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Lattice-based biclustering using Partition Pattern
Structures

Victor Codocedo1 and Amedeo Napoli1

Abstract. In this work we present a novel technique for
exhaustive bicluster enumeration using formal concept anal-
ysis (FCA). Particularly, we use pattern structures (an ex-
tension of FCA dealing with complex data) to mine similar
row/column biclusters, a specialization of biclustering when
attribute values have coherent variations. We show how bi-
clustering can benefit from the FCA framework through its ro-
bust theoretical description and efficient algorithms. Finally,
we evaluate our bicluster mining approach w.r.t. a standard
biclustering technique showing very good results in terms of
bicluster quality and performance.

1 Introduction

Biclustering has become a fundamental tool for bioinformat-
ics and gene expression analysis [4]. Different from standard
clustering where objects are compared and grouped together
based on their full descriptions, biclustering generates groups
of objects based on a subset of their attributes, values or con-
ditions. Thus biclusters are able to represent object relations
in a local scale instead of the global representation given by
an object cluster [12].

In this sense, biclustering has many elements in common
with Formal Concept Analysis (FCA) [6]. In FCA objects
are grouped together by the attributes they share in what
is called a formal concept. Furthermore, formal concepts are
arranged in a hierarchical and overlapping structure denomi-
nated a concept lattice. Hence a formal concept can be con-
sidered as a bicluster of objects and attributes representing
relations in a local scale, while the lattice structure gives a
description in the global scale.

FCA is not only analogous to biclustering, but has much
to offer in terms of mining techniques and algorithms [10].
The concept lattice can also provide biclusters with an over-
lapping hierarchy which has been reported as an important
feature for bicluster analysis [15]. Recently, some approaches
considering the use of FCA algorithms to mine biclusters from
a numerical data-table have been introduced showing good
potential [8, 7]. In this work, we present a novel technique for
lattice-based biclustering using the pattern structure frame-
work [5], an extension of FCA to deal with complex data.
More specifically, we propose a technique for mining biclus-
ters with similar row/column values, a specialization of biclus-
tering focused on mining attributes with coherent variations,
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i.e. the difference between two attributes is the same for a
group of objects [12]. We show that, by the use of partition
pattern structures [1], we can find high quality maximal bi-
clusters (w.r.t. the mean squared error). Finally, we compare
our approach with a standard constant row value algorithm
[3], showing the capabilities and limitations of our approach.

In the remainder of this paper we introduce some back-
ground theory which supports our work in Section 2. Section
3 contains the formalization and description of our bicluster-
ing technique. Section 4 presents the experiments and initial
findings of our approach. In Section 5 we discuss the state-of-
the-art related to lattice-based biclustering. Finally, Section 6
concludes our article and presents some new perspectives of
research.

2 Background Knowledge

2.1 Formal Concept Analysis

The basics of FCA are introduced in [6], but we recall some
useful notions for the understanding of the paper. Let a formal
context K = (G, M, I) be. a binary table where G is a set of
objects, M a set of attributes, and I ⊆ G × M an incidence
relation indicating by gIm that the object g has the attribute
m. For A ⊆ G and B ⊆ M, two derivation operators (·)′ are
defined as follows:

′ : ℘(G) −→ ℘(M) with A′ = {m ∈ M | ∀g ∈ A, gIm}
′ : ℘(M) −→ ℘(G) with B′ = {g ∈ G | ∀m ∈ B, gIm},
where ℘(G) and ℘(M) respectively denote the powersets of

G and M. The two derivation operators ′ form a Galois con-
nection2 between ℘(G) and ℘(M) [6]. For a set of objects A,
A′ is the set attributes which are common to all objects in A.
Analogously, for a set of attributes B, B′ is the set of objects
having all attributes in B. A formal concept is defined as a
pair (A, B) where A ⊆ G, B ⊆ M, A′ = B and B′ = A, A being the
extent and B the intent of the formal concept.

The maximal sets of objects which are related to the maxi-
mal sets of attributes correspond to closed sets of the compo-
sition of both operators ′, denoted ′′, for ℘(G) and ℘(M) re-
spectively. The set B(G, M, I) of all concepts from K is ordered
by extent inclusion, denoted by ≤K , i.e. (A1, B1) ≤K (A2, B2)
when A1 ⊆ A2 (or dually B2 ⊆ B1). In this case we say that
(A1, B1) is the super-concept of (A2, B2) and inversely, (A2, B2)
is the sub-concept of (A1, B1). The concept lattice of K is de-
noted by B(G, M, I). For example, consider the formal context

2 A Galois connection is based on a dual adjunction between par-
tially ordered sets.



in Table 1 containing 4 objects (g1 − g4) and 5 attributes
(m1 − m5). The crosses in the formal context indicates the
relations between objects and attributes (e.g. object g1 has
attribute m1). Coloured cells show a maximal rectangle which
corresponds to the formal concept with extent {g1, g2} and
{m1, m2, m3}. The concept lattice in Figure 1 illustrates all the
formal concepts found in the example.

m1 m2 m3 m4 m5
g1 × × ×

g2 × × × ×
g3 × × × ×
g4 × × ×

Table 1: Formal context Figure 1: Concept Lattice.

The object intent is defined as g′ = { m ∈ M | gIm }
for an object g ∈ G. Correspondingly, for m ∈ M, the attribute
extent is defined as m′ = {g ∈ G|gIm}. For a given object
g, the object concept is defined by γ(g) = (g′′, g′) (where g′′

stands for (g′)′). Dually, for a given attribute m, the attribute
concept is µ(m) = (m′, m′′). Intuitively, the object concept is
the smallest-extent concept in the lattice which includes the
object. The “reduced notation” of a concept lattice consists on
labelling object and attribute concepts with their respective
objects/attributes. The concept lattice in 1 shows a concept
lattice in reduced notation.

2.2 Biclustering

A numerical data-table is a matrix M where Mij indicates
the value of an object gi ∈ G w.r.t. the attribute mj ∈ M with
i ∈ [1..|G|] and j ∈ [1..|M|] (| · | represents set cardinality). A
bicluster of M is a submatrix B where each value Bij satisfies
a given restriction. According to [4, 12], there are five different
restrictions which we summarize in Table 2.

Constant
values

Bij = c Within the submatrix, all values are
equal to a constant c ∈ R (R indicates
real values).

Constant
row values

Bij=c + αi Within the submatrix, all the values in
a given row i are equal to a constant c
and a row adjustment αi ∈ R.

Constant
column
values

Bij=c + αj Within the submatrix, all the values in
a given column j are equal to a constant
c and a column adjustment αj ∈ R.

Coherent
values

Bij=
c + αi + βj

Within the submatrix, all the values in
a given column j are equal to a constant
c, a row adjustment αi and a column
adjustment βj . Instead of addition, the
model can also consider multiplicative
factors.

Coherent
evolution

Values in the submatrix induce a linear
order.

Table 2: Types of biclusters.

2.2.1 Similar values instead of constant values

When noise is present in a data-table, it is difficult to search
for constant values. Several approaches have tackled this issue
in different ways, e.g. by the use of evaluation functions [14],
equivalence relations [2, 13] and tolerance relations [7]. The
most common way is establishing a threshold θ ∈ R to enable
the similarity comparison of two different values w1, w2 ∈ R.
We say that w1 ≃θ w2 (values are similar) iff |w1 − w2| ≤ θ.
Thus, constant values are a special case of similar values when
θ = 0. Using this, we can redefine the first three types of
biclusters as follows:

1. Similar values: Bij ≃θ Bkl.
2. Similar row/column values:

(a) Similar row values: Bij ≃θ Bil.

(b) Similar column values: Bij ≃θ Bkj .

Example 1. With θ = 1, Table 3 shows in its upper left
corner a bicluster with similar values (dark grey). The up-
per right corner represents a similar column bicluster (light
grey). Lower left corner considering {g3, g4} and {m1, m2} (not
marked in the table) represents a similar row bicluster.

m1 m2 m3 m4 m5

g1 1 2 2 1 6

g2 2 1 1 0 6

g3 2 2 1 7 6

g4 8 9 2 6 7

Table 3: Bicluster with similar
values (θ = 1).

m1 m3

g2 2 1

g3 2 1

Table 4: Constant
column bicluster.

2.3 The ties between FCA and biclustering

A bicluster Bij has a direct correspondence with a set of ob-
jects A and a set of attributes B, where A = {gi} and B = {mj}
with i, j being rows and columns respectively in Bij . We can
observe that the pair (A, B) resembles a formal concept. Ac-
tually, the ties between FCA and biclustering go beyond. If
we consider the formal context to be a numerical data-table
where crosses represent the value 1 and empty cells repre-
sent the value 0, then a formal concept is actually a constant
value bicluster (where Bij = 1). Moreover, the concept lattice
provides an overlapping hierarchy of a set of constant value
biclusters [15], however incomplete as FCA can only deal with
binary data, i.e. the biclusters where Bij = 0 are not present.

Usually, in FCA there are several techniques that allow data
encoding to binary values by means of scaling [6, 7]. Neverthe-
less, this process introduces more parameters to the process
[2] and increment its complexity [9, 1]. In the following, we
discuss and propose a technique to overcome these issues.

3 Biclustering using partitions

Different from biclusters with constant values, constant
columns tackle the problem of “attribute expression” through-
out different objects. For example, consider that Table 3 rep-
resents the users (rows) ratings of a set of movies (columns).



Intuitively, we would like to find users which give the same
rating for a given movie (constant column) while letting rat-
ings be different across different movies (non-constant row).
These kind of biclusters would contain users with the same
taste in cinema.

Now, let us consider as an example the movie m3 (attribute)
in Table 3. We can observe that ratings (values) for this movie
“breaks” the set of users (objects) in two sets, namely {g1, g4}
(rated with value 2) and {g2, g3} (rated with value 1). If we
take a second movie, for example m5 we can search for the
coincidences of how both movies “breaks” the space of users,
which generates the subsets {g1}, {g2, g3}, {g4}. In particular,
we can see how the pair ({g2, g3}, {m3, m5}) corresponds to a
bicluster with constant columns as depicted in Table 4.

Our approach for mining biclusters with similar
row/column values is based on this “breaking” or “par-
titioning technique”. More specifically, it relies on partitions
patterns found in a numerical data-table through equivalence
relations and FCA algorithms. The hierarchical and overlap-
ping structure supporting the biclusters is just a consequence
of the lattice-based modelling provided by FCA.

3.1 Formalizations

A partition d = {pi} of a set G can be formalized as a collection
of components pi such as:

⋃

pi∈d

pi = G pi ∩ pj = ∅ ; (pi, pj ∈ d, i 6= j)

The space of all partitions is denoted as D [1]. A partition
d1 = {pi} is a refinement of d2 = {pj} (or d2 is a coarsening of
d1) iff ∀ pi ∈ d1, ∃ pj ∈ d2, pi ⊆ pj . A partition of G can
be created from an equivalence relation [g]. An equivalence
relation is a reflexive, symmetric and transitive binary relation
between elements in a set. For example, we can define the
equivalence relation [gi]mj of an object w.r.t. an attribute as
follows:

[gi]mj = {gk ∈ G | Mij ≃θ Mkj} (1)

Where Mij ≃θ Mkj ⇐⇒ |Mij − Mkj | ≤ θ is a similarity
relation as defined in Section 2.2. This allows us to create a
partition mapping δ : M → D which assigns an attribute with
a partition over G such as:

δ(mj) = {[gi]mj | gi ∈ G} (2)

Example 2. From Table 3 we have [g1]m4 = [g2]m4 = {g1, g2},
[g3]m4

= [g4]m4 = {g3, g4} and δ(m4) = {{g1, g2}, {g3, g4}}.

As described in the beginning of this section, using parti-
tion operations (searching for coincidences) we can discover
biclusters with constant column values (or similar column val-
ues, using equivalence relations). In the following, we define
these operations in the space of partitions D. We show that D
is an ordered space. We also show that the space of attributes
M and the space of partitions D are related through a Ga-
lois connection [10, 6] that can be exploited in order to mine
all possible bicluster pairs with constant column values from
a numerical data-table reusing the algorithmic machinery of
FCA.

3.2 Partition Space

The space of all partitions D is a complete lattice [1, 13] where,
for two elements d1 = {pi} , d2 = {pj} with i ∈ [1, |d1|] and
j ∈ [1, |d2|], the meet and join are defined by Equations 3
and 4 and the order between two partitions is determined by
Equation 5.

d1 ⊓ d2 =
⋃

pi ∩ pj (3)

d1 ⊔ d2 = (
⋃

pi∩pj 6=∅

pi ∪ pj)
+ (4)

d1 ⊑ d2 ⇐⇒ d1 ⊓ d2 = d1 (5)

Where we use (·)+ to denote closure for d ⊆ ℘(G) with
components pi ⊆ G such as:

d
+ = {pi ∈ d | ∄p ∈ d, pi ⊆ p}

Intuitively, this means that the closure only conserves the
maximal components in d not included in any other compo-
nent. The meet of two partitions corresponds to the coarsest
common refinement of two partitions. As we will describe af-
ter, this is the operation that allows us to enumerate all the
possible biclusters. The join, on the other hand, represents the
finest coarsening of two partitions. We do not use it for prac-
tical purposes in this work. The order between partitions es-
tablishes a hierarchical structure in the space D where coarser
partitions subsumes finer partitions.

Example 3. From Table 3, with δ(m1) = {{g1, g2, g3}, {g4}},
δ(m4) = {{g1, g2}, {g3, g4}} and δ(m5) = {{g1, g2, g3, g4}} we
have:

δ(m4) ⊓ δ(m5) = ({g1 − g4} ∩ {g1, g2}) ∪ ({g1 − g4} ∩ {g3, g4})

δ(m4) ⊓ δ(m5) = {{g1, g2}, {g3, g4}}

δ(m4) ⊓ δ(m5) = δ(m4) ⇐⇒ δ(m4) ⊑ δ(m5)

δ(m1) ⊔ δ(m4) = {{g1 − g3}, {g1 − g4}, {g1, g2, g4}, {g3, g4}}
+

= {g1, g2, g3, g4}

3.3 Partition Pattern Structures

The pattern structure framework is an extension of FCA pro-
posed to deal with complex data [5]. Partition pattern struc-
tures are an instance of the pattern structure framework pro-
posed to mine functional dependencies among attributes of a
database [1] dealing with set partitions. In the following, we
provide the specifics of partition pattern structures where the
main definitions are given in [5].

Let G be a set of objects, M a set of attributes and M a data-
table of numerical values where Mij contains the value of at-
tribute mj ∈ M in object gi ∈ G. The lattice of all partitions of G
is determined by (D,⊓) wherein a partition mapping function
δ : M → D assigns an attribute w.r.t. an equivalence relation
[gi]≃θ

: G → ℘(G) as defined in Equation 1. Then, a partition
pattern structure is determined by the triple (M, (D,⊓), δ) in
which the following derivation operators for B ⊆ M and d ∈ D

are defined:



B
� =

l

m∈B

δ(m) (6)

d
� = {m ∈ M | d ⊑ δ(m)} (7)

Similarly to standard FCA, we have that (B, d) is a parti-
tion pattern concept (pp-concept) when B� = d and d� = B

and that for two pp-concepts (B1, d1) and (B2, d2), the order
between them is given by (B1, d1) ≤ (B2, d2) ⇐⇒ (B1 ⊆ B2)
or (d2 ⊑ d1). When B�� = B, we ensure the maximality of
pp-concept (B, d) and we call it a pp-concept. Pp-concepts
determines biclusters as pairs (p, B) where p is a component
of the partition pattern. It should be noticed that to keep con-
sistency with previous notation, we write biclusters as pairs
(p, B) (p represent rows and B represent columns), while pp-
concepts are written inversely (B, d) (B is the extent and d is
the intent of (B, d)).

Proposition 1. Let (B, d) be a pp-concept, then for any parti-
tion component p ∈ d each pair (p, B) corresponds to a similar
column value bicluster.

The proof of this proposition is easy considering that each
pair (p, B) represents a submatrix the columns of which were
selected using an equivalence relation, i.e. the values in the
columns are similar w.r.t. ≃θ.

We say that a bicluster (p, B) is maximal iff adding an object
to p or an attribute to B does not result in a bicluster, i.e.
(p ∪ {g}, B) and (p, B ∪ {m}) are not biclusters.

Example 4. Figure 2 shows a partition pattern concept lat-
tice (pp-lattice) created from Table 3 using θ = 1. The pp-
lattice contains 4 pp-concepts, but they correspond to 6 max-
imal similar column value biclusters listed in Table 5.

While pp-concepts are maximal (closed under (·)�), biclus-
ters corresponding to pairs (p, B) are not always maximal. For
instance, in Table 5 we have that bicluster 7 is not maximal
because of bicluster 3. The same happens with bicluster 8
which is not maximal because of 4. This is due to the fact
that pp-concepts are maximal w.r.t. the partitions and not
w.r.t. the individual components of those partitions. Never-
theless, maximal biclusters are still easy to identify.

Proposition 2. Let (B1, d1), (B2, d2) be two pp-concepts such
as (B1, d1) ≤ (B2, d2). Let p ⊆ G be a component of a partition.
If p ∈ d1 and p /∈ d2 then the bicluster corresponding to (p, B1)
is maximal.

Proof. Given definitions in Equations 1, 6 and 7, we have that
for (B1, d1) and for any gi ∈ p, the following is true:

p =
⋂

mj∈B1

{gk ∈ G | Mij = Mkj} (8)

Consequently, for any other object gh ∈ G, such as gh /∈ p, we
have Mij 6= Mhj . Hence, the pair (p+ {gh}, B) cannot be a
bicluster.

Let B2 = B1 + {mj} for any mj ∈ M, we show that (p, B2)
cannot be a cluster by contradiction. Let (p, B2) be a bicluster.
Then, there exists the pp-concept (B2, B

�
2 ) such as p ∈ B�2 . If

it does, then it is necessarily a direct super concept of (B1, d1).
However, this contradicts the definition p /∈ B�2 .

Intuitively, maximal biclusters can be found in a kind of
“attribute concept” of the corresponding partition component
(see Section 2.1) (e.g. consider the maximal bicluster 6 in Ta-
ble 5. It corresponds to the pp-concept labelled with m4 in Fig-
ure 2 and we can appreciate that {g3, g4} is not present in the
intent of its superconcept. The opposite happens with biclus-
ter 7 in the concept labelled with {m1, m2} in the lattice.). In-
deed, partition pattern structures resembles a standard FCA
process where the attribute set is multi-dimensional. In [1],
it is shown how, through the use of transitive closures, the
partition pattern structure is isomorphic to a binary formal
context where the “scaling” procedure (encoding from many-
valued data) generates a quadratic number of objects. In gen-
eral, this cannot be applied on real datasets. Modelling a nu-
merical dataset as a pattern structure is regarded as the best
way of proceeding in these kind of situations [5, 9].

3.4 Mining biclusters

The calculation of the pp-concepts was implemented using
AddIntent (the algorithm is described in [16]) for calculating
a lattice of formal concepts. The algorithm was modified in
order to obtain maximal biclusters from a numerical data-
table. An important step to the process is the calculation of
δ(mj) for a given mj ∈ M, i.e. the initial object partition for a
given column.
Calculating initial partitions: The equivalence relation de-
scribed in Section 3.1 in the set of objects G given an attribute
mj is calculated using a graph-based method proposed in [13].
A complete graph (G, E) with edges eik ∈ E holding the dis-
tances eik = |Mij −Mkj | is created. Next, all edges eik ≥ θ
are removed. Then, two objects are equivalent if they belong
to the same connected component. While this method is ef-
fective, it is also expensive (complexity O(|M||G2|)) and prob-
lematic in the sense that it generates false equivalences (e.g.
with θ = 1, we have 1 ≃θ 2 and 2 ≃θ 3 =⇒ 1 ≃θ 3 which is
not true).

A more appropriate method is to consider disjoint equiv-
alence blocks. An equivalence block is an interval v over a
range of values W (analogous to tolerance blocks described
in [10]). For a given attribute mj , we define a set of disjoint
equivalence blocks Vj where any two intervals v1, v2 ∈ Vj have
an empty intersection v1 ∩ v2 = ∅. An object gi belongs to
the interval v = [l, r] with l, r ∈ W iff l ≤ Mij ≤ r (ac-
tually, this holds for closed intervals). Two objects gi, gk are
equivalent for Vj (given mj) iff they belong to the same inter-
val v ∈ Vj . Each interval generates an equivalence class. This
method avoids false equivalences as the one just described
while the calculation of equivalence classes only has a com-
plexity of O(|M||γ||G|), where γ is the number of equivalence
classes created. In general, equivalence blocks can be prede-
fined by a user or calculated from W given γ. In our experi-
ments, we consider both, pre-defined equivalence blocks and
using a γ value.
Breaking the lattice: As discussed at the end of Section 3.3,
for a given pp-concept (B, d), not every pair (p, B) with p ∈ d

represents a bicluster. Through the use of Proposition 2, we
can easily discover biclusters within the pp-lattice while it is
being calculated. Experimental data has shown that less than
20% of the pp-concepts within the pp-lattice actually hold a
maximal bicluster. This has given room for an optimization



Figure 2: Partition pattern concept lattice.

Bicluster Elements Maximal?

1 ({g1, g2, g3, g4},{m3, m5}) X

2 ({g1, g2, g3},{m1, m2, m3, m5}) X

3 ({g4},{m1, m2, m3, m4, m5}) X

4 ({g1, g2},{m1, m2, m3, m4, m5}) X

5 ({g3},{m1, m2, m3, m4, m5}) X

6 ({g3, g4},{m3, m4, m5}) X

7 ({g4},{m1, m2}) ✗

8 ({g1, g2},{m3, m4, m5}) ✗

Table 5: Biclusters with similar values from pp-lattice.

of the AddIntent algorithm based on pruning the pp-lattice
from pp-concepts not holding maximal biclusters. While this
actually breaks the structure of the concept lattice, it keeps
the order among the remaining pp-concepts, meaning that
the output of AddIntent remains the same, while dramatically
decreasing its computational time. This optimization has been
included in the implementation of our biclustering algorithm.
Complexity: Aside the possible optimizations to the AddIn-
tent algorithm, the fact remains that enumerating all pos-
sible biclusters from a data-table, from a large dataset, is
computationally intractable [4, 12], since the number of bi-
clusters grows exponentially w.r.t. the number of objects and
attributes. For example, the complexity of the AddIntent al-
gorithm is O(|L|· |G2| · |M|) where |L| is the number of concepts
in the lattice, which can grow up to 2|G| [16].

Methods to overcome this issue are still an open research
problem in FCA, as well as in other disciplines. A popular
technique in FCA is the use of minimal supports for formal
concept mining. This allows to cut from the lattice a set of
formal concepts which are regarded as not representative and
hence, not important for analysis purposes. The analogous of
minimal support for biclustering is a minimal number of rows
or columns required for a bicluster. This restriction has been
used in several exhaustive bicluster enumeration algorithms
to avoid exponential complexity [12]. In our approach, we set
a minimal length for each equivalence class which we call σ.
Each equivalence class such as |[g]mj | ≤ σ is ignored and not
included the pp-concept intent.

4 Experiments

The first experiment shows the effects of the optimization
discussed in the previous section. We used a subset of the
dataset called MovieLens 100k3 of movie ratings contain-
ing 943 users and 50 movies (out of a total of 1682) using
σ = 1 (all bicluster sizes) and the predefined set of equiva-
lence blocks [1, 2][3, 3][4, 5]. The dataset contains user ratings
for movies which range from 1 to 5. When information is not
available, the matrix contains 0 which we disregard (we do
not mine biclusters with columns equal to 0). The dataset
contained 16532 similar column biclusters. The basic AddIn-
tent algorithm processes a single object per iteration. The ex-
periment consists in inserting between AddIntent iterations a
lattice pruning process while measuring the execution time.
The dataset size was reduced to let σ = 1 and mine every
possible bicluster. Results are shown in Figure 3. The solid

3 http://grouplens.org/datasets/movielens/

horizontal line represents the execution time without opti-
mization (30.5 seconds). While initially, the execution time
doubles the non-optimized version (for a lattice prune each
AddIntent iteration), later the time quickly stabilizes around
half the time the non-optimized version. Best time is found
for 40 iterations (15 seconds).
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Figure 3: AddIntent Iterations per prune vs Execution time

The optimization affects the number of intent intersections
performed by AddIntent. When the lattice is pruned, there
are not as many intents to intersect as there were originally.
However, pruning the lattice is an expensive task and adds
overhead to the algorithm. The correct balance of this trade-
off leads to dramatic improvements in the performance (twice
in the experiments), however further experimentation in dif-
ferent numerical data-tables are needed to draw more conclu-
sions regarding its setting.

The second experiment was performed over an example
dataset provided with the system BicAt4 containing 419 ob-
jects and 70 attributes. We measure the performance of our
approach mining similar row biclusters compared with Cheng
and Church’s algorithm (CC) [3]. CC tries to find a deter-
mined number of biclusters with a maximum threshold for
the mean squared error δ. Results are shown in Table 6. Pa-
rameters for pp-lattice are number of equivalence blocks γ
and minimal number of columns in the cluster σ. CC was ex-
ecuted as provided by BicAt and other parameters were left
as system’s default.

Results show a general better performance of our approach
which is able to mine more than four million maximal biclus-
ters from the dataset in less time than CC calculates only ten
thousands. In terms of minimal squared error (MSE), our ap-
proach gets smaller scores which induces better quality biclus-

4 http://www.tik.ee.ethz.ch/sop/bicat/



Time Biclusters Parameters MSE Max Size
[s] [Kunits] Max [cells]

PPL 451 901 γ=20, σ=10 0.016 209
PPL 27 36 γ=10, σ=30 0.032 372
PPL 306 390 γ=10, σ=25 0.037 442
PPL 3,404 4,471 γ=10, σ=30 0.041 462
PPL 253 314 γ=5, σ=50 0.259 1,173
CC 418 1 δ = 0.5 3.2 17,752
CC 416 1 δ = 0.3 2.81 17,752
CC 4,018 10 δ = 0.5 4.92 17,752

Table 6: Comparison between CC and pp-lattice bicluster
algorithm.

ters. CC is able to find larger biclusters compared to our ap-
proach given the top-down strategy which implements. While
larger biclusters can be found with our approach by decreas-
ing the number of equivalent classes (γ), this is done at the
cost of increasing the MSE as shown in Table 6. Compared
to CC, our approach is better on finding many high quality
and rather small biclusters inducing specialized associations
among objects. CC is better at creating a global map of the
entire data-table by finding larger biclusters.

5 Related Work

Biclustering techniques have usually been proposed for bioin-
formatics and gene expression analysis. A thorough descrip-
tion of these approaches can be found in [12] and a more re-
cent one in [4]. Regarding FCA-based biclustering, two main
techniques have been proposed. In [8], the authors present a
technique based in interval pattern structures to mine sim-
ilar value biclusters which was later revisited using Triadic
Concept Analysis (TCA) in [7]. Our work shares many sim-
ilarities with both of these approaches, however we focus on
a different kind of biclustering, namely similar row/column
value biclustering. Furthermore, we use a different framework
and algorithms.

Lattice-based hierarchical clustering has been explored in
[13] where the author proposes a technique analogous to
single-linkage hierarchical clustering based in the Galois con-
nection [6]. The author also introduces notions of “object”
distance to support both, symbolic and numerical data. Our
work extends from these notions to hierarchical biclustering
and proposes an implementation not present in the aforemen-
tioned work.

Regarding exhaustive bicluster mining, in [2] the system
NBS-miner (numerical bi-sets) is introduced for constant
value biclustering which also deals with tolerance relations
using a threshold for “object” similarity. In the same lines,
in [14], an approach based on range support patterns mining
is proposed. In this work, the authors propose a technique
for exhaustive “similar” row biclustering using an evaluation
function on the biclusters and the Apriori algorithm [11]. Both
of these techniques present efficient ways for bicluster enu-
meration. Our approach differs in that it is able to find an
overlapped hierarchical structure along with the biclusters.

6 Conclusions and research perspectives

In this work we have presented a novel technique for exhaus-
tive similar row/column value biclustering based on FCA al-
gorithms using partition pattern structures. We have shown
the capabilities of the technique which is able to find a large

number of high quality biclusters. Furthermore, biclusters are
provided with an overlapping hierarchy based on a concept
lattice structure. How to leverage current biclusters analysis
techniques using the concept lattice is still a matter of re-
search.

Partition pattern structures were initially proposed for
functional dependencies mining [1] using association rules
from pp-concepts. How these techniques may benefit from the
current approach and the opposite, is an interesting subject
which should be explored. Using other techniques of formal
concept selection and filtering, and their associations with bi-
clusters is another compelling aspect for a future work.
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