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Abstract

In this paper we describe an algorithm that takes as input a description of a semi-algebraic setS⊂ Rk,
defined by a Boolean formula with atoms of the formP > 0, P < 0, P = 0 for P ∈ P ⊂ R[X1, . . . , Xk],
and outputs the first� + 1 Betti numbers of S, b0(S), . . . ,b�(S). The complexity of the algorithm

is (sd)k
O(�)

, where s = #(P) and d = maxP∈P deg(P), which is singly exponential ink for �
any fixed constant. Previously, singly exponential time algorithms were known only for computing the
Euler–Poincar´e characteristic, the zeroth and the first Betti numbers.
c© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Let R be a real closed field andS ⊂ Rk a semi-algebraic set defined by a Boolean formula
with atoms of the form P > 0, P < 0, P = 0 for P ∈ P ⊂ R[X1, . . . , Xk] (we call such a set a
P-semi-algebraic set and the corresponding formula aP-formula). It is well known (Olĕinik,
1951; Olĕinik and Petrovskii, 1949; Milnor, 1964; Thom, 1965; Basu, 1999; Gabrielov and
Vorobjov, 2005) that the topological complexity ofS (measured by the various Betti numbers
of S) isbounded by(sd)O(k), wheres= #(P) andd = maxP∈P deg(P). Notethat these bounds
are singly exponential ink. More precise bounds on the individual Betti numbers ofS appear
in Basu(2003). Even though the Betti numbers ofS are bounded singly exponentially ink,
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there is no known algorithm for producing a singly exponential sized triangulation ofS (which
would immediately imply a singly exponential algorithm for computing the Betti numbers of
S). In fact, designing a singly exponential time algorithm for computing the Betti numbers
of semi-algebraic sets is one of the outstanding open problems in algorithmic semi-algebraic
geometry. More recently, determining the exactcomplexity of computing the Betti numbers of
semi-algebraic sets has attracted the attention of computational complexity theorists (Burgisser
and Cucker, 2006), who are interested in developing a theory of counting complexity classes for
the Blum–Shub–Smale model of real Turing machines.

Doubly exponential algorithms (with complexity(sd)2
O(k)

) for computing all the Betti
numbers are known, since it is possible to obtain a triangulation ofS in doubly exponential time
using cylindrical algebraic decomposition (Collins, 1975). In the absence of singly exponential
time algorithms for computing triangulations of semi-algebraic sets, algorithms with single
exponential complexity are known only for the problems of testing emptiness (Renegar, 1992;
Basu etal., 1996), computing the zeroth Betti number (i.e. the number of semi-algebraically
connected components ofS) (Grigor’ev and Vorobjov, 1992; Canny, 1993; Gournay and Risler,
1993; Basu etal., 1999), as well as the Euler–Poincar´e characteristic ofS (Basu, 1999). Very
recently a singly exponential time algorithm has been developed for the problem of computing
the first Betti number of a given semi-algebraic set (Basu etal., 2005).

In this paper we describe an algorithm, which given a familyP ⊂ R[X1, . . . , Xk], a
P-formula describing aP-semi-algebraic setS ⊂ Rk, and anumber�,0 ≤ � ≤ k as input,
outputs the first� Betti numbers of S. For constant�, the complexity of the algorithm is
singly exponential ink. We remark that using Alexander duality, we simultaneously obtain a
singly exponential algorithm for computing the top� Betti numbers ofS as well. However, the
complexity of our algorithm becomes doubly exponential if we want to compute the middle Betti
numbers of a semi-algebraic set using it.

There are two main ingredients in our algorithm for computing the first� Betti numbers
of a given semi-algebraic set. The first ingredient is a result proved inBasu etal. (2005),
which enables us to compute a singly exponential sized cover of the given semi-algebraic set
consisting of closed, contractible semi-algebraic sets, in single exponential time. The number
and the degrees of the polynomials used to define the sets in this cover are also bounded singly
exponentially.

The second ingredient, which is the main contribution of this paper, is an algorithm which
uses the covering algorithm recursively and computes in singly exponential time a complex
whose cohomology groups are isomorphic to the first� cohomology groups of the input set.
This complex is of singly exponential size.

The main result of the paper is the following.
Main result: For anygiven�, there is an algorithm that takes as input aP-formula describing
a semi-algebraic setS ⊂ Rk, andoutputsb0(S), . . . ,b�(S). The complexity of the algorithm
is (sd)k

O(�)
, wheres = #(P) and d = maxP∈P deg(P). Note that the complexity is singly

exponential ink for every fixed�.
The paper is organized as follows. In Section2 we recall some basic definitions from algebraic

topology and fix notation. In Section3 we recall a few facts about the Mayer–Vietoris sequence
and its associated double complex. In Section4 we describe the construction of the complexes
which allow us to compute the first� Betti numbers of a given semi-algebraic set. In Section5 we
recall the inputs, outputs and complexities of a few algorithms described in detail inBasu etal.
(2005), which we usein our algorithm. In Section6 we describe our algorithm for computing
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the first� Betti numbers, and prove its correctness as well as the complexity bounds. Finally in
Section7 we comment on issues related to practical implementation.

2. Mathematical preliminaries

In this section, we recall some basic facts aboutsemi-algebraic sets as well as the definitions
of complexes and double complexesof vector spaces, and fix notation.

2.1. Semi-algebraic sets and their cohomology groups

Let R be a real closed field. IfP is a finite subset of R[X1, . . . , Xk], we write the set of zeros
of P in Rk as

Z(P,Rk) =
{

x ∈ Rk |
∧
P∈P

P(x) = 0

}
.

We denote byB(0, r ) the open ball with center 0 and radiusr .
Let Q andP be finite subsets of R[X1, . . . , Xk], Z = Z(Q,Rk), andZr = Z ∩ B(0, r ). A

sign conditiononP is an element of{0,1,−1}P . Therealization of the sign conditionσ over Z,
R(σ, Z), is thebasic semi-algebraic set

x ∈ Rk |
∧

Q∈Q
Q(x) = 0∧

∧
P∈P

sign(P(x)) = σ(P)

 .

The realization of the sign conditionσ over Zr , R(σ, Zr ), is the basic semi-algebraic set
R(σ, Z)∩ B(0, r ). For the restof the paper, we fix an open ballB(0, r ) with center 0 and radius
r big enough so that, for every sign conditionσ , R(σ, Z) andR(σ, Zr ) are homeomorphic. This
is alwayspossible by the local conical structure at infinity of semi-algebraic sets (Bochnak et al.,
1987, page 225).

A closed and bounded semi-algebraic setS ⊂ Rk is semi-algebraically triangulable (this is
a classical fact; seeBasu etal. (2006) for example), and we denote by Hi (S) the i th simplicial
cohomology group ofS with rational coefficients. The groups Hi (S) are invariant under semi-
algebraic homeomorphisms and coincide with the corresponding singular cohomology groups
when R= R. We denote bybi (S) the i th Betti number ofS (that is, the dimension of Hi (S)
as a vector space), andb(S) the sum

∑
i bi (S). For a closed but not necessarily bounded

semi-algebraic setS ⊂ Rk, we will denote by Hi (S) the i th simplicial cohomology group
of S ∩ B(0, r ), where r is sufficiently large. The setsS ∩ B(0, r ) are semi-algebraically
homeomorphic for all sufficiently larger > 0, by the local conical structure at infinity of semi-
algebraic sets, and hence this definition makes sense.

The definition of cohomology groups of arbitrary semi-algebraic sets in Rk requires some
care and several possibilities exist. In this paper, we followBasu etal. (2006) anddefine the
cohomology groups of realizations of sign conditions as follows.

Let R denote a real closed field and R′ a real closed field containing R. Given a semi-algebraic
setS in Rk, theextension of S to R′, denoted as Ext(S,R′), is the semi-algebraic subset of R′k
defined by the same quantifier free formula as definesS. The set Ext(S,R′) is well defined (i.e.
it only depends on the setS and not on the quantifier free formula chosen to describe it). This is
an easy consequence of the transfer principle (see for exampleBasu etal. (2006)).
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Now, let S ⊂ Rk be aP-semi-algebraic set, whereP = {P1, . . . , Ps} is a finitesubset of
R[X1, . . . , Xk]. Letφ(X) be a quantifier free formula definingS. Let Pi =∑

α ai,αXα where the
ai,α ∈ R. Let A = (. . . , Ai,α, . . .) denote the vector of variables corresponding to the coefficients
of the polynomials in the familyP , and leta = (. . . ,ai,α, . . .) ∈ RN denote the vector of
the actual coefficients of the polynomials inP . Letψ(A, X) denote the formula obtained from
φ(X) by replacing each coefficient of each polynomial inP by the corresponding variable, so
thatφ(X) = ψ(a, X). It follows from Hardt’s triviality theorem for semi-algebraic mappings
(Hardt, 1980), thatthere existsa′ ∈ RN

alg such that denoting byS′ ⊂ Rk
alg the semi-algebraic set

defined byψ(a′, X), the semi-algebraic set Ext(S′,R) has the same homeomorphism type asS.
Here,Ralg is the field of real algebraic numbers. We define the cohomology groups ofS to be
the singular cohomology groups of Ext(S′,R). It follows from the Tarski–Seidenberg transfer
principle, and the corresponding property of singular cohomology groups, that the cohomology
groups defined this way are invariant under semi-algebraic homotopies. It is also clear that this
definition is compatible with the simplicial cohomology for closed, bounded semi-algebraic sets,
and the singular cohomology groups when the ground field isR. Finally it is clear that the Betti
numbers are not changed after extension:

bi (S) = bi (Ext(S,R′)).

Note that we define the cohomology groups of arbitrary semi-algebraic sets as above in order
to treat semi-algebraic sets over arbitrary (possibly non-archimedean) real closed fields R, for
which the standard proofs of the homology axioms (in particular the excision axiom) break down
for singular homology groups (seeKnebusch(1989), page XIII). If one is only interested in the
case, R= R, then singular cohomology groups suffice.

2.2. Complex of vector spaces

A sequence {Cp}, p ∈ Z, of Q-vector spaces together with a sequence{δp} of
homomorphismsδp : Cp → Cp+1 (called differentials) for whichδp−1 δp = 0 for all p
is called a complex. When it is clear from the context, we will drop the superscripts from the
differentials for the sake of readability.

The cohomology groups, Hp(C•), are defined by

Hp(C•) = Z p(C•)/Bp(C•),

whereBp(C•) = Im(δp−1), andZ p(C•) = Ker(δp) and we will denote by H∗(C•) the graded
vector space

⊕
p Hp(C•).

The cohomology groups, Hp(C•), are allQ-vector spaces (finite dimensional if the vector
spaces Cp’s are themselves finite dimensional). We will henceforth omit reference to the field of
coefficientsQ which is fixed throughout the rest of the paper.

2.3. Homomorphisms of complexes

Given two complexes, C• = (Cp, δp) and D• = (Dp, δp), a homomorphism of complexes,
φ• : C• → D•, is a sequence of homomorphismsφ p : Cp → Dp for which δp φ p = φ p+1 δp

for all p.
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In other words, the following diagram is commutative.

· · · −→ Cp δ p−→ Cp+1 −→ · · ·φ p
φ p+1

· · · −→ Dp δ p−→ Dp+1 −→ · · ·
A homomorphism of complexes,φ• : C• → D•, induces homomorphisms,φi : Hi (C•) →

Hi (D•), and we will denote the corresponding homomorphism between the graded vector
spaces H∗(C•),H∗(D•) by φ∗. The homomorphismφ• is called aquasi-isomorphismif the
homomorphismφ∗ is an isomorphism.

Given two complexes C• and D•, their direct sum, denoted by C• ⊕ D•, is againa complex
with its pth term being Cp ⊕ Dp. Moreover, given twohomomorphisms of complexes,

φ• : C• → C̄•,
ψ• : D• → D̄

•
,

their direct sum

φ• ⊕ ψ• : C• ⊕ D• → C̄• ⊕ D̄
•
,

is again a homomorphism of complexes defined componentwise. Note that if we specify a
basis for the different terms of the complexes C•, C̄•,D•, D̄•, as well as the matrices for the
homomorphismsφ•, ψ•, then wecan write down the matrix for the direct sum homomorphism
φ• ⊕ ψ• as a sum of block-matrices using elementary linear algebra.

2.4. The nerve lemma and generalizations

We first define formally the notion of a cover of a closed, bounded semi-algebraic set.

Definition 2.1. Let S ⊂ Rk be a closed and bounded semi-algebraic set. A cover,C(S), of S
consists of an ordered index set, which by a slight abuse of language we also denote byC(S),
and a map that associates to eachα ∈ C(S), aclosed and bounded semi-algebraic subsetSα ⊂ S,
suchthatS= ∪α∈C(S)Sα .

For α0, . . . , αp,∈ C(S), we associate with the formal product,α0 · · ·αp, the closed and
bounded semi-algebraic setSα0···αp = Sα0 ∩ · · · ∩ Sαp .

Recall that the 0th simplicial cohomology groupof a closed and bounded semi-algebraic set
X, H0(X), can be identified with theQ-vector space ofQ-valued locally constant functions on
X. Clearly, the dimension of H0(X) is equal to the number of connected components ofX.

Forα0, α1, . . . , αp, β ∈ C(S), andβ �∈ {α0, . . . , αp}, let

rα0,...,αp;β : H0(Sα0···αp) −→ H0(Sα0···αp·β)

be the homomorphism defined as follows. Given a locally constant function,φ ∈ H0(Sα0···αp),
rα0···αp;β(φ) is the locally constant function onSα0···αp·β obtained by restrictingφ to Sα0···αp·β .

We define the generalized restriction homomorphisms

δp :
⊕

α0<···<αp,αi∈C(S)
H0(Sα0···αp) −→

⊕
α0<···<αp+1,αi∈C(S)

H0(Sα0···αp+1)
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by

δp(φ)α0···αp+1 =
∑

0≤i≤p+1

(−1)i rα0···α̂i ···αp+1;αi (φα0···α̂i ···αp+1), (1)

whereφ ∈ ⊕
α0<···<αp∈C(S)H

0(Sα0···αp) and rα0···α̂i ···αp+1;αi is the restriction homomorphism
defined previously. The sequence of homomorphismsδp gives rise to acomplex, L•(C(S)),
defined by

L p(C(S)) =
⊕

α0<···<αp,αi∈C(S)
H0(Sα0···αp),

with the differentialsδp : L p(C(S)) → L p+1(C(S)) defined in (1). The complex L•(C(S)) is
often referred to as thenerve complexof the coverC(S).

For any� ≥ 0, we will denote by L•�(C(S)) the truncated complex defined by

L p
� (C(S)) = L p(C(S)), 0 ≤ p ≤ �,

= 0, p > �.

Notice thatonce we have a cover of S, and we identify the connected components of the
various intersections,Sα0···αp , we have natural bases for the vector spaces

L p(C(S)) =
⊕

α0<···<αp,αi∈C(S)
H0(Sα0···αp)

appearing as terms of the nerve complex. Moreover, the matrices corresponding to the
homomorphismsδp in this basis depend only on the inclusion relationships between the
connected components ofSα0···αp+1 and those ofSα0···αp.

We say that the coverC(S) satisfies the Leray propertyif each non-empty intersectionSα0···αp

is contractible. Clearly in this case

H0(Sα0···αp)
∼= Q, if Sα0···αp �= ∅
∼= 0, if Sα0···αp = ∅.

It is a classical fact (usually referred to as thenerve lemma) that

Theorem 2.2 (Nerve Lemma). Suppose that the coverC(S) satisfies the Leray property. Then
for each i≥ 0,

Hi (L•(C(S))) ∼= Hi (S).

Proof. This is classical (see for instanceRotman(1988)). �

Notice thatonce we have a cover of S satisfying the Leray property, and we are able to
test emptiness of the various intersectionsSα0···αp, we can useTheorem 2.2and some basic
algorithms from linear algebra to compute the Betti numbers ofS.

Now suppose that each individual member,Sα0, of the cover is contractible, but the various
intersectionsSα0···αp are not necessarily contractible forp ≥ 1. Theorem 2.2does not hold in
this case. However, the following is proved inBasu etal. (2005).

Theorem 2.3. Suppose that each individual member, Sα0, of thecoverC(S) is contractible. Then,

Hi (L•2(C(S))) ∼= Hi (S),

for i = 0,1.
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Proof. SeeBasu etal. (2005). �

Notice thatTheorem 2.3allows us to compute using linear algebrab0(S) andb1(S), once we
have a cover by contractible sets, and we have identified the non-empty connected components of
the pairwise and triple-wise intersections of the sets in the cover, and their inclusion relationships.
It is quite easy to see that if we extend the complex inTheorem 2.3by one more term, that is
consider the complex L•3(C(S)), then the cohomology of the complex does not yield information
about H2(S). Just consider the cover of the standard sphereS2 ⊂ R3, and the cover{H1, H2}
of S2 whereH1, H2 are closed hemispheres meeting at the equator. The corresponding complex,
L•3(C), is as follows:

0→ H0(H1)
⊕

H0(H2)
δ0−→ H0(H1 ∩ H2)

δ1−→ 0−→ 0

Clearly, H2(L•3(C(S))) �� H2(S2), and indeed it is impossible to computebi (S) just from
the information on the number of connected components of intersections of the sets of a
cover by contractible sets fori ≥ 2. For example, the nerve complex corresponding to the
cover of the sphere by two hemispheres is isomorphic to the nerve complex of a cover of
the unit segment[0,1] by the subsets[0,1/2] and [1/2,1], but clearly H2(S2) = Q, while
H2([0,1]) = 0.

In order to deal with covers not satisfying the Leray property, it is necessary to consider
a generalization of the nerve complex, namely a double complex arising from the generalized
Mayer–Vietoris exact sequence. The construction of this double complex (which is quite
classical) in fact motivates the design ofour algorithm, which we describe in detail
in Section6.

3. Mayer–Vietoris double complex

3.1. Double complexes

In this section, we recall the basic notions ofadouble complex of vector spaces and associated
spectral sequences. Adouble complexis a bi-graded vector space,

C•,• =
⊕

p,q∈Z
Cp,q,

with co-boundary operatorsd : Cp,q → Cp,q+1 and δ : Cp,q → Cp+1,q and such that
dδ + δd = 0. We say that C•,• is a first quadrant double complex if it satisfies the condition
that Cp,q = 0 if either p < 0 or q < 0. Double complexes lying in other quadrants are defined
in an analogous manner.

The complex defined by

Totn(C•,•) =
⊕

p+q=n

Cp,q,

with differential

Dn = d ± δ : Totn(C•,•) −→ Totn+1(C•,•),

is denoted by Tot•(C•,•) and called theassociated total complex ofC•,•.
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Fig. 1.dr : Ep,q
r → Ep+r,q−r+1

r .

3.2. Spectral sequences

A spectral sequenceis a sequence of bi-graded complexes(Er ,dr : Ep,q
r → Ep+r,q−r+1

r )

(seeFig. 1) such that the complexEr+1 is obtained fromEr by taking its cohomology with
respect todr (that isEr+1 = Hdr (Er )).

There are two spectral sequences,′Ep,q∗ , ′′Ep,q
∗ (corresponding to taking row-wise or column-

wisefiltrations respectively) associated with a first quadrant double complex C•,•, whichwill be
important for us. Bothof these converge to H∗(Tot•(C•,•)). This means that the homomorphisms,
dr , are eventually zero, and hence the spectral sequences stabilize, and⊕

p+q=i

′Ep,q
∞ ∼=

⊕
p+q=i

′′Ep,q
∞ ∼= Hi (Tot•(C•,•)),

for eachi ≥ 0.
The first terms of these are

′E1 = Hd(C
•,•), ′E2 = HdHδ(C

•,•),

and

′′E1 = Hδ(C•,•), ′′E2 = HdHδ(C•,•).

Given two (first quadrant) double complexes, C•,• and C̄•,•, a homomorphism of double
complexes,

φ•,• : C•,• −→ C̄•,•,
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is a collection of homomorphisms,φ p,q : Cp,q −→ C̄p,q, such that the following diagrams
commute.

Cp,q δ−→ Cp+1,qφ p,q
φ p+1,q

C̄p,q δ−→ C̄p+1,q

Cp,q d−→ Cp,q+1φ p,q
φ p,q+1

C̄p,q d−→ C̄p,q+1

A homomorphism of double complexes,

φ•,• : C•,• −→ C̄•,•,

induces a homomorphism of the corresponding total complexes which we will denote by

Tot•(φ•,•) : Tot•(C•,•) −→ Tot•(C̄•,•).

It also induces homomorphisms,′φs : ′Es −→ ′ Ēs (respectively,′′φs : ′′Es −→ ′′ Ēs)
between the associated spectral sequences (corresponding either to the row-wise or column-wise
filtrations). For the precise definition of homomorphisms of spectral sequences, seeMcleary
(2001). We will need the following useful fact (seeMcleary(2001), page 66, Theorem 3.4 for a
proof).

Proposition 3.1. If ′φs (respectively,′′φs) is an isomorphism for some s≥ 1, then ′Ep,q
r and

′ Ē p,q
r (respectively,′′Ep,q

r and ′′ Ē p,q
r ) are isomorphic for all r ≥ s. In particular, the induced

homomorphism

Tot•(φ•,•) : Tot•(C•,•) −→ Tot•(C̄•,•)

is a quasi-isomorphism.

3.3. The Mayer–Vietoris double complex

Let A1, . . . , An be sub-complexes of a finite simplicial complexA suchthatA = A1∪· · ·∪An.
Note that the intersections of any number of the sub-complexes,Ai , is againa sub-complex of
A. We will denote byAα0···αp the sub-complexAα0 ∩ · · · ∩ Aαp.

Let Ci (A) denote theQ-vector space ofi co-chains ofA, and C•(A), the complex

· · · → Cq−1(A)
d−→ Cq(A)

d−→ Cq+1(A)→ · · ·
whered : Cq(A)→ Cq+1(A) are the usual co-boundary homomorphisms. More precisely, given
ω ∈ Cq(A), and aq + 1 simplex[a0, . . . ,aq+1] ∈ A,

dω([a0, . . . ,aq+1]) =
∑

0≤i≤q+1

(−1)iω([a0, . . . , âi , . . . ,aq+1]) (2)

(here and everywhere else in the paperˆdenotes omission). Now extend dω to a linear form on
all of Cq+1(A) by linearity, to obtain an element of Cq+1(A).
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The connecting homomorphisms are “generalized” restrictions and are defined below.

Thegeneralized Mayer–Vietoris sequenceis the following exact sequence of vector spaces:

0−→ C•(A) r •−→
⊕

1≤α0≤n

C•(Aα0)
δ0,•−→

⊕
1≤α0<α1≤n

C•(Aα0·α1)
δ1,•−→ · · ·

⊕
1≤α0<···<αp≤n

C•(Aα0···αp)
δ p−1,•−→

⊕
1≤α0<···<αp+1≤n

C•(Aα0···αp+1)
δ p,•−→ · · ·

wherer • is inducedby restriction and the connecting homomorphismsδp,• are as follows.

Given anω ∈⊕
α0<···<αp

Cq(Aα0···αp) we defineδp,q(ω) as follows:

First note thatδp,qω ∈⊕
α0<···<αp+1

Cq(Aα0···αp+1), and it suffices to define

(δp,qω)α0,...,αp+1

for each(p+ 2)-tuple 1≤ α0 < · · · < αp+1 ≤ n. Note that (δp,qω)α0,...,αp+1 is a linear form
on the vector space,Cq(Aα0···αp+1), andhence is determined by its values on theq-simplices in
the complex Aα0···αp+1. Furthermore, eachq-simplex,s ∈ Aα0···αp+1, is automatically a simplex
of the complexes

Aα0···α̂i ···αp+1
, 0 ≤ i ≤ p+ 1.

We define

(δp,qω)α0,...,αp+1(s) =
∑

0≤ j≤p+1

(−1) jωα0,...,α̂ j ,...,αp+1
(s).

The fact that the generalized Mayer–Vietoris sequence is exact is classical (seeRotman(1988)
or Basu(2003) for example).

We now define the Mayer–Vietoris double complex of the complexA with respect to the sub-
complexesAα0,1 ≤ α0 ≤ n, which wewill denote byN •,•(A) (we suppress the dependence of
the complex on sub-complexesAα0 in the notation since this dependence will be clear from the
context).

Definition 3.2. The Mayer–Vietoris double complex of a simplicial complexA with respect to
the sub-complexesAα0,1 ≤ α0 ≤ n, N •,•(A), is the double complex defined by

N p,q(A) =
⊕

1≤α0<···<αp≤n

Cq(Aα0···αp).

The horizontal differentials are as defined above. The vertical differentials are those induced by
theones in the different complexes, C•(Aα0···αp).



S. Basu / Journal of Symbolic Computation 41 (2006) 1125–1154 1135

N •,•(A) is depicted in the following figure.

⊕
α0

C2(Aα0)

�

�
⊕
α0<α1

C2(Aα0·α1)

�

� . . .

⊕
α0

C1(Aα0)

�

�
⊕
α0<α1

C1(Aα0·α1)

�

� . . .

⊕
α0

C0(Aα0)

�

�
⊕
α0<α1

C0(Aα0·α1)

�

� . . .

For anyt ≥ 0, we denote byN •,•t (A) the following truncated complex:

N p,q
t (A) = N p,q(A), 0≤ p+ q ≤ t,

N p,q
t (A) = 0, otherwise.

The following proposition is classical (seeRotman(1988) or Basu(2003) for a proof) and
follows from the exactness of the generalized Mayer–Vietoris sequence.

Proposition 3.3. The spectral sequences,′Er ,
′′Er , associated withN •,•(A) converge toH∗(A)

and thus

H∗(Tot•(N •,•(A))) ∼= H∗(A).

Moreover, thehomomorphism

ψ• : C•(A)→ Tot•(N •,•(A))
induced by the homomorphism r• (in the generalized Mayer–Vietoris sequence) is a quasi-
isomorphism.

We denote by C•�+1(A) the truncation of the complex C•(A) after the(� + 1)st term. As an
immediate corollary we have that

Corollary 3.4. For any� ≥ 0, thehomomorphism

ψ•�+1 : C•�+1(A)→ Tot•(N •,•�+1(A)) (3)

induced by the homomorphism r• (in the generalized Mayer–Vietoris sequence) is a quasi-
isomorphism. Hence, for0≤ i ≤ �,

Hi (Tot•(N •,•�+1(A)))
∼= Hi (A).

Remark 3.5. Notice that in the truncated Mayer–Vietoris double complex,N •,•t (A), the 0th
column is a complex having at mostt + 1 non-zero terms, the first column can have at most
t non-zero terms, and in general thei th column has at mostt + 1 − i non-zero terms. This
observation plays a crucial role in the inductive argument used later in the paper (in the proof of
Proposition 4.3).
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4. Double complexes associated with certain covers

We begin with a definition.

Definition 4.1. Let P be a finite subset of R[X1, . . . , Xk]. A P-closed formula is a formula
constructed as follows:

For eachP ∈ P ,

P = 0, P ≥ 0, P ≤ 0,

areP-closed formulas.
If Φ1 andΦ2 areP-closed formulas,Φ1 ∧ Φ2 andΦ1 ∨ Φ2 areP-closed formulas.

Clearly,R(Φ) = {x ⊂ Rk | Φ(x)}, the realization of aP-closed formulaΦ, is a closed
semi-algebraic set and we call such a set aP-closed semi-algebraic set.

For the rest of this section we consider a fixed family of polynomials,P ⊂ R[X1, . . . , Xk],
as well as a fixedP-closed and bounded semi-algebraic set,S ⊂ Rk. We also fix a number,
�,0≤ � ≤ k.

We define below(in Section 4.1) a finite set of indices,AS, which wecall the set of admissible
indices, and a map that associates with eachα ∈ AS a closed and bounded semi-algebraic subset
Xα ⊂ S, which we call an admissible subset. With eachα ∈ AS, we associate its level, denoted
as level(α), which isan integer between 0 and�. The setAS will be partially ordered, and we
denote by ancestors(α) ⊂ AS the set of ancestors ofα under this partial order. Forα, β ∈ AS,
β ∈ ancestors(α) implies thatXα ⊂ Xβ .

For each admissible indexα ∈ AS, we define a double complex,M•,•(α), such that

Hi (Tot•(M•,•(α))) ∼= Hi (Xα), 0 ≤ i ≤ �− level(α).

The main idea behind the construction of the double complexM•,•(α) is as follows.
Associated with any cover ofXα there exists a double complex (the Mayer–Vietoris double
complex) arising from the generalized Mayer–Vietoris exact sequence (seeDefinition 3.2). If
the individual sets of the cover ofX are all contractible, then the first column of the Mayer–
Vietoris double complex is zero except at the first row. The cohomology groups of the associated
total complex of the Mayer–Vietoris double complex are isomorphic to those ofXα and thus in
order to computeb0(Xα), . . . ,b�−level(α)(Xα), it suffices to compute a suitable truncation of the
Mayer–Vietoris double complex. However, computing the Mayer–Vietoris double complex (even
the truncated one) directly within a singly exponential time complexity is not possible by any
known method, since we are unable to compute triangulations of semi-algebraic sets in singly
exponential time. However, making use of the cover construction recursively, we are able to
compute another double complex,M•,•(α), whichhas much smaller size but whose associated
total complex is quasi-isomorphic to the truncated Mayer–Vietoris double complex and hence
has isomorphic cohomology groups (seeProposition 4.6below). The construction ofM•,•(α) is
possible in singly exponential time since the covers can be computed in singly exponential time.

Finally, given any closed and bounded semi-algebraic setX ⊂ Rk, we will denote byC ′(X) a
fixed cover ofX (we will use the construction inBasu etal. (2005) to compute such a cover).

4.1. Admissible sets and covers

We now defineAS, and for eachα ∈ AS a coverC(α) of Xα obtained by enlarging the cover
C ′(Xα).
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Definition 4.2 (Admissible Indices and Covers). We defineAS by induction on level.

(1) Firstly, 0∈ AS, level(0) = 0, X0 = S, andC(0) = C ′(S). The admissible indices of level 1
consist of all formal products,β = α0 · α1 · · ·α j−1 · α j , with αi ∈ C(0) and 0≤ j ≤ �+ 1,
and we define the associated semi-algebraic set by

Xβ = Xα0 ∩ · · · ∩ Xα j .

For each{α0, . . . , αm} ⊂ {β0, . . . , βn} ⊂ C(0), with n ≤ �+ 1,

α0 · · ·αm ∈ ancestors(β0 · · ·βn),

and 0∈ ancestors(β0 · · ·βn).
(2) We now inductively define the admissible indices at leveli + 1, in terms of theadmissible

indices at level≤ i . For eachα ∈ AS at leveli , we defineC(α) as follows. Let ancestors(α) =
{α1, . . . , αN }. Then,

C(α) =
⋃̇

βi∈C(αi ),1≤i≤N

C ′(β1 · · ·βN · α),

where
⋃̇

denotes the disjoint union. All formal products,β = α0 · α1 · · ·α j , with αi ∈ C(α)
and 0≤ j ≤ �− i + 1 are inAS, and wedefine

Xβ = Xα0 ∩ · · · ∩ Xα j ,

and level(β) = i + 1.
For each{α0, . . . , αm} ⊂ {β0, . . . , βn} ⊂ C(α), with n ≤ �− i + 1,

α0 · · ·αm ∈ ancestors(β0 · · ·βn),

andα ∈ ancestors(β0 · · ·βn).

Moreover, forα′ ∈ C ′(β1 · · · · · βN · α), eachβi is an ancestor ofα′. We transitively
close the ancestor relation, so that an ancestor of an ancestor is also an ancestor. Moreover, if
α0 · · ·αm, β0 · · ·βn ∈ AS are such that for everyj ∈ {1, . . . ,n} there existsi ∈ {1, . . . ,m}
suchthatαi is an ancestor ofβ j , thenα0 · · ·αm is an ancestor ofβ0 · · ·βn.

Finally, the set of admissible indices at leveli + 1 is⋃̇
α∈AS,level(α)=i

{α0 · α1 · · ·α j | αi ∈ C(α),0 ≤ j ≤ �− i + 1}.

Observe that by the above definition, if α, β ∈ AS and β ∈ ancestors(α), then each
α′ ∈ C(α) has a unique ancestor in eachC(β), which wewill denote byaα,β(α′), and the mapping
aα,β : C(α)→ C(β) is injective.

Now, suppose that we have a procedure for computingC ′(X), for any given P ′-closed
and bounded semi-algebraic set,X, such that the number and the degrees of the polynomials
appearing in the descriptions of the semi-algebraic sets,Xα, α ∈ C ′(X), are bounded by

Dkc1
, (4)

wherec1 > 0 is some absolute constant, andD =∑
P∈P ′ deg(P).

Using the above procedure for computingC ′(X), and the definition ofAS, we have the
following quantitative bounds on #AS and the semi-algebraic setsXα, α ∈ AS, which iscrucial
in proving the complexity bound of our algorithm.
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Proposition 4.3. Let S ⊂ Rk be a boundedP-closed semi-algebraic set, whereP ⊂
R[X1, . . . , Xk] is a family of spolynomials of degree at most d. Then#AS, as well as the
number of polynomials used to define the semi-algebraic sets Xα, α ∈ AS and the degrees of
these polynomials, are all bounded by(sd)k

O(�)
.

Proof. Givenα ∈ AS with level(α) = j , we first prove by induction on level(α) that

#ancestors(α) ≤ 2
∑ j

i=0(�−i+3) = 2( j+1)(�+3)− j ( j+1)/2.

The claim is clearly true if level(α) = 0. Otherwise, from the definition ofAS, thereexists
β ∈ AS, with level(β) = j − 1, such thatα = γ0 · · · γm, γi ∈ C(β) andm≤ �− j + 2.

For eachγi , we have

ancestors(γi ) = ancestors(β) ∪ {aβ,θ(γi ) | θ ∈ ancestors(β)},
and it follows that

ancestors(α) = ancestors(β) ∪ {aβ,θ (γi0) · · · aβ,θ (γin) |
θ ∈ ancestors(β), {i0, . . . , i n} ⊂ {1, . . . ,m}}.

Hence,

#ancestors(α) = #ancestors(β) · 2m

≤ #ancestors(β) · 2�− j+3

≤ 2
∑ j−1

i=0 (�−i+3) · 2�− j+3 (by induction hypothesis)

≤ 2
∑ j

i=0(�−i+3)

= 2( j+1)(�+3)− j ( j+1)/2.

Thus, there exists some absolute constantc2 > 0 such that for anyα ∈ AS we have

#ancestors(α) ≤ 2c2�
2
.

Wenow prove again by induction on the level that there exists an absolute constantc > 0 such
that the number of elements ofAS of level≤ j , as well as the number of polynomials needed to
define the associated semi-algebraic sets, and the degrees of these polynomials, are all bounded
by (sd)k

cj
.

The claim is clear for level 0. Now assume that the claim holds for level< j . As before, given
α ∈ AS with level(α) = j , thereexistsβ ∈ AS with level(β) = j − 1, such thatα = γ0 · · · γm,
γi ∈ C(β) andm ≤ � − j + 2. We have that#ancestors(β) ≤ 2c2�

2
by the previous paragraph.

Let ancestors(β) = {θ1, . . . , θN}. Then,

#C(θi ) ≤ (sd)k
c( j−1)

,

for 1≤ i ≤ N by the induction hypothesis.
In order to bound

#C(β) = #
⋃

βi∈C(θi ),1≤i≤N

C ′(β1 · · · · · βN · β),
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first observe thatN ≤ 2c2�
2

and hence the union on the right hand side is over an index set of
cardinality bounded by

(sd)k
c( j−1)2c2�

2

,

and each set in the union has cardinality bounded by

M = (2c2�
2
(sd)k

c( j−1)
)k

c1

= 2c2�
2kc1

(sd)k
cj−(c−c1)

,

wherec1 is the constant defined before in (4) above.
Thus, the total number of admissible indices at levelj is bounded by the total number of

admissible indices at levelj − 1 times
∑

0≤i≤�− j+3

(M
i

)
. It follows that ifc chosen large enough

with respect to the constantsc1, c2, then for all k large enough, the total number of admissible
indices at levelj is at most

(sd)k
cj
.

The bounds on the number and degrees of polynomials appearing in the description can be proved
similarly using the same induction scheme.�

4.2. Double complex associated with a cover

Given the different covers described above, we now associate with eachα ∈ AS a double
complex,M•,•(α), and for everyβ ∈ AS, such thatα ∈ ancestors(β), and level(α) = level(β),
a restriction homomorphism:

r •,•α,β :M•,•(α)→M•,•(β),

satisfying the following:

(1)

Hi (Tot•(M•,•(α))) ∼= Hi (Xα), for 0≤ i ≤ �− level(α). (5)

(2) The restriction homomorphism

r •,•α,β :M•,•(α)→M•,•(β),
induces the restriction homomorphisms between the cohomology groups:

r ∗α,β : Hi (Xα)→ Hi (Xβ)

for 0≤ i ≤ �− level(α) via the isomorphisms in (5).

We now describe the construction of the double complexM•,•(α) and prove that it has the
properties stated above. The double complexM•,•(α) is constructed inductively using induction
on level(α).

Definition 4.4. The base case is when level(α) = �. In this case the double complex,M•,•(α),
is defined by

M0,0(α) =
⊕

α0 ∈ C(α)
H0(Xα0),

M1,0(α) =
⊕

α0,α1 ∈ C(α)
H0(Xα0·α1),

Mp,q(α) = 0, if q > 0 or p > 1.
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This is shown diagrammatically below.

0 � 0 � 0

0

�

� 0

�

� 0

�

⊕
α0∈C(α)

H0(Xα0)

�

δ�
⊕

α0,α1∈C(α)
H0(Xα0·α1)

�

� 0

�

The only non-trivial homomorphism in the above complex

δ :
⊕

α0∈C(α)
H0(Xα0) −→

⊕
α0,α1∈C(α)

H0(Xα0·α1)

is defined as follows:

δ(φ)α0,α1 = (φα1 − φα0)|Xα0·α1
for φ ∈

⊕
α0∈C(α)

H0(Xα0).

For everyβ ∈ AS suchthat α ∈ ancestors(β), and level(α) = level(β) = �, we define
r 0,0
α,β :M0,0(α)→M0,0(β) as follows.

Recall thatM0,0(α) =⊕
α0 ∈ C(α) H0(Xα0), andM0,0(β) =⊕

β0 ∈ C(β) H0(Xβ0).

Forφ ∈M0,0(α) andβ0 ∈ C(β) we define

r 0,0
α,β(φ)β0 = φaβ,α(β0)|Xβ0

.

We definer 1,0
α,β :M1,0(α)→M1,0(β) in a similar manner. More precisely, forφ ∈M0,0(α)

andβ0, β1 ∈ C(β), we define

r 1,0
α,β(φ)β0,β1 = φaβ,α(β0)·aβ,α(β1)|Xβ0·β1

.

(The inductive step.) In general theMp,q(α) are defined as follows using induction on level(α)

and withnα = �− level(α)+ 1.

M0,0(α) =
⊕

α0 ∈ C(α)
H0(Xα0),

M0,q(X) = 0, 0< q,
Mp,q(α) =

⊕
α0<···<αp, αi∈C(α)

Totq(M•,•(α0 · · ·αp)), 0< p, 0< p+ q ≤ nα,

Mp,q(α) = 0, else.
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The double complexM•,•(α) is shown in the following diagram:

0 � 0 � · · · 0

0

�

�
⊕
α0<α1

Totnα−1(M•,•(α0 · α1))

�

δ � · · · 0

�

0

d

�

�
⊕
α0<α1

Totnα−2(M•,•(α0 · α1))

d�

δ � · · · 0

d

�

..

.
..
.

..

.
..
.

..

.
..
.

0 �
⊕
α0<α1

Tot2(M•,•(α0 · α1))
δ � · · · 0

0

d

�

�
⊕
α0<α1

Tot1(M•,•(α0 · α1))

d�

δ � · · · 0

d

�

⊕
Xα0∈CX

H0(Xα0)

d

�

δ�
⊕
α0<α1

Tot0(M•,•(α0 · α1))

d�

δ � · · ·
⊕

α0<···<αnα

Tot0(M•,•(α0 · · ·αnα ))

d

�

The vertical homomorphisms,d, in M•,•(α) are those induced by the differentials in the
various

Tot•(M•,•(α0 · · ·αp)), αi ∈ C(α).
The horizontal ones are defined by generalized restriction as follows. Let

φ ∈
⊕

α0<···<αp,αi∈C(α)
Totq(M•,•(α0 · · ·αp)),

with

φα0,...,αp =
⊕

0≤ j≤q

φ j
α0,...,αp

,

and

φ j
α0,...,αp

∈M j ,q− j (α0 · · ·αp).

We define

δ :
⊕

α0<···<αp,αi∈C(α)
Totq(M•,•(α0 · · ·αp)) −→

⊕
α0<···<αp+1

Totq(M•,•(α0 · · ·αp+1))
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by

δ(φ)α0,...,αp+1 =
⊕

0≤i≤p+1

(−1)i
⊕

0≤ j≤q

r j ,q− j
α0···α̂i ···αp+1,α0···αp+1

(φ
j
α0,...,α̂i ,...,αp+1

),

noting that for eachi ,0 ≤ i ≤ p+ 1,α0 · · · α̂i · · ·αp+1 is an ancestor ofα0 · · ·αp+1, and

level(α0 · · · α̂i · · ·αp+1) = level(α0 · · ·αp+1) = level(α)+ 1,

and hence the homomorphismsr j ,q− j
α0···α̂i ···αp+1,α0···αp+1

are already defined by induction.

Now letα, β ∈ AS with α an ancestor ofβ and level(α) = level(β).We define the restriction
homomorphism

r •,•α,β :M•,•(α) −→M•,•(β)

as follows.
As before, forφ ∈M0,0(α) andβ0 ∈ C(β) we define

r 0,0
α,β(φ)β0 = φaβ,α(β0)|Xβ0

.

For 0< p,0< p+ q ≤ �− level(α)+ 1, we define

r p,q
α,β :Mp,q(α)→Mp,q(β),

as follows.
Let φ ∈Mp,q(α) =⊕

α0<···<αp, αi ∈C(α) Totq(M•,•(α0 · · ·αp)).We define

r p,q
α,β (φ) =

⊕
β0<···<βp,βi∈C(β)

⊕
0≤i≤q

r i,q−i
aβ,α(β0···βp),β0···βp

φi
aβ,α(β0),...,aβ,α(βp)

,

whereaβ,α(β0 · · ·βp) = aβ,α(β0) · · · aβ,α(βp). Note that each of theaβ,α(βi ),0 ≤ i ≤ p, are
all distinct and belong toC(α). Moreover,

level(aβ,α(β0 · · ·βp)) = level(β0 · · ·βp) = level(α)+ 1,

and hence we can assume that the homomorphismsr •,•aβ,α (β0···βp),β0···βp
used in the definition of

r •,•α,β are already defined by induction.

It is easy to verify by induction on level(α) thatM•,•(α), defined as above, is indeed a double
complex, that is the homomorphismsd andδ satisfy the equations

d2 = δ2 = 0, dδ + δd = 0.

4.3. Example

Before proving the main properties of the complexesM•,•(α) defined above, we illustrate
their construction by means of a simple example. We take for the setS, theunit sphereS2 ⊂ R3.
Even though this example looks very simple, it is actually illustrative of the main topological
ideas behind the construction of the complexM•,•(S) starting from a cover ofS by two
closed hemispheres meeting at the equator. Since the intersection of the two hemispheres is a
topological circle which is not contractible,Theorem 2.2is not applicable. UsingTheorem 2.3
we can compute H0(S),H1(S), but it is not enough to compute H2(S). The recursive construction
of M•,• described in the last section overcomes this problem and this is illustrated in the
example.
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Fig. 2. Example ofS2 ⊂ R3.

Example 4.5. We firstfix some notation (seeFig. 2). Let H1 andH2 denote the closed upper and
lower hemispheres respectively. LetH12= H1∩ H2 denote the equator, and letH12= C1 ∪C2,
whereC1,C2 are closed semi-circular arcs. Finally, letC12 = C1∩C2 = {P1, P2}, whereP1, P2
are two antipodal points.

For thepurpose of this example, we will take for the coversC ′ the obvious ones, namely:

C ′(S) = {H1, H2},
C ′(Hi ) = {Hi }, i = 1,2,

C ′(H12) = {C1,C2},
C ′(Ci ) = {Ci }, i = 1,2,

C ′(C12) = {P1, P2},
C ′(Pi ) = {Pi }, i = 1,2.

Note that, in order not to complicate notation further, we are using the same names for the
elements ofC ′(·), as well as their associated sets. Strictly speaking, we should have defined

C ′(S) = {α1, α2}, Xα1 = H1, Xα2 = H2, . . . .

However, since each set occurs at most once, this does not create confusion in this example.
Note that the elements of the sets occurring on the right are all closed, bounded contractible

subsets ofS. It is noweasy to check fromDefinition 4.2that the elements ofAS in order of their
levels are as follows.

(1) Level 0:

0 ∈ AS, level(0) = 0,

and

C(0) = {α1, α2}, Xα1 = H1, Xα2 = H2.

(2) Level 1: The elements of level 1 are

α1, α2, α1 · α2,
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and

C(α1) = {β1}, Xβ1 = H1,

C(α2) = {β2}, Xβ2 = H2,

C(α1 · α2) = {β3, β4}, Xβ3 = C1, Xβ4 = C2.

(3) Level 2: The elements of level 2 areβ1, β2, β3, β4, β3 · β4. We also have

C(βi ) = {γi }, Xγi = Hi , i = 1,2,

C(βi ) = {γi }, Xγi = Ci−2, i = 3,4,

C(β3 · β4) = {γ5, γ6}, Xγi = Pi−4, i = 5,6.

We now display diagrammatically the various complexes,M•,•(α), for α ∈ AS starting at
level 2.

(1) Level 2: For 1≤ i ≤ 4, we have

M•,•(βi ) =

0 � 0 � 0

0

�

� 0

�

� 0

�

H0(Xγi )

�

� 0

�

� 0

�

Notice that for 1≤ i ≤ 4,

H0(Tot•(M•,•(βi ))) ∼= H0(Xβi )
∼= Q.

The complexM•,•(β3 · β4) is shown below.

0 � 0 � 0

0

�

� 0

�

� 0

�

H0(P1)
⊕

H0(P2)

�

� 0

�

� 0

�

Notice that

H0(Tot•(M•,•(β3 · β4))) ∼= H0(Xβ3·β4)
∼= Q⊕Q.
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(2) Level 1: Fori = 1,2, the complexM•,•(αi ) is as follows.

0 � 0 � 0 � 0

0

�

� 0

�

� 0

�

� 0

�

0

�

� 0

�

� 0

�

� 0

�

H0(Hi )

�

� 0

�

� 0

�

� 0

�

Notice that fori = 1,2 and j = 0,1,

H j (Tot•(M•,•(αi ))) ∼= H j (Hi ).

The complexM•,•(α1 · α2) is shown below.

0 � 0 � 0 � 0

0

�

� 0

�

� 0

�

� 0

�

0

�

� 0

�

� 0

�

� 0

�

H0(C1)
⊕

H0(C2)

�

� H0(P1)
⊕

H0(P2)

�

� 0

�

� 0

�

Notice that for j = 0,1,

H j (Tot•(M•,•(α1 · α2))) ∼= H j (H12).

(3) Level 0:

The complexM•,•(0) is shown below:
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0 � 0 � 0 � 0 � 0

0

�

� 0

�

� 0

�

� 0

�

� 0

�

0

�

� 0

�

� 0

�

� 0

�

� 0

�

0

�

� H0(P1)
⊕

H0(P2)

�

� 0

�

� 0

�

� 0

�

H0(H1)
⊕

H0(H2)

�

δ0,0
� H0(C1)

⊕
H0(C2)

d1,0
�

� 0

�

� 0

�

� 0

�

The matrices for the homomorphismsδ0,0 andd1,0 in the obvious bases areboth equal to(
1 1
1 1

)
.

From the fact that the rank of the above matrix is 1, it is not too difficult to deduce that
H j (Tot•(M•,•(0))) ∼= H j (S), for j = 0,1,2, that is

H0(Tot•(M•,•(0))) ∼= Q,

H1(Tot•(M•,•(0))) ∼= 0,

H2(Tot•(M•,•(0))) ∼= Q.

We now prove properties (1) and (2) of the variousM•,•(α).

Proposition 4.6. For each α ∈ AS the double complexM•,•(α) satisfies the following
properties:

(1) Hi (Tot•(M•,•(α))) ∼= Hi (Xα) for 0 ≤ i ≤ �− level(α).
(2) For every β ∈ AS such that α is an ancestor ofβ, and level(α) = level(β), the

homomorphism r•,•α,β : M•,•(α) → M•,•(β) induces the restriction homomorphisms
between the cohomology groups:

r ∗ : Hi (Xα) −→ Hi (Xβ)

for 0 ≤ i ≤ �− level(α) via the isomorphisms in(1).

The main idea behind the proof ofProposition 4.6is as follows. We consider a triangulation
h0 : ∆0 → S such that for any α ∈ AS, h0 restricts to a semi-algebraic triangulation,



S. Basu / Journal of Symbolic Computation 41 (2006) 1125–1154 1147

hα : ∆α → Xα . Note that this implies that ifβ ∈ AS andα ∈ ancestors(β), then the triangulation
hα : ∆α → Xα restricts to the triangulationhβ : ∆β → Xβ , and inparticular∆β is a sub-
complex of∆α .

For eachα ∈ AS, we have that∆α = ∪α0∈C(α)∆α0, and each∆α0 for α0 ∈ C(α) is a sub-
complex of∆α . We denote byN •,•(∆α) the Mayer–Vietoris double complex of∆α with respect
to the sub-complexes∆α0, α0 ∈ C(α) (cf. Definition 3.2).

We definenα = �− level(α)+ 1. Recall thatN •,•nα (∆α) is the following truncated complex:

N p,q
nα (∆α) = N p,q(∆α), 0 ≤ p+ q ≤ nα,

N p,q
nα (∆α) = 0, otherwise.

By Corollary 3.4we have that

Hi (Tot•(N •,•nα (∆α))) ∼= Hi (Xα), 0 ≤ i ≤ �− level(α).

We then prove by induction on level(α) that for eachα ∈ AS there exists a double complex
D•,•(α) and homomorphisms

φ•,•α :M•,•(α) −→ D•,•(α)
ψ•α : C•(∆α) −→ Tot•(D•,•(α))

suchthat

Tot•(φ•,•α ) : Tot•(M•,•(α)) −→ Tot•(D•,•(α)),

as well asψ•α (as shown in the following figure) are quasi-isomorphisms.

Tot•(D•,•(α))

Tot•(M•,•(α))

To
t• (
φ
•,•
α

) �

C•(∆α)

�

ψ •
α

These quasi-isomorphisms will together imply that

Hi (Tot•(M•,•(α))) ∼= Hi (Tot•(D•,•(α))) ∼= Hi (Tot•(N •,•nα (∆α))) ∼= Hi (X),

for 0≤ i ≤ �− level(α).

Proof of Proposition 4.6. The proof of the proposition is by induction on level(α). When
level(α) = �, we let D•,•(α) = N •,•nα (∆α), anddefine the homomorphismsφ•,•α ,ψ•α as follows.
From the definition ofM•,•(α) it is clear that in order to defineφ•,•α , it suffices to defineφ0,0

α

andφ0,1
α .

We define

φ0,0
α :M0,0(α) =

⊕
α0 ∈ C(α)

H0(Xα0)→
⊕

α0 ∈ C(α)
C0(∆α0) = N 0,0

1 (∆Xα ),

by defining forθ ∈⊕
α0 ∈ C(α) H0(Xα0), and any vertexv of the complex∆α0, φ0,0

α (θ)α0(v) to
be the value of the locally constant functionθα0 on Xα0.

Similarly, we define

φ0,1
α :

⊕
α0<α1,αi∈C(α)

H0(Xα0·α1)→
⊕

α0<α1αi∈C(α)
C0(∆α0·α1),
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noting that

M0,1(α) =
⊕

α0<α1,αi∈C(α)
H0(Xα0·α1),

and

N 0,0
1 (∆α) =

⊕
α0<α1,αi∈C(α)

C0(∆α0·α1),

by defining forθ ∈ ⊕
α0<α1,αi∈C(α) H0(Xα0·α1), and any vertex v of the complex∆α0·α1,

φ0,1
α (θ)α0,α1(v) to be the value of the locally constant functionθα0,α1 on the connected component

of Xα0·α1 containinghα0·α1(v).
The homomorphismψ•α is induced by restriction as in the definition ofψ•�+1 in Corollary 3.4.
It is now easy to verify that Tot•(φ•,•α ) andψ•α are indeed quasi-isomorphisms.
In general for α ∈ AS, with level(α) < �, we have by induction that for each

α0, . . . , αp, αp+1 ∈ C(α),0 ≤ p ≤ � − level(α) + 2, there exists a double complex
D•,•(α0 · · ·αp) and quasi-isomorphisms

Tot•(φ•,•α0···αp
) : Tot•(M•,•(α0 · · ·αp)) −→ Tot•(D•,•(α0 · · ·αp))

ψ•α0···αp
: C•nα (∆α) −→ Tot•(D•,•(α0 · · ·αp)).

We now defineD•,•(α) by

Dp,q(α) =
⊕

α0<···<αp, αi ∈C(α)
Totq(D•,•(α0 · · ·αp)), 0≤ p+ q ≤ nα,

= 0, else.

The homomorphismφ•,•α is the oneinduced by the different Tot•(φ•,•α0···αp
) defined already by

induction, that is

φ p,q
α :Mp,q(α)→ Dp,q(α),

is defined by

φ p,q
α =

⊕
α0<···<αp, αi ∈C(α)

Totq(φ•,•α0···αp
).

In order to define the homomorphismψ•α , we first definea homomorphism

ρ•,•α : N •,•nα (∆α) −→ D•,•(α)

induced by the differentψ•α0···αp
.

We define

ρ p,q
α : N p,q

nα (∆α)→ Dp,q(α),

by

ρ p,q
α =

⊕
α0<···<αp, αi∈C(α)

ψq
α0···αp

.

We now compose the homomorphism

Tot•(ρ•,•α ) : Tot•(N •,•nα (∆α)) −→ Tot•(D•,•(α))
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with the quasi-isomorphism

ψ•α,nα : C•nα (∆α) −→ Tot•(N •,•nα (∆α))

(seeProposition 3.3).
Using the induction hypothesis it is easy to see that the homomorphismφ•,•α induces an

isomorphism between the′E1 terms of the corresponding spectral sequences. It follows from
Proposition 3.1that Tot•(φ•,•α ) is a quasi-isomorphism. A similar argument shows that Tot•(ρ•,•α )

is also a quasi-isomorphism and hence so isψ•α since it is a composition of two quasi-
isomorphisms. This completes the induction.�

5. Algorithmic preliminaries

In this section, we describe some algorithmic results which we need in the main algorithms.

5.1. Computation with complexes

In the description of our algorithm, we compute in a recursive way certain complicated double
complexes, whose constructions have already been described in Section4. The computation of
a complex (or a double complex) means computing bases for each term of the complex (or
double complex), as well as the matrices representing the differentials in these bases. Given
a complex C• (in terms of some fixed bases), we can compute its homology groups H∗(C•)
using elementary algorithms from linear algebra for computing kernels and images of vector
space homomorphisms. Similarly, given a double complex,D•,•, we can compute the complex
Tot•(D•,•), as well as H∗(Tot•(D•,•)), usingstandard algorithms from linear algebra. Since the
naive algorithms (using say Gaussian elimination for computing kernels and images of linear
maps) run in time polynomial in thedimensions of the vector spaces involved, it is clear that all
the above computations involving complexes can be done in time polynomial in the sum of the
dimensions of all terms in the input complex. This is sufficient for proving the main result of
this paper, and we do not make any attempt to perform these computations in an optimal manner
using more sophisticated algorithms.

5.2. Covers by contractible sets

We first recall some results proved inBasu etal. (2005) on constructing a singly exponential
sized cover of a given closed semi-algebraic set by closed, contractible semi-algebraic sets. We
recall the input, output and the complexityof the algorithms, referring the reader toBasu etal.
(2005) for all details including the proofs of correctness.

We say that a finite set of polynomialsP ⊂ D[X1, . . . , Xk] is in strong �-general position
if any � + 1 polynomials belonging toP have no common zeros Rk, and any� polynomials
belonging toP have at most a finite number of zeros in common in Rk.

In our algorithms we will use make use ofinfinitesimals. In order to do so, we will extend
the ground field R to R〈ε〉, the real closed field of algebraic Puiseux series inε with coefficients
in R. The sign of a Puiseux series in R〈ε〉 agrees with the sign of the coefficient of the lowest
degree term inε. This induces a unique order on R〈ε〉 which makesε infinitesimal:ε is positive
and smaller than any positive element of R. Whena ∈ R〈ε〉 is bounded by an element of R,
limε(a) is the constant term ofa, obtained by substituting 0 forε in a. We will also denote the
field R〈εs〉 · · · 〈ε1〉 by R〈εs · · · ε1〉, where 1� εs � · · · � ε1 > 0. More details regarding the
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use of infinitesimals in algorithms and complexity aspects of their use can be found in (amongst
several possible sources)Basu etal. (2006).

5.2.1. Replacement by closed sets without changing cohomology
The following algorithm allows us to replace a given semi-algebraic set by a new one which

is closed and defined by polynomials in general position and which has the same homotopy
type as the given set. This construction is essentially due to Gabrielov and Vorobjov (Gabrielov
and Vorobjov, 2005), where it was shown that the sum of the Betti numbers is preserved. The
homotopy equivalence property is shown inBasu etal. (2005).

Algorithm 5.1 (Cohomology Preserving Modification to Closed).

INPUT. The input consists of

• a finite set ofs polynomials

P = {P1, . . . , Ps} ⊂ R[X1, . . . , Xk], and

• a subsetΣ ⊂ Sign(P), defining a semi-algebraic setX by

X =
⋃
σ∈Σ

R(σ ).

OUTPUT.

A description of aP ′-closed and bounded semi-algebraic subset,

X′ ⊂ R〈ε, ε1, . . . , ε2s〉k+1,

with P ′ =⋃
1≤i≤s,1≤ j≤2s{Pi ± ε j } ∪ {ε2(X2

1 + · · · + X2
k + X2

k+1)− 4, Xk+1} suchthat
• H∗(X′) ∼= H∗(X), and
• the family of polynomialsP ′ is in strong(k+ 1)-general position.

PROCEDURE.
Step 1

• Let ε be an infinitesimal and letX̃ be the intersection of Ext(X,R〈ε〉) with the ball of center
0 and radius 1/ε.
• Let Q = P ∪ {ε2(X2

1 + · · · + X2
k + X2

k+1)− 4, Xk+1}.
• ReplaceX̃ by theQ-semi-algebraic setSdefined as the intersection of the cylinderX̃ ×R〈ε〉

with theupper hemisphere defined byε2(X2
1 + · · · + X2

k + X2
k+1) = 4, Xk+1 ≥ 0.

Step 2 Using the Gabrielov–Vorobjov construction described inBasu etal. (2005), replaceS by
aP ′-closed setS′. OutputP ′ and the formula describingS′.

Complexity: Let d be the maximum degree among the polynomials inP . The total complexity is
bounded bysk+1dO(k) (seeBasu etal. (2005)). �

5.2.2. Algorithm for computing covers by contractible sets
The following algorithm described in detail inBasu etal. (2005) is usedobtain a cover of

a given closed and bounded semi-algebraic sets defined by polynomials in general position by
closed, bounded and contractible semi-algebraic sets.
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Algorithm 5.2 (Cover by Contractible Sets).
INPUT. The input consists of

• a finite set ofs polynomialsP ⊂ D[X1, . . . , Xk] in strongk-general position, with deg(Pi ) ≤
d for 1≤ i ≤ s, and
• aboundedP-closed semi-algebraic setS, defined by aP-closed formulaφ.

OUTPUT. A set of formulas{φ1, . . . , φM } suchthat

• eachR(φi ,R′k) is semi-algebraically contractible, and
• ⋃

1≤i≤M

R(φi ,R′k) = Ext(S,R′),

where R′ = R〈ε2s, . . . , ε1〉.
Complexity: The total complexity is bounded bys(k+1)2dO(k5) (seeBasu etal. (2005)). �

6. Algorithm for computing the first � Betti numbers of a semi-algebraic set

We are finally in a position to describe the main algorithm of this paper.

Algorithm 6.1 (First � Betti Numbers of aP Semi-algebraic Set).
INPUT. The input consists of

• a finite set of polynomialsP ⊂ D[X1, . . . , Xk], and
• a formuladefining aP semi-algebraic setS.

OUTPUT. b0(S), . . . ,b�(S).
PROCEDURE.
Step 1. UsingAlgorithm 5.1(Cohomology Preserving Modification to Closed), replaceS by a
P ′-closed and bounded semi-algebraic set,S′ ⊂ R′k+1, where R′ = R〈ε, ε1, . . . , ε2s〉.
Step 2. UseDefinition 4.2to computeAS′ usingAlgorithm 5.2(Cover by Contractible Sets) for
computing the variousC ′(·) occurring in the definition ofAS′. For each elementα ∈ AS′, we also
compute the set of ancestors ancestors(α) ⊂ AS′, C(α), as well as level(α).

More precisely, we do the following.

(1) (a) Initialize,

AS′ ← ∅,
(b)

AS′ ← AS′ ∪ {0},
level(0)← 0,

X0← S′,
C(0)← C ′(S′),

ancestors(0) = {0}.
Also, maintain a directed graphG with the current setAS′ as its set of vertices
representing the ancestor–descendent relationships.

(2) Fori = 0 to � do the following:
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(a) For eachα ∈ AS′ at leveli , with ancestors(α) = {α1, . . . , αN },
C(α)←

⋃
βi∈C(αi ),1≤i≤N

C ′(β1 · · ·βN · α)

usingAlgorithm 5.2(Cover by Contractible Sets).
(b) For 0≤ j ≤ �− i + 1 and eachα0, . . . , α j ∈ C(α),

AS′ ← AS′ ∪ {α0 · α1 · · ·α j },
Xα0···α j ← Xα0 ∩ · · · ∩ Xα j ,

level(α0 · α1 · · ·α j )← i + 1.

(c) For each{α0, . . . , αi } ⊂ {β0, . . . , β j } ⊂ C(α), with j ≤ �− i + 1,
ancestors(β0 · · ·β j )← ancestors(β0 · · ·β j ) ∪ {α0 · · ·αi },

and updateG.
(d) For eachα′ ∈ C ′(β1 · · · · · βN · α),

ancestors(α′)← ancestors(α′) ∪ {β1, . . . , βN}.
and updateG. Use any graph transitive closure algorithm to transitively closeG.
Accordingly update all the sets ancestors(α), α ∈ AS′.

Step 3. UsingDefinition 4.4, compute for eachα ∈ AS′ , the complexM•,•(α) starting with
elementsα ∈ AS′ with level(α) = �. Note that for eachα ∈ AS′ , C(α) has already been
computed in Step 2. This allows us to compute matrices corresponding to all the homomorphisms
in M•,•(α) for α ∈ AS′ with level(α) = �. The recursive definition ofM•,•(α) implies that we
can compute the matrices corresponding to all the homomorphisms inM•,•(α) for α ∈ AS′
with level(α) < � once we have computed the same forM•,•(β), for all β ∈ AS′ with
level(β) > level(α). The same is also true for the matrices corresponding to the restriction
homomorphismsr •,•α,β .

Step 4. For eachi ,0 ≤ i ≤ �, compute

bi (S) = dimQ Hi (Tot•(M•,•(0))),

using standard linear algebra algorithms for computing dimensions of kernels and images of
linear transformations.

Proof of correctness: The correctness of the algorithm is a consequence of the correctness of
Algorithms 5.1(Cohomology Preserving Modification to Closed),Algorithm 5.2(Cover by
Contractible Sets), andProposition 4.6. �

Complexity analysis: The complexity of Step 1 is bounded by(sd)O(k) using the complexity
analysis ofAlgorithm 5.1(Cohomology Preserving Modification to Closed). In order to bound
the complexityof Step 2, note that the number of calls toAlgorithm 5.2(Cover by Contractible
Sets). for computing various covers,C ′(·), is bounded by #AS′, which in turn is bounded by
(sd)k

O(�)
by Proposition 4.3. Moreover, the cost of each such call is also bounded by(sd)k

O(�)
.

The cost of all other operations, including updating the list of ancestors of elements ofAS′, is
polynomial in #AS′. Thus, the total complexity of this step is bounded by(sd)k

O(�)
. Finally, the

complexity of the computations involving linear algebra in Step 3 is polynomial in the cost of
computing the various complexesM•,•(α), as well their sizes (see Section5.1). All these are
bounded by(sd)k

O(�)
by Proposition 4.3. Thus, the complexity of the whole algorithm is bounded

by (sd)k
O(�)

. �
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7. Implementation and practical aspects

The problem of computing all the Betti numbers of semi-algebraic sets in single exponential
time (as well as the related problems of existence of single exponential sized triangulations
or even stratifications) is considered a very important question in quantitative real algebraic
geometry. The main result of this paper should be considered to be partial progress on this
theoretical problem. Since the complexity ofAlgorithm 5.2(Cover by Contractible Sets) for
computing contractible covers is very high (even though single exponential), the complexity
of Algorithm 6.1is prohibitively expensive for practical implementation. The topological ideas
underlying our algorithm have been implemented in avery limited setting in order to compute the
first two Betti numbers of sets defined by quadratic inequalities (seeBasu and Kettner(2005)).
In this implementation, the covering is obtained by means different fromAlgorithm 5.2. The
practical implementation for general semi-algebraic sets remains a formidable challenge.
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