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Abstract

This thesis examines the domination number of the semi-strong product γ(G × H) where

both G and H are simple and connected graphs. The product has an edge set that is the

union of the edge set of the direct product G×H together with |V(H)| copies of G. Unlike

the other more common products (Cartesian, direct and strong), the semi-strong product

is neither commutative nor associative. The semi-strong product is not supermultiplica-

tive, so it does not satisfy Vizing like conjecture. It is also not submultiplicative so it

shares these two properties with the direct product.

After giving the basic definitions related with graphs, domination in graphs and basic

properties of the semi-strong product, this paper includes a general upper bound for the

domination of the semi-strong product, γ(G × H) 6 2γ(G)γ(H). Similar general results

for perfect-paired domination numbers, γpr(G × H) = γpr(G)i(H) and γpr(Cm × Cn) =

2dm/4edn/3e when m/4 ≡ 0 mod4, and n/3 ≡ 0 mod3. In addition, a result involving

γ(Cm × Cn) and when it could be less than, equal to, or greater than γ(Cm)γ(Cn),

depending on the values of m and n is given.



Chapter 1

Introduction

The concept of domination in graphs began in the middle of the 17th century and the

queens problem, where the question was how many queens on a chessboard were re-

quired so that no square on the chessboard was unavailable to a queen move. The

question was first stated mathematically by de Jaenisch in 1862 [6]. The problem was

formalized in work by Berge and Ore in 1958 [8], with one of the first treatments by Berge

in 1962 [2]. This work heralded a re-awakening of interest in domination in the 1960’s

and 70’s which has continued in multiple forms, and notably in domination numbers of

products of graphs, to the present day.

The purpose of this thesis is to investigate domination parameters of graphs. All

graphs are simple, connected graphs with at least two vertices. Several common types

of graphs will be considered including paths, cycles and complete graphs, and extension

to general graphs will be considered in some cases. The domination parameters of the

graphs as well as products of these graphs will be studied. Domination parameters

of graphs is an area of growing interest in todays society as networks, coverage and

protection issues are of vital importance in computer networks, cell phone coverage

networks, credit transfer networks, information retrieval, social network theory and land

surveying among many other applications. In all of these applications, domination of
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the graphs representing these situations is an important consideration. The importance

of domination may well influence the design of a network. It is this fact that makes the

mathematical study of domination an important area of study. It is certainly possible

that an as yet undiscovered aspect of domination sets of combinations of graphs may

become a key aspect of network design. This also indicates that the study of different

methods of creating a network, different products of graphs as an example, could be a

productive endeavor.
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Chapter 2

Graphs and Domination Sets

The basis of this thesis is graphs and products of graphs. We start by defining graphs as

in [3].

Definition 1. A Graph G = (V ,E) is a finite nonempty set V(G) of objects called vertices,

together with a possibly empty set E(G) of distinct unordered pairs of elements of V(G) called

edges.

When there is no ambiguity we will write V and E instead of V(G) and E(G) in that

order. The order of a G is the cardinality of V(G). The size of G is the cardinality of

E(G). Two vertices are said to be adjacent or neighbors if there is an edge between them.

An edge between two vertices is incident to each vertex.

Definition 2. The open neighborhood of the vertex v consists of the set of vertices adjacent to v,

that is, N(v) = {w ∈ V : vw ∈ E}, and the closed neighborhood of v is N[v] = N(v) ∪ {v}.

The degree deg(v) of v is the number of edges incident to v or simply the cardinality

of N(v). A vertex v such that N(v) = ∅ is called an isolate.

A set S of vertices in a graph G is independent or stable if no two vertices in the set

are adjacent in G. A maximum independent set is an independent set of largest possible

cardinality. If a set S is a maximum independent set, then it is not a subset of any other

3



independent set; i.e., every edge of G is incident to at least one vertex not in S and every

vertex not in S has at least one neighbor in S. The vertex independence number or

simply independence number α(G) of G is the cardinality of a maximal independent set

of G.

A set of edges in a graph G is independent if no two edges in the set are adjacent in

G. The edges in an independent set of edges of G are called a matching in G. A matching

of maximum cardinality in G is a maximum matching in G. The edge independence

number α1(G) of G is the number of edges in a maximum matching of G. If M is a

matching of G where every vertex of G is incident with an edge of M, then M is a

perfect matching in G.

We follow the notation in [8] for the following definitions related to domination in

graphs.

Definition 3. A domination set of graph G(V,E), is S ⊆ V , such that every vertex in V is

either in S or adjacent to a vertex in S.

This definition gives rise to several equivalent forms of the definition of a domination

set from [8]: A set S ⊆ V is a dominating set if and only if:

i. for every vertex v ∈ V − S there exists a vertex u ∈ S such that v is adjacent to u;

ii. for every vertex v ∈ V − S, the distance between v and S, d(v,S) 6 1;

iii. the closed neighborhood of S equals V , N[S] = V ;

iv. for every vertex v ∈ V − S, |N(v) ∩ S| > 1, that is, every vertex v ∈ V − S is adjacent

to at least one vertex in S;

v. for every vertex v ∈ V , |N[v] ∩ S| > 1.

Note that if S is a domination set of graph G(V ,E), then any subset of V that contains

S is also a domination set. On the other hand, not every subset of S is necessarily a
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domination set. For a subset S the graph that includes the vertices of S and the same

edges between those vertices as in the original graph G is called the induced subgraph

of G, or the subgraph of G induced by S, signified by 〈S〉.

Definition 4. A domination set S is a minimal domination set if no proper subset S ′ is a

domination set.

The set of all minimal domination sets of a graph G is denoted by MDS(G). Figure

2.1 shows a graph with minimal domination sets of cardinality three (graph B), four

(graph C), and five (graph D).
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Figure 2.1: Minimal domination sets of differing cardinality

In [11], Ore demonstrated that for any minimal domination set S, every vertex u ∈ S
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was either an isolate of S or there was a vertex v ∈ V − S for which N(v) ∩ S = {u}. All

of the minimal domination sets in Figure 2.1 meet this standard. This idea of minimal

domination set leads to the following definitions:

Definition 5. The domination number γ(G) of a graph G equals the minimum cardinality of

a set in MDS(G), or equivalently, the minimum cardinality of a domination set in G.

Figure 2.1 shows a graph with domination number of 3, and clearly this graph could

not have a domination set of cardinality 2. In more complex graphs, proving the domi-

nation number could not be smaller requires more effort.

Definition 6. The upper domination number Γ(G) equals the maximum cardinality of a set

in MDS(G), or equivalently, the maximum cardinality of a minimal domination set of G.

These definitions of minimal domination and domination number are for the least

restrictive form of domination. Other domination parameters are formed by combining

domination with other graph theoretical properties. In this work three such properties

are considered: First is that the domination set S has all isolated vertices, which leads to

independent domination. Second is that S has no isolated vertices, which leads to total

domination. Third is that S has a perfect matching, which leads to paired domination.

Independent domination, as defined by Goddard et al. [5]

Definition 7. An independent dominating set of G is a set that is both dominating and

independent in G.

The independent domination number of G, denoted by i(G) is the minimum cardi-

nality of an independent dominating set. In total domination, not only does every vertex

in V − S have to be adjacent to a vertex in S, but each vertex in S must also be adjacent

to a different vertex in S. This leads to the definitions:

Definition 8. The set St is a total domination set if V = N(St).
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As in the case of the domination number, the total domination number is given by

the least cardinality of all possible total domination sets.

Definition 9. The total domination number is γt(G) = min
{
|St| | St ⊆ V(G) and V =

N(St)
}

.

Since the total domination set is also a domination set, it is clear that γ(G) 6 γt(G)

for any graph G.

In paired domination, the total domination set must satisfy an additional condition.

The adjacent vertices in S must also form a perfect matching. The definition is:

Definition 10. A paired-domination set Spr with matching M is a domination set Spr =

{v1, v2, . . . , v2t−1, v2t} with independent edge set M = {e1, e2, . . . , et} where each edge ei is

incident to two vertices in Spr.

The perfect matching requires that no two ei can be incident to the same vi, which is

why |S| = 2|M|. This also means that a vertex set with a perfect matching has an even

cardinality. The paired-domination number is, as expected:

Definition 11. The paired-domination number γpr(G) is the minimum cardinality of a

paired-domination set Spr in G.

Both total domination and paired domination require that there be no isolated ver-

tices in S, and every paired-domination set is also a total domination set. In addition

γ(G) 6 i(G) 6 γt(G) 6 γPR(G).

7



As clarification, consider the same graph as in figure 2.1 but with different domina-

tion sets, see figure 2.2.
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Figure 2.2: Graph G, γ(G) = i(G) = 3 in B, γt(G) = 4 in C, and γpr(G) = 4 in D
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Chapter 3

Graph Products and Domination

In graph theory, products of graphs have been an area of interest and several different

types of products have been studied. Three common types of products that have been

previously studied are the Cartesian product, Direct product, and Strong product. All of

these products are both commutative and associative, which is evident in the definitions.

The definitions of these three types of graph products follow:

Definition 12. The Cartesian product of two graphs G(V ,E) and H(V ,E) is the graph G�H

with vertices V(G�H) = V(G)× V(H), and edges

E(G�H) =
{
(g1,h1)(g2,h2) | g1g2 ∈ E(G) and h1 = h2, or g1 = g2 and h1h2 ∈ E(H)

}
.

Definition 13. The direct product of two graphs G(V ,E) and H(V ,E) is the graph G×H

with vertices V(G×H) = V(G)× V(H). and edges

E(G×H) =
{
(g1,h1)(g2,h2) | g1g2 ∈ E(G) and h1h2 ∈ E(H)

}
The strong product is the graph that has the same vertex set as the Cartesian and

direct products and whose edge set is the union of the edge sets of both.

Definition 14. The strong product of two graphs G(V ,E) and H(V ,E) is the graph G�H

with vertices V(G�H) = V(G)× V(H) and edges

E(G�H) =
{
{(g1,h1)(g2,h2) | g1g2 ∈ E(G) and h1 = h2 or g1 = g2 and h1h2 ∈ E(H)}

⋃
{(g1,h1)(g2,h2) |

g1g2 ∈ E(G) and h1h2 ∈ E(H)}
}

9



These products are illustrated in the following figures:

 

g2,h2( )g1,h2( )

g2,h1( )g1,h1( )

g2g1

h2

h1

Figure 3.1: Graph of G�H where G = P4,H = K2

 

g2,h2( )g1,h2( )

g2,h1( )g1,h1( )

g2g1

h2

h1

Figure 3.2: Graph of G×H where G = P4,H = K2

The strong product has an edge set that is the union of the edge sets of both the

Cartesian and direct products.
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g2,h2( )g1,h2( )

g2,h1( )g1,h1( )

g2g1

h2

h1

Figure 3.3: Graph G�H where G = P4,H = K2

It is worth noting that these graph products use variations of standard mathematical

notation, and actually use the same notation for different types of products. The ”×”

symbol is typically used for the Cartesian product, and is used in that fashion in all three

definitions for the vertex sets, which are true Cartesian products of two sets producing

ordered pairs. The graph products are distinctly different types of products. Here the

product symbol for the Cartesian product, ”�”, differs from the standard symbol. Sim-

ilarly the direct product symbol for the graph product, ”×”, is the standard symbol for

the Cartesian product, which this is definitely not, instead of the standard symbol, ”
⊗

”

typically used for direct, or also refered to as tensor or Knocker, products. In looking at

the figures the purpose of these symbols can be seen, as the edges produced by adjacent

vertices in each graph result in edges of the product graph that resemble the symbol.

The strong product symbol ”�” shows the edges created in similar fashion to the direct

and Cartesian products.

One of the earliest and still unsolved probelms in domination theory of graph prod-

ucts was first asked by V. G. Vizing [14] in 1963, and five years later offered as a conjec-
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ture [15].

Vizing’s Conjecture: The domination number of the Cartesian product of any two

graphs is at least as large as the product of their domination numbers.

Proof of Vizing’s conjecture for the general case is still an open question, however

much work has been done on some classes and types of graphs which do satisfy Viz-

ing’s conjecture. Barcalkin and German [1] discovered a method of partitioning graphs

into subgraphs of a particular type which yielded a large class of graphs, called BG-

graphs, which satisfy Vizing’s conjecture. A graph G is said to satisfy Vizing’s conjecture

if γ(G�H) > γ(G)γ(H) holds for every graph H. In 2000 Clark and Suen [4] proved that

for all graphs G and H, γ(G�H) > 1
2
γ(G)γ(H).

Although Vizings conjecture is specific to Cartesian products it has become the stan-

dard of comparison for other products as well. In addition, where the conjecture sets a

lower bound for the product domination number, attempts have been made to set upper

bounds for the domination number of different types of products.

As stated by Rall [13], a graph product is submultiplicative if γ(G ·H) 6 γ(G) ·γ(H).

A graph product is supermultiplicative if γ(G ·H) > γ(G) ·γ(H). In the same work Rall

shows by way of counter-example that the direct product is neither submultiplicative

nor supermultiplicative for any two graphs G and H. Later Bres̆ar, Klavz̆ar and Rall [12]

proved three significant results for direct products:

γ(G×H) 6 3γ(G)γ(H)

Γ(G×H) > Γ(G)Γ(H)

γpr(G×H) 6 γpr(G)γpr(H)

These bounds will be of interest in the study of semi-strong products.

12



For strong products, in Handbook of Product Graphs Hammack et al. [7] give a similarly

significant result:

γ(G�H) 6 γ(G)γ(H)

These results have some significance to the work of this thesis as semi-strong products

also study a graph product which, like the strong product, uses a combination of some

of the edges in a Cartesian product and the edges of the direct product.

13



Chapter 4

Semi-strong Products of Graphs

In this Chapter we study the semi-strong products of graphs and the domination num-

bers associated with them. The definition of a semi-strong product is:

Definition 15. The semi-strong product of two graphs G(V ,E) and H(V ,E) is the graph

G × H with vertices V(G × H) = V(G) × V(H) and edges E(G × H) =
{
(g1,h1)(g2,h2) |

g1g2 ∈ E(G) and h1 = h2; or g1g2 ∈ E(G) and h1h2 ∈ E(H)
}

.

 

g2,h2( )g1,h2( )

g2,h1( )g1,h1( )

g2g1

h2

h1

Figure 4.1: Graph of semi-strong product of P4 and K2
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4.1 Basic Properties of the Semi-strong Product

The same notational discrepancies occur in this definition as in the three previous graph

products, and again the symbol for the semi-strong product mimics the edges produced

by the product. Apart in the study of domination of graphs, this product has an interest

on its own. In support of this we present the following basic observations.

While there are a number of similarities between the semi-strong product and the

three others, there is one very significant difference - the semi-strong product is neither

associative nor commutative.

This is demonstrated using two graphs, K2 and C4, and the fact that K2 × K2 = C4, as

seen Figure 4.2 (A). In addition we have C4 × K2 in Figure 4.2 (B) and K2 × C4 in Figure

4.2 (C).

 

CB

A

Figure 4.2: Graphs showing non-commutativity of semi-strong products

We can see that the product in Figure 4.2 (B), C4 × K2, has 16 edges, while K2 × C4

15



in Figure 4.2 (C) has only 12 edges. In other words, the first graph is the 4-regular

bipartite graph K4,4 and the second one the 3-regular bipartite graph Q3 or the 3-cube.

This means that C4 × K2 6= K2 × C4 and semi-strong products are not necessarily

commutative. Next consider (K2 × K2) × K2 = C4 × K2 as seen in part A of Figure 4.2,

while K2 × (K2 × K2) = K2 × C4. As was noted C4 × K2 6= K2 × C4 so semi-strong

products are also not associative.

Proposition 1. The degree of (g,h) ∈ V(G × H) is given by deg((g,h)) = degG(g) (degH(h) + 1).

Proof. From the definition of the edge set of a semi-strong product the direct product

edges will contribute degG(g)degH(h) to the degree of any given vertex, while the edges

repeated from G will give degG(g).

Proposition 2. Given the graphs G with n1 vertices and m1 edges, and H with n2 vertices and

m2 edges, then G × H has n1n2 vertices and m1n2 + 2m1m2 edges.

Proof. The vertex set in the semi-strong is the Cartesian product of the vertex set of

the factors and hence the result n1n2, while the number of edges is derived from the

definition of the edges of the semi-strong product, with m1n2 edges with the n2 copies

of G in G × H, while 2m1m2 represents the pair of edges produced by the direct product.

Thus |E(G × H)| = n2|E(G)| ∪ |E(G×H)| = m1n2 + 2m1m2.

Proposition 3. If H 6= K1 then G × H is connected if, and only if, G and H are both connected

and G 6= K1. Furthermore, if G =

r⋃
i=1

Gi and H =

s⋃
j=1

Hj, with no Gi = K1, then

G × H =
⋃

16i6r
16j6s

Gi × Hj.

Proof. Assume both G and H are connected and G 6= K1. Consider any two vertices

(g1,h1) and (g2,h2) of G × H. If h1 = h2, then because G is connected, and (g1,h1) and

(g2,h2) are on the same copy of G we can use the g1–g2 path in the connected graph G

16



to connect (g1,h1) and (g2,h1). Otherwise, the g1–g2 path in G and the h1–h2 path in H

can be used to get a (g1,h1) – (g2,h2) path. This means G × H is connected.

Conversely, if G = K1 then G × H will only have |V(H)| isolated vertices, hence if

G × H is connected G 6= K1. Assume one or both of G or H are not connected, but

G × H is connected. If we take G to be not connected. Take two vertices g1 and g2 that

belong to two different components of G and the vertices (g1,h1) and g2,h2. Since G × H

is connected there exists a (g1,h1) – g2,h2 path in G × H, leading to g1–g2 path in G,

which is a contradiction. Similar contradiction arises if we assume H is not connected.

Therefore if G × H is connected, then G and H are both connected. The second result

follows from component by component product and the proof above.

Let χ(G) be the chromatic number of G, the smallest number of colors needed to

color the vertices of G so that no two adjacent vertices share the same color.

Proposition 4. χ(G × H) = χ(G). Moreover, if G is bipartite, then G × H is also bipartite.

Proof. The vertices (g1,h1), (g2,h2) ∈ V(G × H) are adjacent, if and only if g1g2 ∈ E(G).

This means the color class of (g1,h1) and (g2,h2) is determined by g1 and g2, i.e.,

χ(G × H) = χ(G). The second result easily follows from the fact that for a bipartite

graph B, χ(B) = 2.

4.2 Domination and the Semi-strong Product

The following theorem shows the relationship between domination numbers of direct

products, semi-strong products and strong products.

Theorem 1. For any graphs G and H, γ(G�H) 6 γ(G × H) 6 γ(G×H) 6 3γ(G)γ(H).

Proof. Since the edge set of G × H is a subset of the edge set of G�H, any domination set

of G�H must also be a domination set for G × H, while the converse is not necessarily
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true, hence γ(G�H) 6 γ(G × H). Similarly, E(G×H) ⊂ E(G × H), giving γ(G × H) 6

γ(G×H). The result γ(G×H) 6 3γ(G)γ(H) follows from the work of Rall et al. [12].

Let P3 be the path on 3 vertices. In similar fashion to the direct product, the semi-

strong product is not submultiplicative since γ(P3 × K2) = 2 > 1 = γ(P3)γ(K2).

 

v2

v1

g1

h1

Figure 4.3: Graph of P3,K2 and their semi-strong product with labeled domination sets

Note that Cn is the cycle on n vertices and that Cn a connected 2-regular graph,

i.e., deg(v) = 2 for every vertex v ∈ V (Cn). This is: N(v) = 2 and N[v] = 3 for every

vertex v in Cn. What this means is that any cycle Cn contains at most bn
3
c independent

neighborhoods. If we choose the central vertex of each such neighborhood as a subset of

V(Cn) then we have a minimal dominating set of Cn, or γ(Cn) = bn3 c, if n
3
≡ 0 (mod 3).

If n
3
≡ 1, 2 (mod 3), then the domination set of Cn must include one addtional vertex

meaning γ(Cn) = bn
3
c + 1, or equivalently γ(Cn) = dn

3
e. This yields γ(C6) = 2, while

γ(C7) = 3.

In the following Lemma, Berge [2], we have a general lower bound for the domination

number of a graph in terms of the maximum degree ∆(G) of a graph G.
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Lemma 1. Let the maximum degree of G with n vertices be ∆(G), then any dominating set of G

has at least n
∆(G)+1

vertices.

Proof. For any vertex v ∈ V(G), N[v] has at most ∆(G) + 1 vertices. Thus the number of

vertices any vertex v of G can dominate is at most ∆(G) + 1, therefore every dominating

set must have at least n
∆(G)+1

vertices.

Corollary 1. If G is r-regular, then any dominating set of G has at least n
r+1

vertices.

Corollary 2. Every total dominating set and every perfect-paired dominating set of G must have

at least n
∆(G)

vertices.

Figure 4.4 below shows the case of the C7 × C7 drawn on the torus; C7 × C7 is a

6-regular graph with 49 vertices, thus any dominating set of this product must have at

least 7 vertices. Figure 4.4 also shows the 7 vertices indicated in black as a dominating

set; hence we have γ(C7 × C7) = 7.

The above argument shows that the semi-strong product is not supermultiplicative

since γ(C7 × C7) = 7 < 9 = γ(C7)γ(C7).

When the product C7j × C7k where j, k are positive integers, is similarly drawn on

a torus we observe the same pattern seen in the C7 × C7 graph. We can summarize the

general result showing that the submultiplicativity is not necessarily so, as seen in the

following theorem.

Theorem 2. Given the semi-strong product graph Cm × Cn with m = 7j,n = 7k for some

positive integers j and k, then:

a. γ(Cm × Cn) < γ(Cm)γ(Cn) when j = 1, 7k ≡ 1, 2 (mod 3) (or conversely 7j ≡

1, 2 (mod 3) and k = 1).

b. γ(Cm × Cn) = γ(Cm)γ(Cn) when j = 1, 7k ≡ 0 (mod 3) (or conversely 7j ≡ 0 (mod 3)

and k = 1).

c. γ(Cm × Cn) > γ(Cm)γ(Cn) when j > 1 and k > 1.
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v7

v6

v5

v4

v3

v2

v1

Figure 4.4: Graph of semi-strong product of C7,C7 with labeled domination set

Proof. Let Cm × Cn with m = 7j,n = 7k for some positive integers j and k. Using

Corollary 1 above and the facts that Cm × Cn is a 6-regular graph, we see that any

dominating set of the product must have at least 7jk vertices, i.e., γ(Cm × Cn) > 7jk.

However, if we draw the graph Cm × Cn on the torus we can see that it consists of jk

blocks, each of which is of the same pattern as a C7 × C7 and we can get a dominating

set of 7jk vertices following the pattern of a minimal dominating set for a C7 × C7 block,

ensuring γ(Cm × Cn) 6 7jk. Thus, γ(Cm × Cn) = 7jk.

a. Let j = 1 and 7k ≡ 1, 2 (mod 3). γ(Cm) = γ(C7) = 3 and γ(Cn) = d7k/3e, hence

γ(Cm)γ(Cn) = 3 · (d7k/3e). But if 7k ≡ 1, 2 (mod 3), by definition d7k/3e = (7k+ r)/3

where either r = 1 or r = 2 so that (7k + r) is divisible by 3, and 3(d7k/3e) = 3((7k +

r)/3) = 7k+ r > 7k and therefore γ(Cm × Cn) < γ(Cm)γ(Cn).
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b. Let j = 1 and 7k ≡ 0 (mod 3); again γ(Cm) = γ(C7) = 3, γ(Cn) = d7k/3e and again

γ(Cm)γ(Cn) = 3(d7k/3e). But if 7k ≡ 0 (mod 3), by definition d7k/3e = 7k/3 and

3 · (d7k/3e) = 3(7k/3) = 7k, therefore γ(Cm × Cn) = γ(Cm)γ(Cn).

c. Let j > 1 and k > 1. γ(Cm) = γ(C7j) = d7j/3e and γ(Cn) = γ(C7k) = d7k/3e. Let

7j + r1 ≡ 0 (mod 3) where r1 = 0, 1 or 2 and 7k + r2 ≡ 0 (mod 3) where r2 = 0, 1

or 2. Hence γ(Cm)γ(Cn) = d7j/3ed7k/3e = (7j+r1)(7k+r2)
9

= 49jk+7(r1k+r2j)+r1r2
9

. This

product is minimum when both r1 and r2 are 0. This yields γ(Cm)γ(Cn) = (49jk)/9 =

(7/9)(7jk) < 7jk = γ(Cm × Cn). Therefore γ(Cm × Cn) > γ(Cm)γ(Cn). That is,

when j > 1 and k > 1, γ(Cm × Cn) > γ(Cm)γ(Cn).

This pattern which allows the neighborhoods of the vertices of the domination set to

all be independent thus provides an example of a group of semi-strong product graphs

for which the domination number of the product is at times less than, or other times

equal to, and yet other times greater than the product of the domination numbers of the

two graphs.

Two special cases are now considered. Both deal with complete graphs. A complete

graph Kn on n vertices is a graph where every vertex is adjacent to every other vertex of

the graph. Thus if v is any vertex in V (Kn), then N[v] = V(Kn) and by definition {v} is a

domination set for Kn which means γ (Kn) = 1 for all n ∈ Z+.

Before considering these cases, we present a lemma and corollary which will be used

in the sequel.

Lemma 2. Given the semi-strong product G × H and a vertex (g1,h1) ∈ V(G × H), any vertex

(g,h) ∈ V(G × H) where g ∈ N(g1) and h ∈ N(h1) must be in N((g1,h1)) ⊆ V (G × H).

Proof. Let, (g,h) ∈ V(G × H); from the definition of the semi-strong product, if g ∈

N(g1) then gg1 ∈ E(G) and (g,h1)(g1,h1) ∈ E(G × H). If h is also in N(h1), then

(g,h)(g1,h1) ∈ E(G × H). Therefore (g,h) ∈ N ((g1,h1)).
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Corollary 3. Given (gd,hd) ∈ V(G × H) where gd ∈ DG where DG is a minimal domination

set of G and hd ∈ DH where DH is a minimal domination set of H, then (g,h) ∈ N(DG ×DH)

whenever h ∈ N(hd) and g ∈ N(gd) .

                     

GxH

gd,h( )

g,hd( )

g,h( )

gd,hd( )

DGxDG

DG

DH

G

H

Figure 4.5: Illustration of Corollary 3

N. B. Corollary does NOT say (g,hd) or (gd,h) are in N(DG ×DH)

Theorem 3. Let Kn be a complete graph of order n. For any graphH, then γ(Kn × H) 6 2γ(H).

Proof. Let {v1} be a minimal domination set for Kn and D ⊆ V(H) be a minimal domi-

nation set for H. Consider the set of vertices Dp =
{
(v1,hd) | (v1,hd) ∈ V(Kn × H)

}
where hd ranges over D . Clearly |Dp| = |D|, and for all (vi,hf) ∈ V(Kn × H) one of the

following holds:
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i. (v1,hd) ∈ Dp by definition of Dp.

ii. For vi, i 6= 1 then (vi,hd) ∈ N((v1,hd)) since v1vi ∈ E(Kn × H) by the semi-strong

definition.

iii. For vi, i 6= 1 and he 6= hd, then (vi,he) ∈ N((v1,hd)) by Corollary 3.

iv. For he /∈ {hd}, then (v1,he) /∈ N[(v1,hd)].

 

N v1( )v1{ }

v1, he( ) vi, he( )

v1, hd( ) vi, hd( )hd{ }

N hd( ) = he

Kn

H

Figure 4.6: Illustration of four cases in Theorem 3

Now choose v2 6= v1 and define another set of vertices,Dp2
in exactly the same manner as

Dp except using v2 instead of v1. Then for all (vi,hf) ∈ V(Kn × H), either (vi,hf) ∈ Dp

or (vi,hf) ∈ Dp2
. This means Dp ∪Dp2

must form a domination set for Kn × H. Since

|Dp2
| = |Dp| = |γ(H)|, the cardinality of a minimal domination set for the product must

be less than or equal to the cardinality of Dp ∪Dp2
, that is, γ(Kn × H) 6 2γ(H).

Corollary 4. Let Kn be a complete graph. For any graph H, then γt(Kn × H) 6 2γ(H).

Noting the semi-strong product is not commutative, we reverse the order of factors

we had in Theorem 3 to obtain the following result which has the complete graph Kn as

a second factor rather than the first. What that means here is the semi-strong product

will have n isomorphic copies of H as subgraph.
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Theorem 4. Let Kn be a complete graph. For any graph H, then γ(H × Kn) 6 2γ(H).

Proof. Let D ⊆ V(H) be a minimal domination set for H and {v1} be a minimal domi-

nation set for Kn. Consider the set of vertices Dp =
{
(hd, v1) | (hd, v1) ∈ V(H × Kn)

}
where hd ranges over D. Clearly |Dp| = |D| and for all (hi, vf) ∈ V(H × Kn) one of the

following holds:

i. (hd, v1) ∈ Dp by definition of Dp.

ii. For he /∈ D then (he, v1) ∈ N((hd, v1)) for some hd ∈ D by definition of domination

and the edges of the semi-strong product.

iii. For he /∈ D and vi, i 6= 1, then (he, vi) ∈ N((hd, v1)) for some hd ∈ D by Corollary 3.

iv. (hd, vi), i 6= 1

For the vertices in Case iv, there are two possibilities, if there is a h ′
d ∈ N(hd) in D, then

(hd, vi) ∈ N((hd, v1)) by Lemma 2. If no such h ′
d exists (hd is an isolate in D), then

(hd, vi) /∈ N((hd, v1)). For each isolate hd ∈ D there must be some h ′
e /∈ D such that h ′

e ∈

N(hd) then (h ′
e, vi) ∈ N((hd, v1)) by Lemma 2. Let D ′ = D ∪ {he | he is a necessary h ′

e},

then let De =
{
(hi, v1) | hi ∈ D ′}. De is a domination set for H × Kn.

If every hd ∈ D is an isolate, and d(hd1
,hd2

) = 2 for each hd1
,hd2

∈ D, then every

hd ∈ D will require a distinct h ′
e. In this case |D ′| = 2|D| and γ(H × Kn) = 2γ(H).

Otherwise |D ′| < 2|D| and γ(H × Kn) < 2γ(H). This along with the definition of a

minimal domination set yields. Therefore, γ(H × Kn) 6 2γ(H).

Corollary 5. Let Kn be a complete graph and H a graph with minimal total domination set

Dt ⊂ V(H). Then γt(H × Kn) = γt(H).

Next let’s consider the more general case for γ(Cm × Cn). Let’s start with C4 × C3;

because this graph does not fit the pattern of C7 × C7 it is not possible to create maximal

independent neighborhoods of each vertex, however the domination set shown in the

figure is a perfect pairing with a maximal neighborhood for such a perfect pairing.
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Figure 4.7: Semi-strong product graph of C4 and C3 with domination sets

Theorem 5. Given a semi-strong product of the form Cm × Cn where m = 4j,n = 3k for some

positive integers j and k, then γpr(Cm × Cn) = 2dm
4
e · dn

3
e = 2 · j · k.

Proof. If j = k = 1 then the graph is C4 × C3 which has 12 vertices with a regular degree

of 6. By corollary 2 the minimum required vertices for a perfect-paired domination set

is two. Since the diagram shows this the two domination set vertices must be a minimal

perfect-paired domination set. Now consider the product Cm × Cn = C4j × C3k which

contains j · k blocks identical to C4 × C3 which will have a domination set of 2jk vertices

in perfect pairing. The product contains mn = 4j · 3k = 12jk vertices. Since the graph is

r-regular of degree 6, the minimal perfect-paired domination set must have a minimum

of 12jk/6 = 2 · j · k vertices. Therefore γpr(Cm × Cn) = (C4j × C3k) = 2 · j · k.

Another way to state this result is: given m ≡ 0 (mod 4), and n ≡ 0 (mod 3) we have

γpr(Cm × Cn) = 2dm/4edn/3e = γpr(Cm)γ(Cn).

Corollary 6. Given semi-strong product of the form Pm × Pn = P4k × P3k, then γpr(Pm × Pn) =

2 · j · k.

The other problem that is conveniently solved by this pattern occurs consistently in

semi-strong products. In the semi-strong product G × H, a vertex g ∈ V(G) continues to

be adjacent to any other vertices adjacent to it in V(G), and also adjacent to the product

vertices of these G vertices adjacent in H, but is not adjacent to those product vertices
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Figure 4.8: Graph illustrating Corollary 6

which are adjacent in H, but have the same g vertex. When two vertices adjacent in V(G)

are included in the domination set for G × H, this problem is solved for them both.

This leads to the following conjectures:

Conjecture 1. For the semi-strong product Cm × Cn, then γ(Cm × Cn) 6 2dm/4e · dn/3e

Conjecture 2. For the semi-strong product Pm × Pn, then γ(Pm × Pn) 6 2dm/4e · dn/3e.

Although it is believed these conjectures are true the author was unable to devise

acceptable proofs.

This treatment concludes with an attempt at an upper boundary for the domination

number of a general semi-strong product.

Theorem 6. For any graphs G and H, γ(G × H) 6 2γ(G)γ(H).

Proof. Let gd ∈ DG where DG is a minimal domination set for G, and hd ∈ DH where

DH is a minimal domination set for H. Consider DG × DH ⊆ V(G × H). By definition

(gd,hd) ∈ DG × DH and for all (g ′,h ′) ∈ V((G × H))\(DG × DH), we have (g ′,h ′) ∈

N(DG ×DH) by Corollary 3.

Two cases remain, first is (g ′,hd) for g ′ ∈ V(G)\DG but by the first part of the

definition of a semi-strong product gg ′ ∈ E(G × H) and hence (g ′,hd) ∈ N(DG ×

DH). For all of these thus far, DG × DH acts as a domination set. The second case is
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(gd,h
′) for h ′ ∈ V(H)\DH. If gd is adjacent to DG, meaning gd is not an isolate of

DG, then (gd,h
′) ∈ N(DG × DH). If gd is an isolate in DG then there must exist an

g ′ ∈ V(G)\DG adjacent to gd such that (g ′,h ′) is adjacent to (gd,h
′) in V(G × H).

Let Dp =
{
(g ′,h ′) | g ′ is a necessary such vertex to make the adjacency needed

}
. Then

(DG ×DH) ∪ (Dp ×DH) forms a domination set for G × H.

Clearly |Dp| 6 |DG| depending on how many g ′ vertices are needed to include the

isolates of DG. Since the cardinality of a minmal domination set is always less than or

equal to the cardinality of a domination set,

γ(G × H) 6 γ(G)γ(H) + γ(G)γ(H) = 2γ(G)γ(H).

Corollary 7. For any graphs G and H, γt(G × H) 6 γt(G)γ(H).

Corollary 8. For any graphs G and H, γpr(G × H) = γpr(G)i(H).

4.3 Further Questions for Research

The first task is to settle the conjectures in Chapter 4; second is come up with the smallest

possible constant c that gives a tighter bound, γ(G × H) 6 cγ(G)γ(H) than the three

that naturally comes as a corollary to the result from direct products, and if possible

characterize those factors that would attain this tighter bound.

There are also many variations of domination, for example independent domination,

semi-total domination, fair domination, roman domination, fractional domination, edge

domination, etc that are addressed for other product graphs. These domination param-

eters should be examined for the semi-strong product as well.
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