30 research outputs found

    Approximation of definable sets by compact families, and upper bounds on homotopy and homology

    Full text link
    We prove new upper bounds on homotopy and homology groups of o-minimal sets in terms of their approximations by compact o-minimal sets. In particular, we improve the known upper bounds on Betti numbers of semialgebraic sets defined by quantifier-free formulae, and obtain for the first time a singly exponential bound on Betti numbers of sub-Pfaffian sets.Comment: 20 pages, 2 figure

    Topology of definable Hausdorff limits

    Full text link
    Let ARn+rA\sub \R^{n+r} be a set definable in an o-minimal expansion §\S of the real field, ARrA' \sub \R^r be its projection, and assume that the non-empty fibers AaRnA_a \sub \R^n are compact for all aAa \in A' and uniformly bounded, {\em i.e.} all fibers are contained in a ball of fixed radius B(0,R).B(0,R). If LL is the Hausdorff limit of a sequence of fibers Aai,A_{a_i}, we give an upper-bound for the Betti numbers bk(L)b_k(L) in terms of definable sets explicitly constructed from a fiber Aa.A_a. In particular, this allows to establish effective complexity bounds in the semialgebraic case and in the Pfaffian case. In the Pfaffian setting, Gabrielov introduced the {\em relative closure} to construct the o-minimal structure \S_\pfaff generated by Pfaffian functions in a way that is adapted to complexity problems. Our results can be used to estimate the Betti numbers of a relative closure (X,Y)0(X,Y)_0 in the special case where YY is empty.Comment: Latex, 23 pages, no figures. v2: Many changes in the exposition and notations in an attempt to be clearer, references adde

    Computing the First Few Betti Numbers of Semi-algebraic Sets in Single Exponential Time

    Get PDF
    In this paper we describe an algorithm that takes as input a description of a semi-algebraic set SRkS \subset \R^k, defined by a Boolean formula with atoms of the form P>0,P<0,P=0P > 0, P < 0, P=0 for PPR[X1,...,Xk],P \in {\mathcal P} \subset \R[X_1,...,X_k], and outputs the first +1\ell+1 Betti numbers of SS, b0(S),...,b(S).b_0(S),...,b_\ell(S). The complexity of the algorithm is (sd)kO(),(sd)^{k^{O(\ell)}}, where where s = #({\mathcal P}) and d=maxPPdeg(P),d = \max_{P\in {\mathcal P}}{\rm deg}(P), which is singly exponential in kk for \ell any fixed constant. Previously, singly exponential time algorithms were known only for computing the Euler-Poincar\'e characteristic, the zero-th and the first Betti numbers

    Topological complexity of the relative closure of a semi-Pfaffian couple

    Full text link
    Gabrielov introduced the notion of relative closure of a Pfaffian couple as an alternative construction of the o-minimal structure generated by Khovanskii's Pfaffian functions. In this paper, use the notion of format (or complexity) of a Pfaffian couple to derive explicit upper-bounds for the homology of its relative closure. Keywords: Pfaffian functions, fewnomials, o-minimal structures, Betti numbers.Comment: 12 pages, 1 figure. v3: Proofs and bounds have been slightly improve

    On the number of homotopy types of fibres of a definable map

    Get PDF
    In this paper we prove a single exponential upper bound on the number of possible homotopy types of the fibres of a Pfaffian map, in terms of the format of its graph. In particular we show that if a semi-algebraic set SRm+nS \subset {\R}^{m+n}, where R\R is a real closed field, is defined by a Boolean formula with ss polynomials of degrees less than dd, and π:Rm+nRn\pi: {\R}^{m+n} \to {\R}^n is the projection on a subspace, then the number of different homotopy types of fibres of π\pi does not exceed s2(m+1)n(2mnd)O(nm)s^{2(m+1)n}(2^m nd)^{O(nm)}. As applications of our main results we prove single exponential bounds on the number of homotopy types of semi-algebraic sets defined by fewnomials, and by polynomials with bounded additive complexity. We also prove single exponential upper bounds on the radii of balls guaranteeing local contractibility for semi-algebraic sets defined by polynomials with integer coefficients.Comment: Improved combinatorial complexit

    Bounding Betti Numbers of Sets Definable in O-Minimal Structures Over the Reals

    Get PDF
    A bound for Betti numbers of sets definable in o-minimal structures is presented. An axiomatic complexity measure is defined, allowing various concrete complexity measures for definable functions to be covered. This includes common concrete measures such as the degree of polynomials, and complexity of Pfaffian functions. A generalisation of the Thom-Milnor Bound for sets defined by the conjunction of equations and non-strict inequalities is presented, in the new context of sets definable in o-minimal structures using the axiomatic complexity measure. Next bounds are produced for sets defined by Boolean combinations of equations and inequalities, through firstly considering sets defined by sign conditions, then using this to produce results for closed sets, and then making use of a construction to approximate any set defined by a Boolean combination of equations and inequalities by a closed set. Lastly, existing results for sets defined using quantifiers on an open or closed set are generalised, using a construction from Gabrielov and Vorobjov to approximate any set by a compact set. This results in a method to find a general bound for any set definable in an o-minimal structure in terms of the axiomatic complexity measure. As a consequence for the first time an upper bound for sub-Pfaffian sets defined by arbitrary formulae with quantifiers is given. This bound is singly exponential if the number of quantifier alternations is fixed.Comment: 82 page, PhD thesi

    Erdos-Szekeres-type statements: Ramsey function and decidability in dimension 1

    Full text link
    A classical and widely used lemma of Erdos and Szekeres asserts that for every n there exists N such that every N-term sequence a of real numbers contains an n-term increasing subsequence or an n-term nondecreasing subsequence; quantitatively, the smallest N with this property equals (n-1)^2+1. In the setting of the present paper, we express this lemma by saying that the set of predicates Phi={x_1<x_2,x_1\ge x_2}$ is Erdos-Szekeres with Ramsey function ES_Phi(n)=(n-1)^2+1. In general, we consider an arbitrary finite set Phi={Phi_1,...,Phi_m} of semialgebraic predicates, meaning that each Phi_j=Phi_j(x_1,...,x_k) is a Boolean combination of polynomial equations and inequalities in some number k of real variables. We define Phi to be Erdos-Szekeres if for every n there exists N such that each N-term sequence a of real numbers has an n-term subsequence b such that at least one of the Phi_j holds everywhere on b, which means that Phi_j(b_{i_1},...,b_{i_k}) holds for every choice of indices i_1,i_2,...,i_k, 1<=i_1<i_2<... <i_k<= n. We write ES_Phi(n) for the smallest N with the above property. We prove two main results. First, the Ramsey functions in this setting are at most doubly exponential (and sometimes they are indeed doubly exponential): for every Phi that is Erd\H{o}s--Szekeres, there is a constant C such that ES_Phi(n) < exp(exp(Cn)). Second, there is an algorithm that, given Phi, decides whether it is Erdos-Szekeres; thus, one-dimensional Erdos-Szekeres-style theorems can in principle be proved automatically.Comment: minor fixes of the previous version. to appear in Duke Math.
    corecore