783 research outputs found

    UNCLES: Method for the identification of genes differentially consistently co-expressed in a specific subset of datasets

    Get PDF
    Background: Collective analysis of the increasingly emerging gene expression datasets are required. The recently proposed binarisation of consensus partition matrices (Bi-CoPaM) method can combine clustering results from multiple datasets to identify the subsets of genes which are consistently co-expressed in all of the provided datasets in a tuneable manner. However, results validation and parameter setting are issues that complicate the design of such methods. Moreover, although it is a common practice to test methods by application to synthetic datasets, the mathematical models used to synthesise such datasets are usually based on approximations which may not always be sufficiently representative of real datasets. Results: Here, we propose an unsupervised method for the unification of clustering results from multiple datasets using external specifications (UNCLES). This method has the ability to identify the subsets of genes consistently co-expressed in a subset of datasets while being poorly co-expressed in another subset of datasets, and to identify the subsets of genes consistently co-expressed in all given datasets. We also propose the M-N scatter plots validation technique and adopt it to set the parameters of UNCLES, such as the number of clusters, automatically. Additionally, we propose an approach for the synthesis of gene expression datasets using real data profiles in a way which combines the ground-truth-knowledge of synthetic data and the realistic expression values of real data, and therefore overcomes the problem of faithfulness of synthetic expression data modelling. By application to those datasets, we validate UNCLES while comparing it with other conventional clustering methods, and of particular relevance, biclustering methods. We further validate UNCLES by application to a set of 14 real genome-wide yeast datasets as it produces focused clusters that conform well to known biological facts. Furthermore, in-silico-based hypotheses regarding the function of a few previously unknown genes in those focused clusters are drawn. Conclusions: The UNCLES method, the M-N scatter plots technique, and the expression data synthesis approach will have wide application for the comprehensive analysis of genomic and other sources of multiple complex biological datasets. Moreover, the derived in-silico-based biological hypotheses represent subjects for future functional studies.The National Institute for Health Research (NIHR) under its Programme Grants for Applied Research Programme (Grant Reference Number RP-PG-0310-1004)

    Binary Particle Swarm Optimization based Biclustering of Web usage Data

    Full text link
    Web mining is the nontrivial process to discover valid, novel, potentially useful knowledge from web data using the data mining techniques or methods. It may give information that is useful for improving the services offered by web portals and information access and retrieval tools. With the rapid development of biclustering, more researchers have applied the biclustering technique to different fields in recent years. When biclustering approach is applied to the web usage data it automatically captures the hidden browsing patterns from it in the form of biclusters. In this work, swarm intelligent technique is combined with biclustering approach to propose an algorithm called Binary Particle Swarm Optimization (BPSO) based Biclustering for Web Usage Data. The main objective of this algorithm is to retrieve the global optimal bicluster from the web usage data. These biclusters contain relationships between web users and web pages which are useful for the E-Commerce applications like web advertising and marketing. Experiments are conducted on real dataset to prove the efficiency of the proposed algorithms

    Improving the performance of the iterative signature algorithm for the identification of relevant patterns

    Get PDF
    The iterative signature algorithm (ISA) has become very attractive to detect co-regulated genes from microarray data matrices and can be a useful tool for the identification of similar patterns in many other kinds of numerical data matrices. Nevertheless, its algorithmic strategy exhibits some limitations since it is based on statistical behavior of the average and considers averages weighted by scores not necessarily positive. Hence, we propose to take the median instead of the average and to use absolutes scores in ISA's structure. Furthermore, a generalized function is also introduced in the algorithm in order to improve its algorithmic strategy for detecting high value or low value biclusters. The effects of these simple modifications on the performance of the biclustering algorithm are evaluated through an experimental comparative study involving synthetic data sets and real data from the organism Saccharomyces cerevisiae. The experimental results show that the proposed variations of ISA outperform the original version in many situations. Absolute scores in ISA are shown to be essential for the correct interpretation of the biclusters found by the algorithm. The median instead of the average turns the biclustering algorithm more resilient to outliers in the data sets. Copyright © 2011 Wiley Periodicals, Inc

    Coordinated functional divergence of genes after genome duplication in Arabidopsis thaliana

    Get PDF
    Gene and genome duplications have been rampant during the evolution of flowering plants. Unlike small-scale gene duplications, whole-genome duplications (WGDs) copy entire pathways or networks, and as such create the unique situation in which such duplicated pathways or networks could evolve novel functionality through the coordinated sub-or neofunctionalization of its constituent genes. Here, we describe a remarkable case of coordinated gene expression divergence following WGDs in Arabidopsis thaliana. We identified a set of 92 homoeologous gene pairs that all show a similar pattern of tissue-specific gene expression divergence following WGD, with one homoeolog showing predominant expression in aerial tissues and the other homoeolog showing biased expression in tip-growth tissues. We provide evidence that this pattern of gene expression divergence seems to involve genes with a role in cell polarity and that likely function in the maintenance of cell wall integrity. Following WGD, many of these duplicated genes evolved separate functions through subfunctionalization in growth/development and stress response. Uncoupling these processes through genome duplications likely provided important adaptations with respect to growth and morphogenesis and defense against biotic and abiotic stress
    corecore