8 research outputs found

    Pattern Structures and Concept Lattices for Data Mining and Knowledge Processing

    Get PDF
    This article aims at presenting recent advances in Formal Concept Analysis (2010-2015), especially when the question is dealing with complex data (numbers, graphs, sequences, etc.) in domains such as databases (functional dependencies), data-mining (local pattern discovery), information retrieval and information fusion. As these advances are mainly published in artificial intelligence and FCA dedicated venues, a dissemination towards data mining and machine learning is worthwhile.Postprint (published version

    Lattice-based biclustering using Partition Pattern Structures

    Get PDF
    International audienceIn this work we present a novel technique for exhaustive bicluster enumeration using formal concept anal-ysis (FCA). Particularly, we use pattern structures (an ex-tension of FCA dealing with complex data) to mine similar row/column biclusters, a specialization of biclustering when attribute values have coherent variations. We show how bi-clustering can benefit from the FCA framework through its ro-bust theoretical description and efficient algorithms. Finally, we evaluate our bicluster mining approach w.r.t. a standard biclustering technique showing very good results in terms of bicluster quality and performance

    Formal Concept Analysis Applications in Bioinformatics

    Get PDF
    Bioinformatics is an important field that seeks to solve biological problems with the help of computation. One specific field in bioinformatics is that of genomics, the study of genes and their functions. Genomics can provide valuable analysis as to the interaction between how genes interact with their environment. One such way to measure the interaction is through gene expression data, which determines whether (and how much) a certain gene activates in a situation. Analyzing this data can be critical for predicting diseases or other biological reactions. One method used for analysis is Formal Concept Analysis (FCA), a computing technique based in partial orders that allows the user to examine the structural properties of binary data based on which subsets of the data set depend on each other. This thesis surveys, in breadth and depth, the current literature related to the use of FCA for bioinformatics, with particular focus on gene expression data. This includes descriptions of current data management techniques specific to FCA, such as lattice reduction, discretization, and variations of FCA to account for different data types. Advantages and shortcomings of using FCA for genomic investigations, as well as the feasibility of using FCA for this application are addressed. Finally, several areas for future doctoral research are proposed. Adviser: Jitender S. Deogu

    Société Francophone de Classification (SFC) Actes des 26èmes Rencontres

    Get PDF
    National audienceLes actes des rencontres de la Société Francophone de Classification (SFC, http://www.sfc-classification.net/) contiennent l'ensemble des contributions,présentés lors des rencontres entre les 3 et 5 septembre 2019 au Centre de Recherche Inria Nancy Grand Est/LORIA Nancy. La classification sous toutes ces formes, mathématiques, informatique (apprentissage, fouille de données et découverte de connaissances ...), et statistiques, est la thématique étudiée lors de ces journées. L'idée est d'illustrer les différentes facettes de la classification qui reflètent les intérêts des chercheurs dans la matière, provenant des mathématiques et de l'informatique

    Biclustering meets triadic concept analysis

    Get PDF
    International audienceBiclustering numerical data became a popular data-mining task at the be-ginning of 2000's, especially for gene expression data analysis and recommender sys-tems. A bicluster reflects a strong association between a subset of objects and a subset of attributes in a numerical object/attribute data-table. So-called biclusters of similar values can be thought as maximal sub-tables with close values. Only few methods address a complete, correct and non-redundant enumeration of such patterns, a well-known intractable problem, while no formal framework exists. We introduce impor-tant links between biclustering and Formal Concept Analysis (FCA). Indeed, FCA is known to be, among others, a methodology for biclustering binary data. Handling numerical data is not direct, and we argue that Triadic Concept Analysis (TCA), the extension of FCA to ternary relations, provides a powerful mathematical and algorithmic framework for biclustering numerical data. We discuss hence both theo-retical and computational aspects on biclustering numerical data with triadic concept analysis. These results also scale to n-dimensional numerical datasets
    corecore