #2 submits an XOR-Bid:                          . 
3) At round #5, Agent #2 repeats its bid because it was included in the provisional schedule in 

round #4. The ask price for Agent1’s (8,10] has been increased to $6 which is $1 above its value on 

(8,10] because the minimum price increment is $2. In this case Agent1 can place a bid on (8,10]at any 

price from $4 to $5. However it will not be allowed to increase the price in the rounds after. As shown 

in Table 2, Agent #1 bids $5 on (8,10] and the final schedule turns out to be that Agent #2 precedes 

Agent #1, which is optimal. 

4.4. Computational Evaluation 

This section evaluates AdSCHE through computational analysis. We first introduce the metrics used 

to evaluate AdSCHE’s performance.  

4.4.1. Metrics 

As mentioned at the beginning of this section, we evaluate the iterative bidding framework in terms 

of efficiency, computation (running time), revenue and information revelation. These metrics were 

developed in (Parkes, 1999) for testing the performance of iBundle, an iterative combinatorial auction 

for general combinatorial auction problems. We redefine them in the context of decentralized 

scheduling. 

Efficiency of Scheduling,       , is measured as the ratio of the value of the final schedule   to the 

value of the optimal schedule that maximizes total value across the agents: 

        
                   

                    
  ,  

where    is the optimal schedule given customers’ valuations.  

Running Time of Auction refers to the computation time needed to terminate the auction on a 

decentralized scheduling problem instance. 

Information Revelation for customer  ,       , is measured as the sum of the final price bid by the 

customer for all due dates in its valuation function, as a fraction of the sum of the true values of each 

due date.  
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 ,  

The overall auction information revelation is computed as the average information revelation over 

all agents. The auction often terminates before agents have revealed complete information about their 

values for due dates. The information revelation metric is designed to measure the extent to which an 

agent has revealed its value for each due dates to the auctioneer during the auction. 

4.4.2. Comparison Results 

AdSCHE is tested on a set of scheduling auction problems with multiple completion-time-interval 

valuations, which are generated based on the single completion-time-interval benchmark problem set 

used in Wang et al. (2009b).  We take problem instances of the single completion-time-interval set and 

add two more completion-time-interval valuations to each problem instance to generate a multiple 

completion-time-interval set. The first completion-time-interval added represents a delay up to 20% 

and the agent’s value on the delayed makespan decreases 20%. The second added represents a 20% to 

40% delay and, accordingly, the agent’s value decreases 40% on the delayed makespan. For example,   

if the single completion-time-interval valuation of agent g on a set of jobs    can be represented as an 

atomic bid,               the multiple-makespan-interval valuation of the agent can be represented as 

an XOR-Bid                                              . By this way, we generated 9 

groups of decentralized scheduling problem instances. 

 

 Fig. 4 Efficiency performance of AdSCHE over 9 problem sets with bid increment 

 
Fig. 5 Information revelation performance of AdSCHE over 9 problem sets with bid increment 

4  and 2  

We compare AdSCHE with a Generalized Vickery Auction (GVA) in which agents report their 

complete valuations over different makespan-intervals at the beginning of the auction and the 

auctioneer computes the optimal schedule for agents. In both AdSCHE and the GVA, We have used 

the same constraint-based winner determination algorithm. Therefore, the comparison results presented 
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in this section only reflect the difference between the iterative bidding structure (in AdSCHE) and the 

one-shot bidding structure (in GVA) in the context of auction-based decentralized scheduling.  

Figure 4 plots the efficiency of AdSCHE over the 9 problem sets with bid increment 4 . 

Compared to GVA (100% efficiency), on average, AdSCHE can achieve more than 90% efficiency. 

This efficiency level is comparable to some iterative auctions such as AUSM (Ledyard, et al., 1997) 

and RAD (DeMartini et al., 1999). However, it is not as good as iBundle. Figure 5 plots the 

Information Revelation performance of AdSCHE. Compared to GVA which requires 100% 

Information Revelation, AdSCHE requires less than 50% at increment=2 and increment=4. Bigger 

increment value requires slightly more Information Revelation. This makes sense because bigger 

increments may pass some low price equilibrium point which smaller increments may find. 

 

Fig. 6 Run time (in seconds) of GVA and AdSCHE as the problem difficulty is increased. (a) 

problem sets #1, #2, and #3; (b) problem sets #4, #5, and #6; (c) problem sets #7, #8, and #9) 

Figure 6 compares the run time increases between AdSCHE and GVA as the number of bids 

increases from 6 to 8. We classify the problem sets into 3 groups as shown in (a), (b), and (c). All 3 

groups demonstrate similar run time increasing pattern as problem difficulty (number of bids) 

increases. On average, AdSCHE is more than 10 times faster than GVA with the cost of losing 6%-

10% efficiency as shown in Figure 6. We have set an 8000 seconds time limit. The computation times 

of GVA for half of 8-bid instances in group (b) and all 8-bid instances in group (a) have reached the 

limit. We did not test instances with more than 8 bids. 

 
 

Fig. 7 A narrowcasting environment 
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5. A Case Study 

This section presents a case study regarding the application of AdSCHE to decentralized media 

content scheduling in narrowcasting. Narrowcasting is a newly emerged technology which enables 

companies and organizations to target audiences with an unprecedented level of customization and 

timeliness through media devices such as commercial digital displays. Figure 7 shows a distributed 

narrowcasting environment in which a number of displays are located in various types of places in a 

community including stadiums, hospitals, shopping centers, gas stations, schools, and train stations, 

etc. The displays are connected to the Narrowcasting Management System through high speed 

network. Main functionalities of the management system include promotion planning, media content 

scheduling and media file distribution.  Customers who want to use the network to deliver messages to 

their audiences are also connected to the management System.  

Table 3 The media content scheduling problem configuration 

Customer Content Location 
 Repetition 

limit 
Earliest 

starting Time Due Date 
Length (in 
minutes) Value 

A 

1 
1 

4 8:00 AM 8:30 AM 8 $24  

2 
5 

2 8:00 AM 
8:30 AM 

4 $34  

3 
4 

2 8:00 AM 
8:30 AM 

6 $44  

4 
3 

2 8:00 AM 
8:30 AM 

14 $54  

5 
2 

2 8:00 AM 
8:30 AM 

4 $24  

B 

1 
5 

1 8:10 AM 
8:30 AM 

8 $50  

2 
2 

1 8:10 AM 
8:30 AM 

6 $50  

3 
1 

1 8:10 AM 
8:30 AM 

7 $50  

4 
3 

1 8:10 AM 
8:30 AM 

15 $50  

5 
4 

1 8:10 AM 
8:30 AM 

10 $50  

C 

1 
4 

1 8:00 AM 8:35 AM 5 $34  

2 
1 

1 8:00 AM 
8:35 AM 

4 $34  

3 
2 

1 8:00 AM 
8:35 AM 

9 $34  

4 
3 

1 8:00 AM 
8:35 AM 

9 $34  

5 
5 

1 8:00 AM 
8:35 AM 

5 $34  

D 

1 
1 

1 8:00 AM 
8:35 AM 

6 $52  

2 
5 

1 8:00 AM 
8:35 AM 

11 $52  

3 
2 

1 8:00 AM 
8:35 AM 

9 $52  

4 
3 

1 8:00 AM 
8:35 AM 

15 $52  

5 
4 

1 8:00 AM 
8:35 AM 

3 $52  

We demonstrate the applicability of AdSCHE to decentralized media content scheduling problems 

using a multiple display problem setting. Consider a decentralized content scheduling problem with 4 

customers who need promotion service at 5 different locations for a morning advertising time window 

from 8:00AM to 8:45AM. We assume that one location has a single display to be scheduled. Each 

customer has a specific content file for a location.  A content file has an earliest starting time, after 

which the content can be displayed, and a due date, which is the preferred time before which the 

displaying of the content is finished. The customer has a fixed value on a piece of content as long as it 

is displayed between its earliest starting time and its due date. The customer’s value on a piece content 

decreases 20% if the finishing time of displaying delays by 20% according to the due date. The value 
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will decreases 40% if the finishing time delays 40%. The customer’s value reaches zero for any delays 

greater than 40% or any finishing times later than 8:45AM. A piece of content can be displayed 

multiple times within the advertising time window. However, the customer has a limit on how many 

times she wants the content to be displayed. There are no complements or substitutes in terms of a 

customer’s valuation on her different pieces of media content and copies of the same piece of media 

content. The customer wants her contents to be displayed as much as possible as long as the cost of 

displaying is below her valuation. Table 3 shows the detailed configuration of this problem. The value 

column refers to the value that a customer has on the displaying of a piece of content between the 

earliest starting time and due date. The objective is to compute a promotion schedule over five displays 

such that the customers’ location, earliest starting time, and deadline requirements are satisfied, the 

sum of customers’ promotion values is maximized. 

The bid structure in this case study is more complicated than that in the single display example in 

Section 4.3.4. Since customers have multiple pieces of content to be displayed and the customer’s 

value varies based on the finishing times of displaying, they need to construct three bids for each piece 

of content to express the valuations on meeting due date, 20% delay, and 40% delay respectively. In 

addition, if a piece of content may be displayed multiple times, bids are also need to be constructed to 

represent the multiple copies of the content.  

All bids from a customer need to be joined by OR and XOR connectives. For example, the 

valuation of customer A on content 2 can be represented using the following bid, in which the 

valuations for two copies of content A-2 are joined by an OR connective: 





































4.20$,42:8,00:8,5,2

2.27$,36:8,00:8,5,2

34$,30:8,00:8,5,2

4.20$,42:8,00:8,5,2

2.27$,36:8,00:8,5,2

34$,30:8,00:8,5,2

AMAMlocationA

XORAMAMlocationA

XORAMAMlocationA

OR

AMAMlocationA

XORAMAMlocationA

XORAMAMlocationA

 

A complete valuation of customer A consists of bids for all 5 pieces of content joined by OR 

connectives. 

Figure 8 shows the promotion schedule generated by AdSCHE. In the schedule, content A-1 

(content 1 from customer A), A-2, A-3, A-5 are displayed two times. B-4 losses in the bidding, 

therefore, it is not included in the schedule. The minimum bid increment is set to be $4 and the auction 

terminates at round 31 with an overall value of $929. 

 

Fig. 8 Promotion schedule for the multiple display media content scheduling case 

We have demonstrated how AdSCHE can be applied to the decentralized media content scheduling 

model. The advantage of applying AdSCHE to this domain is that the complicated customer content 

displaying requirements, such as location, earliest starting time, latest finishing time, and times to be 

displayed, can be concisely captured by the requirement based bidding language. Also, the language 

allows customers to express different promotion values based on the completion times of content 
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displaying. However, the media content scheduling problem is less-constrained compared to other 

scheduling problems, such as decentralized job shop scheduling, since there are no precedence 

constraints between content copies. For the less-constrained problems, constraint-based winner 

determination may not be effective
4
. For large scale problems, the lack of efficiency in winner 

determination may lead to unpractical solving times. In future research, we will expand AdSCHE to 

meet the requirements raised from large industry scale decentralized media content scheduling 

problems. In particular, winner determination algorithms designed toward the media content 

scheduling formulation and approximate winner determination algorithms will be considered.  

6. Conclusion and future work 

In many combinatorial auction problems, the items to be sold are processing times of resources. As 

these problems primarily concern the allocation of jobs on resources overtime in decentralized 

environments, they fall into the category of decentralized scheduling problems. The proposed AdSCHE 

framework promises to outperform general combinatorial auctions on decentralized scheduling 

problems by utilizing scheduling domain specific bidding languages and winner determination 

algorithms.  Our analysis and experiments show that AdSCHE posses good computational properties in 

terms of agents’ valuation, communication and winner determination. We outline three directions that 

can be pursued in terms of expanding the current work from the perspective of improving its 

applicability to real world scale applications.  

First, we will continue improving the efficiency of the constraint-based winner determination. The 

actual algorithms developed in the thesis have demonstrated good performance in auction-based 

decentralized scheduling. However, it can be further improved along several directions. For example, 

more sophisticated branching and bids ordering heuristics can be introduced. In addition, more 

heuristics from classical scheduling theory can be embedded to boost the performance of the approach 

on well studied scheduling problem models. We will also explore the possibility of introducing 

approximate and heuristic algorithms for the winner determination problem. While these algorithms 

can come with different flavors, those that preserve incentive compatibility are worth of investigation.  

Another important future direction is to expand the current AdSCHE model to support online 

decentralized scheduling environments. In many decentralized scheduling environments, for example, 

supply chain or service industries, customers’ requests for processing a set of jobs may be received 

over time.  Furthermore, customers may need the response (e.g. price and due date quotations) to their 

requests immediately or within a short period of time. In these cases, it is not practical to synchronize 

the customers’ requirements and ask all customers to start the bidding process at a predefined time 

point. By allowing customers to submit their requests at any time, we have introduced the dynamic 

version of decentralized scheduling problems.  Developing scheduling systems for dynamic scheduling 

problems presents new challenges, that is, the system needs to repair the schedule or redo the 

scheduling whenever a dynamic event makes the original scheduling infeasible. For AdSCHE, the 

iterative bidding procedure adopted has provided a good potential in accommodating dynamic events. 

Since bidding proceeds in rounds, a newly arriving agent may pick a round in the process and join in 

the bidding. One avenue worth exploring is to build the support for dynamic scheduling within the 

iterative bidding structure.    

At the current stage, we have considered the situation where agents participate in one auction at a 

time. However, in some scheduling applications, agents are typically interested in obtaining multiple 

schedulable resources from several markets. To complete the job, an agent needs to secure all the 

resources required. The strong complementarities among resources induced by such preferences pose 

strategic problems for bidding agents.  While each market can be constructed using an AdSCHE 

                                                      
4
 It is observed in the computational study for constraint-based winner determination that problems with tight 

constraints tend to be solved quicker by the constraint-based winner determination algorithm (Wang et al., 2009). 
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system, exploring agents’ bidding policies, which allows coordination across separate auction-based 

scheduling markets, would be another step toward practical approaches to real world decentralized 

scheduling applications 
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