5,943 research outputs found

    Protecting a Graph with Mobile Guards

    Full text link
    Mobile guards on the vertices of a graph are used to defend it against attacks on either its vertices or its edges. Various models for this problem have been proposed. In this survey we describe a number of these models with particular attention to the case when the attack sequence is infinitely long and the guards must induce some particular configuration before each attack, such as a dominating set or a vertex cover. Results from the literature concerning the number of guards needed to successfully defend a graph in each of these problems are surveyed.Comment: 29 pages, two figures, surve

    Independent Domination in Complementary Prisms.

    Get PDF
    Let G be a graph and GÌ… be the complement of G. The complementary prism GGÌ… of G is the graph formed from the disjoint union of G and GÌ… by adding the edges of a perfect matching between the corresponding vertices of G and GÌ…. For example, if G is a 5-cycle, then GGÌ… is the Petersen graph. In this paper we investigate independent domination in complementary prisms

    Locating-Domination in Complementary Prisms.

    Get PDF
    Let G = (V (G), E(G)) be a graph and G̅ be the complement of G. The complementary prism of G, denoted GG̅, is the graph formed from the disjoint union of G and G̅ by adding the edges of a perfect matching between the corresponding vertices of G and G̅. A set D ⊆ V (G) is a locating-dominating set of G if for every u ∈ V (G)D, its neighborhood N(u)⋂D is nonempty and distinct from N(v)⋂D for all v ∈ V (G)D where v ≠ u. The locating-domination number of G is the minimum cardinality of a locating-dominating set of G. In this thesis, we study the locating-domination number of complementary prisms. We determine the locating-domination number of GG̅ for specific graphs and characterize the complementary prisms with small locating-domination numbers. We also present bounds on the locating-domination numbers of complementary prisms

    Independent Domination in Some Wheel Related Graphs

    Get PDF
    A set S of vertices in a graph G is called an independent dominating set if S is both independent and dominating. The independent domination number of G is the minimum cardinality of an independent dominating set in G . In this paper, we investigate the exact value of independent domination number for some wheel related graphs

    Domination Numbers of Semi-strong Products of Graphs

    Get PDF
    This thesis examines the domination number of the semi-strong product of two graphs G and H where both G and H are simple and connected graphs. The product has an edge set that is the union of the edge set of the direct product of G and H together with the cardinality of V(H), copies of G. Unlike the other more common products (Cartesian, direct and strong), the semi-strong product is neither commutative nor associative. The semi-strong product is not supermultiplicative, so it does not satisfy a Vizing like conjecture. It is also not submultiplicative so it shares these two properties with the direct product. After giving the basic definitions related with graphs, domination in graphs and basic properties of the semi-strong product, this paper includes a general upper bound for the domination of the semi-strong product of any two graphs G and H as less than or equal to twice the domination numbers of each graph individually. Similar general results for the semi-strong product perfect-paired domination numbers of any two graphs G and H, as well as semi-strong products of some specific types of cycle graphs are also addressed
    • …
    corecore