51,739 research outputs found

    Kronecker Sum Decompositions of Space-Time Data

    Full text link
    In this paper we consider the use of the space vs. time Kronecker product decomposition in the estimation of covariance matrices for spatio-temporal data. This decomposition imposes lower dimensional structure on the estimated covariance matrix, thus reducing the number of samples required for estimation. To allow a smooth tradeoff between the reduction in the number of parameters (to reduce estimation variance) and the accuracy of the covariance approximation (affecting estimation bias), we introduce a diagonally loaded modification of the sum of kronecker products representation [1]. We derive a Cramer-Rao bound (CRB) on the minimum attainable mean squared predictor coefficient estimation error for unbiased estimators of Kronecker structured covariance matrices. We illustrate the accuracy of the diagonally loaded Kronecker sum decomposition by applying it to video data of human activity.Comment: 5 pages, 8 figures, accepted to CAMSAP 201

    From Fixed-X to Random-X Regression: Bias-Variance Decompositions, Covariance Penalties, and Prediction Error Estimation

    Full text link
    In statistical prediction, classical approaches for model selection and model evaluation based on covariance penalties are still widely used. Most of the literature on this topic is based on what we call the "Fixed-X" assumption, where covariate values are assumed to be nonrandom. By contrast, it is often more reasonable to take a "Random-X" view, where the covariate values are independently drawn for both training and prediction. To study the applicability of covariance penalties in this setting, we propose a decomposition of Random-X prediction error in which the randomness in the covariates contributes to both the bias and variance components. This decomposition is general, but we concentrate on the fundamental case of least squares regression. We prove that in this setting the move from Fixed-X to Random-X prediction results in an increase in both bias and variance. When the covariates are normally distributed and the linear model is unbiased, all terms in this decomposition are explicitly computable, which yields an extension of Mallows' Cp that we call RCpRCp. RCpRCp also holds asymptotically for certain classes of nonnormal covariates. When the noise variance is unknown, plugging in the usual unbiased estimate leads to an approach that we call RCp^\hat{RCp}, which is closely related to Sp (Tukey 1967), and GCV (Craven and Wahba 1978). For excess bias, we propose an estimate based on the "shortcut-formula" for ordinary cross-validation (OCV), resulting in an approach we call RCp+RCp^+. Theoretical arguments and numerical simulations suggest that RCP+RCP^+ is typically superior to OCV, though the difference is small. We further examine the Random-X error of other popular estimators. The surprising result we get for ridge regression is that, in the heavily-regularized regime, Random-X variance is smaller than Fixed-X variance, which can lead to smaller overall Random-X error

    A Bias-Variance-Covariance Decomposition of Kernel Scores for Generative Models

    Full text link
    Generative models, like large language models, are becoming increasingly relevant in our daily lives, yet a theoretical framework to assess their generalization behavior and uncertainty does not exist. Particularly, the problem of uncertainty estimation is commonly solved in an ad-hoc manner and task dependent. For example, natural language approaches cannot be transferred to image generation. In this paper we introduce the first bias-variance-covariance decomposition for kernel scores and their associated entropy. We propose unbiased and consistent estimators for each quantity which only require generated samples but not the underlying model itself. As an application, we offer a generalization evaluation of diffusion models and discover how mode collapse of minority groups is a contrary phenomenon to overfitting. Further, we demonstrate that variance and predictive kernel entropy are viable measures of uncertainty for image, audio, and language generation. Specifically, our approach for uncertainty estimation is more predictive of performance on CoQA and TriviaQA question answering datasets than existing baselines and can also be applied to closed-source models.Comment: Preprin

    Data Unfolding with Wiener-SVD Method

    Full text link
    Data unfolding is a common analysis technique used in HEP data analysis. Inspired by the deconvolution technique in the digital signal processing, a new unfolding technique based on the SVD technique and the well-known Wiener filter is introduced. The Wiener-SVD unfolding approach achieves the unfolding by maximizing the signal to noise ratios in the effective frequency domain given expectations of signal and noise and is free from regularization parameter. Through a couple examples, the pros and cons of the Wiener-SVD approach as well as the nature of the unfolded results are discussed.Comment: 26 pages, 12 figures, match the accepted version by JINS
    • …
    corecore