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Abstract

In this paper we describe an algorithm that takes as input a description of a semi-algeb&it Bt
defined by a Boolean formula with atoms of the foRn> 0, P < 0, P =0for P € P C R[Xq, ..., Xkl,
and outputs the first + 1 Betti numbers of S, bp(S), ..., b, (S). The complgity of the algorithm
is (sd)kom, wheres = #P) andd = maxpcp deg P), which is singly exponential irk for ¢
any fixed constant. Previously, singly exponential time algorithms were known only for computing the
Euler—Poincazchaacteristic, the zeroth and the first Betti numbers.
(© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Let R be a real closed field arilc R a semialgebraic set defined by a Boolean formula
with atoms dtheform P > 0, P < 0,P =0for P € P C R[X4, ..., Xk] (we call sich aseta
P-semi-algebraic set and the corresponding formuR-farmula). It is well known Qleinik,
19517, Oleinik and Petrovskii 1949 Milnor, 1964 Thom, 1965 Basy 1999 Gabrielov and
Vorobjov, 2005 that the topological complexity db (measured by the various Betti numbers
of S) isbounded bysd)°K wheres = #(P) andd = maxp.p deg P). Notethat these bounds
are singly exponential ikk. More precise bounds on the individual Betti number$Sappear
in Basu(2003. Even though the Betti numbers & are bounded singly exponentially ky
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there is no known algorithm for producing a singly exponential sized triangulati®&(which

would immediately imply a singly exponential algorithm for computing the Betti numbers of
S). In fact, designing a singly exponential time algorithm for computing the Betti numbers
of semi-algebraic sets is one of the outstanding open problems in algorithmic semi-algebraic
geometry. More recently, determining the exaamplexity of computing the Betti numbers of
semi-algebraic sets has attracted the attention of computational complexity theguisfisger

and Cucker2006, who are interested in developing a theory of counting complexity classes for
the Blum—-Shub—-Smale model of real Turing machines.

Doubly exponential algorithms (with complexit§sd)20(k)) for conputing all the Betti
numbers are known, since it is possible to obtain a triangulati@iedoubly exponential time
usgng cylindrical algebraic decompositio6llins, 1979. In the absence of singly exponential
time dgorithms for computing triangulations of semi-algebraic sets, algorithms with single
exponential complexity are known only for the problems of testing emptirReadar, 1992
Basu etal., 1996, computing the zeroth Betti number (i.e. the number of semi-algebraically
connected components 8f (Grigor'ev and Vorobjoy, 1992 Canny 1993 Gournay and Risler
1993 Basu etal.,, 1999, as well as the Euler—Poin@achaacteristic of S (Basy 1999. Very
recently a singly exponential time algorithm haseh developed for the problem of computing
the first Betti numbeof a given semilgebraic setBasu etal., 2005.

In this paper we describe an algorithm, which given a fanfly ¢ R[X3,..., Xk], a
P-formula describing &-semi-algebraic se6 c RK, and anumber¢, 0 < ¢ < k as input,
outputs the first¢ Betti nunbers of S. For mnstant¢, the complgity of the algorithm is
singly exponential ink. We remark that using Alexander duality, we simultaneously obtain a
singly exponential algorithm for computing the té@Betti nunbers ofS as well. However, the
complexity of our algorithm becomes doubly exponential if we want to compute the middle Betti
numbers of a semi-algebraic set using it.

There are two main ingredients in our algorithm for computing the firBetti nunbers
of a given semi-algebia set. The first ingredient is a result proved Basu etal. (2005,
which enables us to compute a singly exponential sized cover of the given semi-algebraic set
consisting of closed, contractible semi-algebraic sets, in single exponential time. The number
and the degrees of the polynomials used to define the sets in this cover are also bounded singly
exponentially.

The second ingredient, which is the main contribution of this paper, is an algorithm which
uses the covering algorithm recursively and computes in singly exponential time a complex
whose cohomology groups are isomorphic to the firebhomology groups of the input set.
This complex is of singly exponential size.

The main result of the paper is the following.

Main result: For anygiven¢, there is an algorithm that takes as inpuPgormula describing
a semialgebraic seS C RK, andoutputsbo(S), ..., be(S). The complexity of the algorithm
is (sd)kom, wheres = #(P) andd = maxp.p deqg P). Note that the complexity is singly
exponential ink for every fixede.

The paper is organized as follows. In Sectibme recall some basic definitions from algebraic
topology and fix notation. In Sectidhwe recall a few facts about the Mayer—Vietoris sequence
and its associated double complex. In Sectlone descibe the construction of the complexes
which allow us to ompute the first Betti numbers of a given semi-algebraic set. In Sechiame
recall the inputs, outpsatand complexities of a few algorithms described in detaiBasu etal.
(2009, which we usén our algorithm. In Sectio® we descitbe our algorithm for computing
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the first¢ Betti numbers, and prove its correctness as well as the complexity bounds. Finally in
Section7 we comment on issues related to practical implementation.

2. Mathematical preliminaries

In this section, we recall some basic facts alzmti-algebraic sets as well as the definitions
of complexes and double complexafssector spaces, and fix notation.

2.1. Semi-algebraic sets and their conomology groups

Let R be a real closed field. B is a finite sibset of RX1, ..., Xk], we wiite the set of zeros
of Pin Rk as

Z(P,R = Ix e RK| /\ Px)=0¢.
PeP

We denote byB(0, r) the open ball with center 0 and radius

Let @ andP be finite subsets of X1, ..., Xk], Z = Z(Q, Rk), andZ, = ZnB@O,r). A
sign conditioron P is an element of0, 1, —1}7. Therealization of the sign condition over Z,
R(o, 2), is thebasic semi-algebraic set

x e R | /\ QXx)=0n /\ sign(P(x)) = o (P)
QeQ PeP

The realization of the sign conditionr over Z., R(o, Z;), is the basic semi-algebraic set
R(o, Z) N B(0, r). For the resof the paper, we fix an open bal(0, r) with center 0 and radius
r big enough so that, for every sign conditienR (o, Z) andR (o, Z;) are homeomorphic. This
is alwayspossible by the local conical structure at infinity of semi-algebraic Sstehhak et al.
1987, page 225).

A closal and bounded semi-algebraic setc RX is semi-algebraically triangulable (this is
a clessical fict; seeBasu etal. (2006 for exanple), and we denote by'KS) theith simplicial
cohomology group of with rational coefficients. The groups ¢B) are invariant under semi-
algebraic homeomorphisms and coincide with the corresponding singular cohomology groups
when R= R. We daote byb; (S) theith Betti number ofS (that is, the dimension of 'HS)
as a vector space), arg(S) the sum)_; bj(S). For a closed but not necessarily bounded
semi-algebaic setS c RX, we will denote by H(S) the ith simplicial cohomology group
of SN B(0,r), wherer is sufficiently large. The set§ N B(0,r) are semi-algebraically
homeomorphic for all sufficiently large > 0, by the local conical structure at infinity of semi-
algebraic sets, and hence this definition makes sense.

The definition of cohomology groups ofkitrary semi-algebraic sets inkRequires some
care and several possibilities exist. In this paper, we foBagu etal. (2006 anddefine the
cohomology groups of réiaations of sign conditions as follows.

Let R denote a real closed field antidReal closed field containing R. Given a semi-algebraic
setSin R, theexten®n of Sto R, denoted as EXIS, R)), is the semi-algataic subset of 24
defined by the same quantifier free formula as defieéhe s¢ Ext(S, R') is well defined (i.e.
it only depends on the s&and not on the quantifier free formula chosen to describe it). This is
an easy consequence of the transfer principle (see for exddapleetal. (2006).
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Now, let S ¢ R¥ be aP-semi-algebraic set, whef@ = {P4, ..., Ps} is a finite subset of
R[X41, ..., Xk]. Let¢(X) be a quantifier free formula definif®y Let B = ), a o X* where the
8o €R LetA= (..., Ay, ...) denote the vector of variables corresponding to the coefficients
of the polynomials in the familyP, and leta = (..., & 4,...) € RN denote the vector of
the actual coefficients of the polynomials . Let v/ (A, X) denote the formula obtained from
¢ (X) by replacing each coefficient of each polynomialfrby the corresponding variable, so
thate (X) = ¥ (a, X). It follows from Hardt's triviality theorem for semi-algebraic mappings
(Hardt 1980, thatthere exist®’ € Rgg such that denoting b§ Rglg the semi-algebraic set
defined byyr (@', X), the semi-algbraic set EX{S, R) has the same homeomorphism typesas
Here,Rayq is the field of real algebraic numbers. We define the cohomology groustofbe
the sngular cohomology groups of &, R). It follows from the Tarski—Seidenberg transfer
principle, and the corresponding property of singular cohomology groups, that the cohomology
groups defined this way are invariant under semi-algebraic homotopies. It is also clear that this
definition is compatible vth the simplicial conomology for cked, bounded semi-algebraic sets,
and the singular cohomology groups when the ground fieRl Bindly it is clear that the Betti
numbers are not changed after extension:

bi (S) = bi (Ext(S, R)).

Note that we define the cohomology groups of arbitrary semi-algebraic sets as above in order
to treat semi-algebraic sets over arbitrary (possibly non-archimedean) real closed fields R, for
which the stadard proofs of the homology axioms (in particular the excision axiom) break down
for singular homology groups (sé&nebusch(1989, page XIlI). If one is only interested in the
case, R= R, then singular cohomology groups suffice.

2.2. Complex of vector spaces

A sequence {CP}, p € Z, of Q-vector spaces together with a sequer{é€} of
homomorphismgP : CP — CP*! (cdled differentials) for whichsP~% §P = 0 for all p
is called a complex. When it is clear from the context, we will drop the superscripts from the
differentials for the sake of readability.

The cohomology groups,MC*), are déined by

HP(C*) = ZP(C*)/BP(C"),

whereBP(C*) = Im(8P~1), andZP(C*) = Ker(5P) and we will denote by K(C*) the graded
vector spac@p HP(C*).

The cohomology groups, HC®), are allQ-vector spaces (finite dimsional if the vector
spaces @'s are themslves finite dimensional). We will henceforth omit reference to the field of
coefficientsQ which is fixed throughout the rest of the paper.

2.3. Homomorphisms of complexes

Given two canplexes, ¢ = (CP, §P) and D = (DP, §P), ahomomorphism of complexes,
¢* : C* — D°, is a sguence of homomorphisngg® : CP — DP for which§P ¢P = ¢P+1 sP
for all p.
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In other words, the following diagram is commutative.

5P
— cr X cPptl

lqbp l¢p+l

— DP = pPHL

~ A homomorphism of complexeg; : C* — D*, induces homomorphismg! : H'(C*) —
H'(D*), and we will denote the corresponding homomorphism between the graded vector
spaces H(C®), H*(D*) by ¢*. The homomorphismp® is called aquasi-isomorphisnif the
homomorphisng* is an isonorphism.
Given two canplexes C and 2, their direct sum, denoted by°Gp D*, is againa conplex
with its pth term being € & DP. Moreover, given twchomomorphisms of complexes,

¢*:C* — C:Z',
v*:D* — D°,

their direct sum
p*dY*:CeD* > C D",

is again a homomorphism of complexes defined componentwise. Note that if we specify a
basis for the different terms of the complexe$ C*,D*,D°, as well as the nteces for the
homomorphismg?®, vr°, then wecan write down the matrix for the direct sum homomorphism
¢* @ y* as a sum of block-matrices using elementary linear algebra.

2.4. The nerve lemma and generalizations

We firstdefine formally the notion of a cover of a closed, bounded semi-algebraic set.

Definition 2.1. Let S ¢ RX be a closed and bounded semi-algebraic set. A ca\(&), of S
consists of an ordered index set, which by a slight abuse of language we also deGg®,by
and a map that associates to each C(S), aclosed and bounded semi-algebraic sulsset S,
suchthatS = Uyec(5) S

For ag, ..., ap, € C(9), we sssaiate with the formal produciy- - - op, the cbsed and
bounded semi-algebraic SBly oy = SN N Sy

Recall that the Oth simplicial cohomology groopa closed and bounded semi-algebraic set
X, HO(X), can be identified with th&-vector space of)-valued locally constant functions on
X. Clearly, the dimension of %{X) is equal to the number of connected component¥ of

Forag, a1,...,ap, B € C(S),andB ¢ {ao, ..., ap}, let

Fagrapif * HO(Sugap) — HO(Sugerarpe)

be the homomorphism defined as follows. Given a locally constant funmi@wHO(Sxo,,,ap),
Fag-ap:p(®) is the locally constant function 0Byy-ap B obtained by estrictingg to SpapB-
We define he generalized restriction homomorphisms

5P - P HO(Sipap) — P HO(Sig-apis)

ag<---<ap, €C(S) ap<--<api1,2i €C(S)
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by
5p(¢)ao~~~ap+1 = Z (_1)irao~~~o?i~~0!p+1§ai (¢ao~~~o?i~~~ap+1)s (1)

O<i<p+1

where¢ € @a0<...<apec(3) HO(SXO...%) and Fagedi-~arpy1:01 is the restriction homomorphism
defined previously. The sequence of homomorphigkgjives rise to acomplex, L*(C(9)),
defined by

LPC(9) = B HA(Spap):

ap<---<ap,ai €C(S)

with the differentialss? : LP(C(S)) — LP*1(C(9)) defined in (). The complex B(C(9)) is
often referred to as theerve complexf the mverC(S).
For anyt¢ > 0, we will denote by E(C(S)) the truncated complex defined by
LJ(C(9) = LPC(9). 0=<p=t,
=0, p>¢t

Notice thatonce we lave a over of S, and we identify the connected components of the
various irtersectionssxo...ap, we have natural bases for the vector spaces

LPC(9) = &b HO(Svg-ap)
ag<--<ap,aj€C(S)

appearing as terms of the nerve complex. Moreover, the matrices corresponding to the
homomorphismssP in this basis depend only on the insion relationships between the
connected components 5;0...%“ and those of..a -

We say thattie overC(S) satisfieslie Leray propertyf each non-empty intersectidfy,.. «,,
is contractible. Clearly in this case

HO(Sipap) = Q@ if Sigroay # 9
=0, if Qypoap =9
Itis a classical fact (usually referred to as tlerve Emma that

Theorem 2.2 (Nerve lemma3. Suppose that the coverS) satisfies he Leray property. Then
foreachi> 0,

H (L*(C(S)) = H (S).
Proof. This is classical (see for instanB®atman(1988). O

Notice thatonce we lave a over of S satisfying the Leray mperty, and we are able to
test emptiness of the various intersecti@§,..ap, we can useTheorem 2.2and some basic
algorithms from linear algebra to compute the Betti numbelS of

Now suppose that each individual memb®y,, of the cover is ontractilde, but the various
intersectionsS,,...«, are not necessarily contractible fpr> 1. Theorem 2.2loes not hold in
this case. However, the following is provedBasu etal. (2005.

Theorem 2.3. Suppose that each individual membey, ®f thecoverC(S) is contractible. Then,
H (L3(C(9) =H'(9),
fori =0, 1.
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Proof. SeeBasu efal. (2005. O

Notice thatTheorem 2.3&llows us to compute using linear algelbaS) andb1(S), once we
have a cover by contractible sets, and we have identified the non-empty connected components of
the pairwise and triple-wise intersections of the sets in the cover, and their inclusion relationships.
It is quite easy to see that if we extend the compleX ireorem 2.3y one more term, that is
consider the complex3(C(9)), then the cohomology of the complex does not yield information
about H(S). Just onsider the cover of the standard sphgfec R®, and the covefH1, Ha}
of S whereHs, H, are closed hemispheres meeting at the equator. The corresponding complex,
L3(0), is as fdlows:

0 1
0 — H(Hp) D HO(H2) > HO(H1N Hp) 2> 0— 0

Clearly, H(L(C(S))) # H?(S?), and ndeed it is impossible to compubg(S) just from
the information on the number of connected components of intersections of the sets of a
cover by contractible sets far > 2. For example, the nerve complex corresponding to the
cover of the sphere by two hemispheres is isomorphic to the nerve complex of a cover of
the unit segmen{0, 1] by the subset$0, 1/2] and[1/2, 1], but ckarly H(S?) = Q, while
H2([0, 1]) = 0.

In order to deal with covers not satisfying the Leray property, it is necessary to consider
a generalization of the nerve complex, hamely a double complex arising from the generalized
Mayer—Vietoris exact sequence. The construction of this double complex (which is quite
classical) in fact motivates the design ofur algorithm, which we describe in detalil
in Section6.

3. Mayer—Vietorisdouble complex

3.1. Double complexes

In this section, we recall the basic notionsafouble complex of vector spaces and associated
spectral sequences. @ouble complels a bi-graded vector space,

C** — @ cPa,
p,qeZ

with co-boundary operatord : CP9 — CP9+l ands : CP9 — CP+LA and such that
ds + 8d = 0. We say that €* is a first quadrant double complex if it satisfies the condition
that 9 = 0 if either p < 0 orq < 0. Double complexes lying in other quadrants are defined
in an analogous manner.

The complex defined by

Tot(C**) = P cPq.

p+q=n
with differential
D" =d+54: Tot"(C**) — Tot"1(C**),

is denoted by Tot(C*-*) and called th@ssociated total complex &*°.
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q4

p+q=L p+g=E+1 B

Fig. 1.dy : EP9 — gPTHa" L

3.2. Spectral sequences

A spectral sequences a sguence of bi-graded complexeg; , d, : EP9 — gPT97"F
(seeFig. 1) such hat the complexE; ;1 is obtained fromE; by taking its cohomology with
respect tal (thatisEry1 = Hq, (Er)).

There are two spectral sequenc&d 9, "EP-9 (corresponding to taking row-wise or column-
wisefiltrations respectively) associated with a first quadrant double compigxvahichwill be
important for us. Bottof these converge to*HTot®* (C*-*)). This means that the homomorphisms,
dr, are eventally zero, and hence the spedtsequences stabilize, and

P EX = P "EL =H (Torr(C™)),
p+qg=i p+g=i

for eachi > 0.
The first terms of these are

"E1 = Hd4(C**), "E2 = HgHs(C**),
and
"E1 = Hs(C**), "E2 = HgHs(C**).

Given two (first quadrant) double complexes®€and C**, a homomorphism of double
complexes,

¢o,o - C** —» Co,o’
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is a collection ® homomorphismspPd : CP9 — CP9, such hat the following diagrams
commute.

cpa 5, (cpt+lg

lqj P.q l¢ p+1q
éra 2, @Eptlg

cra 9, cpatt

lqj p.q Jfb p.g+1

cra 9, @Epatl
A homomorphism of double complexes,
¢.,. N LN (—:.,.’
induces a homomorphism of the corresponding total complexes which we will denote by
Tot*(¢**) : Tot*(C™*) — Tot*(C**).

It also induces homomorphismgs : 'Es — 'Es (respectively,’¢s : "Es —> "Es)
between the associated spectral sequences (corresponding either to the row-wise or column-wise
filtrations). For the precise definition of homomorphisms of spectral sequencel|ckemy

(2007). We will need the following useful fact (sedcleary (2001), page 66, Theorem 3.4 for a

proof).

Proposmon 3.1 If 'pg (respectlvelal”%) is an isanomhism for some s> 1, then’ qu and
’Ep (respectively! EP9 and”E; " ) are isonorphic for allr > s. Inparticular, the mduced
homomorph|sm

Tot*(¢**) : Tot*(C**) — Tot*(C**)

is a quasi-isomorphism.
3.3. The Mayer—Vietoris double complex

Let A1, ..., Ay be sub-complexes of a fte simplicial complexA suchthatA = AjU- - -UA.
Note that the intersections of mmumber of the sub-complexes;, is againa sub-complex of
A. We will denote byAao,,,O[p the sub-compled,, N---N Agp-

Let C (A) denote th&)-vector space df co-chains ofA, and C (A), the complex
o) -4 caa) L crtia) -
whered : CI(A) — CI*t1(A) are the usual co-boundary homomorphisms. More precisely, given

w € CY(A), and aq + 1 simplexag, . .., ag+1] € A,
do(lao, ..., aqr1) = Y (-D'o(ao,....&,...,aq+1) 2

O<i<qg+1

(here and everywhere else in the pdpiEmotes omission). Now extend do a linear form on
all of Cq4+1(A) by linearity, to obtain an element oficl(A).
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The connecting homomorphisms are “generalized” restrictions and are defined below.
Thegenerdized Mayer-Vietoris sequencethe following exact sequence of vector spaces:

. 0,e ]
0> P Ch S D R

1<ap=<n 1<apg<ai1<n
o Spfl,o . Sp,o
P CAupa) — &b C*(Aagapiy) — **
l<ag<--<ap=<n 1<ap<-<app1=n

wherer ® is inducedby restriction and the connecting homomorphisis$ are as follows.
CY(Agy.-ap) We definesP9(w) as follows:

Cq(Aao...apH), and it suffces to define

Given anw €

ap<---<ap

Firstnote that P9« € P

ap<-<opi1

(6 p’qw)ao,...,aHl

for each(p + 2)-tuple 1< ap < -+ < apt1 < n. Note hat (6P 9w),....ap,, IS @ linear form
on the vector spac€q(Avg-ap;1)s andhence is determined by its values on thsimgices in
the conplex Aao,,.aw. Furthermore, eachj-simplex,s € Aao,,.apw is aubmatially a simplex
of the complexes

Aao...ogi...aw, O<i<p+1

We define

P9D)ag,ap 1S = Y Doy . ap(S).

The fact that the generalized Mayer—\dgt sequence is exact is classical (Begman(1989
or Basu(2003 for exanple).

We now define the Mayer-Vietoris double complex of the compexith respect to the sub-
complexesA,,, 1 < g < n, which wewill denote byA/*-*(A) (we suppress the dependence of
the conplex on sub-complexed,, in the notation since this dependence will be clear from the
context).

Definition 3.2. The Mayer—Vietoris double complex of a simplicial compl&xvith respect to
the sub-complexed,,. 1 < ap < n, N'**(A), is the double complex defined by

NPIA = P CUAwgayp)-

1<ag<--<ap=n

The horizontal differentials are as defined above. The vertical differentials are those induced by
theones in the different complexes? Qag-ap)-
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N**(A) is depicted in thedllowing figure.

! T

P Aw) — P CPAugar) — ..
ap

op<og

P C A — P CHAvpar) — -

%) op<og

P A — P ClAupar) — -
)

ap<al
For anyt > 0, we denote by\;™*(A) the following truncated complex:

NPAA) =NPAA), 0<p+qc<t,
NPY(A) =0, otherwise

The following proposition is classical (s&ntman(1988 or Basu (2003 for a proof) and
follows from the exactness of the generalized Mayer—Vietoris sequence.

Proposition 3.3. The spectral sequencég;, ”E,, associaed withA/*:*(A) converge tdH*(A)
and thus

H*(Tot®(N**(A))) = H*(A).
Moreover, thehomomorphism
¥® : C*(A) — Tot' (N**(A)

induced by the homomorphism (in the generalized Mayer—Vietoris sequence) is a quasi-
isormorphism.

We denote by G (A the truncation of the complex®CA) after the(¢ + 1)st term. As an
immediate corollary we have that

Corollary 3.4. For any¢ > 0, thehomomorphism
Vi1 s Crpa(A) — Tot W5 (A) 3

induced by the homomorphism (in the generalized Mayer—Vietoris sequence) is a quasi-
isomorphism. Hence, fod < i < ¢,

H' (Tot* (W35 (A) = H (A).

Remark 3.5. Notice that in the truncated Mayer—Vietoris double compla’*(A), the Oth
column is a complex having at most- 1 non-zero terms, the first column can have at most

t non-zero terms, and in general thé column has at modt+ 1 — i non-zero terms. This
observation plays a crucial role in the inductive argument used later in the paper (in the proof of
Proposition 4.3
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4. Double complexes associated with certain covers

We bain with a definition.

Definition 4.1. Let P be a finite subset of X1, ..., Xk]. A P-closed formin is a formula
constructed as follows:
For eachP € P,

P=0, P>0 P<0,

are’P-closed brmulas.
If &1 and &, areP-closed brmulas,®1 A &2 and P1 v P areP-closed brmulas.

Clearly, R(¢) = {X C RK | &(x)}, the realtation of aP-closed brmula &, is a cbsed
semi-algebraic set and we call such a sPtelosed semi-algebraic set.

For the rest of this section we consider a fixed family of polynomi®lsz R[Xj, ..., Xkl,
as well as a fixedP-closed and bounded semi-algebraic €t R. We also fk a number,
£,0<¢ <Kk

We define belowin Sedion 4.1) a finite set of indicesA s, which wecall the set of admissible
indices, and a map that associates with eaehA s a dosed and bounded semi-algebraic subset
Xo C S, which we call an admissible subset. With eaclh As, we associate its level, denoted
as levela), which isan integer between 0 artd The setAgs will be partially ordered, and we
denote by ancestdig) C Asg the set of ancestors af under this partial order. Far, 8 € As,
B € ancestor@) implies thatX, C Xg.

For each admissible index € As, we define a double complexy1*-*(«), such hat

H (Tot' (M**(@)) = H (X,), 0<i < {—levela).

The main idea behind the construction of the double complé%®(«) is as follows.
Associated with any cover oX, there exists a double complex (the Mayer—Vietoris double
complex) arising from the generalized Mayer—Vietoris exact sequenceD@gsgtion 3.9. If
the individual sets of the cover oX are all contractible, then the first column of the Mayer—
Vietoris double complex is zero except at the first row. The cohomology groups of the associated
total complex of the Mayer-Vietoris double complex are isomorphic to those,afind thus in
order to comput®y(Xy), - - -, Be—levelir) (Xe), it Suffices to compute a suitable truncation of the
Mayer—Vietoris double complex. However, computing the Mayer—Vietoris double complex (even
the truncated one) directly within a singly exponential time complexity is not possible by any
known method, since we are unable to computengidations of semi-algebraic sets in singly
exponential time. However, making use of the cover construction recursively, we are able to
compute another double compleX *:*(«), whichhas much smaller size but whose associated
total complex is quasi-isomorphic to the truncated Mayer—Vietoris double complex and hence
has isomorphic cohomology groups ($&reposition 4.elow). The construction of1**(«) is
possible in singly exponential time since the covers can be computed in singly exponential time.

Finally, given any closed and bounded semi-algebraiset R¥, we will denote byC’(X) a
fixed cover ofX (we will use the construction iBasu etal. (2005 to conrpute such a cover).

4.1. Admissible sets and covers

We now cefineAs, and for eachw € Aga mverC(a) of X, obtained by enlarging the cover
C'(Xa)-
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Definition 4.2 (Admissible Indices and CoveraNe defineA s by induction on level.

(1) Firstly, 0 € Ag, levek0) = 0, Xp = S, andC(0) = C’(S). The admissible indices of level 1
consist of all formal product® = ap - o1 - - - rj_1 - @j, Withaj € C(O)and 0< j < £ 41,
and we define the associated semi-algebraic set by

Xp = Xog M=+ N Koy -
For each{ag, ..., am} C {Bo, ..., Bn} C C(0),withn < ¢+ 1,
oo - - -am € ancestor&o - - - Bn),

and Oe ancestor&o - - - Bn).

(2) We now inductively define the admissible indices at levell, in terms of theadmisible
indices atlevek i. For eachw € Agatleveli, we define («) as follows. Let ancestof@) =
{a1, ..., an}. Then,

= |J CBrBn-w,

BieC(ai),1<i<N

whereU denotes the disjoint union. All formal products= ag - a1 - - - aj, with o € C(@)
and0< j < ¢ —i + 1areinAs, and wedefine

Xp = Xag M-+ N Xa;.

and levelB) =i + 1.
For each{ao, ...,am} C {Bo, ..., Bn} C C(a),withn < £ —i + 1,

a0 - - am € ancestor&3o - - - Bn),

anda € ancestor&p - - - Bn).

Moreover, fora’ € C'(B1 - --- - BN - «), eachpB; is an ancestor of’. We trangively
close the ancestor relation, so that an ancestan arcestor is also an ancestor. Moreover, if
ap---am, Bo- - Bn € As are such that for every € {1, ..., n} there exists € {1,..., m}
suchthate; is an ancestor o8;, thenag - - - am is an ancestor ofg - - - fn.

Finally, the set of admissible indices at level 1 is

{ag-a1---aj |ai eCla),0<j <€—i+1}.
achg,levella)=i

Observe thaby the alove defiition, if «,8 € Ag and 8 € ancestor&), then each
o’ € C(a) has a unique ancestor in ead®B), which wewill denote bya, 4(«’), and the rapping
ag,p : C(a) — C(P) is injective.

Now, suppose that we have a procedure for computihgx), for ary given P’-closed
and bounded semi-algebraic s#t, such that the number and the degrees of the polynomials
appearing in the descriptions of the semi-algebraic $gts¢ € C’'(X), are bounded by

DX, (4)

wherec; > 0 is some bsolute constant, and = ) deg P).

Using the abve proceéure for computing?’(X), and the definition ofAs, we have the
following quantitative bounds onds and the semi-algebraic seXs,, « € As, which iscrucial
in proving the complexity bound of our algorithm.
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Proposition4.3. Let S c RX be a boundedP-closed semi-algebraic set, whe@ cC
R[X1, ..., Xk] is a family of spolynomials of degree at most d. Th#As, as well as the
number of polynomials used to define the semi-algebraic sgte X As and the degrees of
these polynomials, are all bounded ts}d)"om.

Proof. Givena € Agwith level(w) = j, we first prove by induction on levet) that
gancestorg) < 2Xi-o(t-1+3 — 2 +DE+3-](+D/2

The claim is clearly true if levél) = 0. Otherwise, from the definition aks, thereexids
B € Ag, withlevel(8) = j — 1, suchthatt = y9---ym, yi € C(B)andm < ¢ — | + 2.
For eachy;, we have

ancestor§;) = ancestor§) U {agg(y1) | 6 € ancestor&s)},
and it follows that

ancestor&r) = ancestor§8) U {ag ¢ (Viy) - - - ag,0 (in) |
0 € ancestor&), {io,...,in} C {1,..., m}}.

Hence,

#ancestorg) - 2™

#ancestorg) - 207113

o¥120(=143)  2t=43 (py induction hypothesis)
oX_o(t=i+3)

— 2(+DE+3)—-j(j+D/2

#ancestorsr)

A TA

IA

Thus, there exists some absolute constant 0 such thafor anya € Aswe have

#ancestorg) < 2%2¢°,

We now prove again by induction on the level that there exists an absolute constahsuch
that the nurber of elements of s of level < j, as well as the number of polynomials needed to
define the associated semi-algebraic sets, and the degrees of these polynomials, are all bounded
by (sd)*” .

The claim is clear for level 0. Now assume that the claim holds for level As befoe, given
a € Aswith level(e) = j, thereexigs 8 € As with level(8) = j — 1, such thatt = yo- - - Ym,
¥ € C(B) andm < ¢ — j + 2. We have thattancestorg) < 22t by the previous paragraph.
Let ancestor@®) = {61, ..., 6n}. Then,

#6r) < (s,

for 1 <i < N by the induction hypothesis.
In order to bound

#wpy=# |J B BB

BieC(6i).1<i<N
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first observe thalN < 2%t and hence the union on the right hand side is over an index set of
cardinality bounded by

ke~ pepe?
(sd)

9

and each set in the union has cardinality bounded by

M = (ZCZZZ(Sd)kC(jil))kCl
— 202tk (s d)kci-(c-cv
wherec; is the constat defined before in4) above.
Thus, the total number of admissible indices at leyé$ bounded by the total number of
admissible indices at levgl— 1times) o, ;3 (™). 1tfollows that if c chosen large enough

with respect to the constants, c;, then br all k large enough, the total number of admissible
indices at levelj is at most

(s
The bounds on the number and degrees of polynomials appearing in the description can be provec
similarly using the same induction scheme.

4.2. Double complex associated with a cover

Given the different covers described above, we now associate withce@&l\ s a double
complex,M**(«), and fa every € As, such hate € ancestorg3), and levela) = level(8),
a restiction homonorphism:

lop i M (@) — M**(B),
satisfying the following:
1) . A
H' (Tot* (M**(@))) = H'(X,), for0<i <¢— level). (5)
(2) The restriction homomorphism
ro'(;} M (@) - M**(B),
induces the restriction homomorphisms between the cohomology groups:
ra g H (Xa) = H (Xp)
forO0 <i < ¢ — level(w) via the isomorphisms irbj.

We now describe the construction of the double compld®*(«) and prove that it has the
properties stated above. The double complé%* («) is constructed inductively using induction
on levela).

Definition 4.4. The base case is when leie] = ¢. In this case the double complex{**(«),
is defired by

M%) = P HXq),
ag € C(a)

M) = P HXaga),

ag,a1 € C(a)

MPY9@) =0, ifg>0o0rp>1
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This is shown diagrammatically below.

0 0 0

B HXe) > P HKXegay) —— 0

apeC(a) ag,a1€C(a)

The only non-trivial homomorphism in the above complex
5: P HXe) — P H'Xagar)
apeC(a) ag,a1€C(a)

is defined as follows:

8(Davar = (Pay — Pag) Xy TOrd € P HO(Xap).

apeC(a)
For every € As suchthata € ancestor&), and levele) = level(8) = ¢, we define
rg:g : M9O(a) — MOO(B) as follows.
Recall thatM%%(@) = B, ¢ co) H'Xag), andMOO(B) = Py,  c5) HO(Xgo)-
For¢ € M%%(«) andfBy € C(B) we define

0,0
ra’ﬂ (¢)ﬁo - ¢aﬁ,a (ﬂO) |x/30 N

We definerot’0 - ME0(a) - MLO(B) in a similar manner. More precisely, fore M%%(«)
andpo, B1 € C(B), we define

1,0
Vo (D) Bo.B1 = Pas .o (Bo)-as.a (BD) | Xpy.p, -

(The inductive step.) In general thief P9 () are defined as follows using induction on el
and withn, = £ — level(a) + 1.

M) = P HUXy).
ag € C(a)

MOA(X) =0, 0<aq,

MPA(q) = @ Tth(M"'(aouoap)), O<p, O0<p+g=ng,
ag<--<ap, aj€C(a)

MPY(x) =0, else
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The double complex1*:*(«) is shown in the fdlowing diagram:

0 0 0
0—— @ Tot™ HM** (a0 - @1)) LA 0
ap<ag
d d d
0—— P Tot™ 2(M** (a0 - @1)) LA 0
ap<ag
0——— P ToP(M**(ap0- 1)) LAY 0
ap<og
d d d
0——— P Tot"(M**(ag- 1)) LR 0
ap<og
d d d

P HXep) 2r @ ToM** (@ 01) —— . P ToCM"*(a0--an,)

XaOECX op<og Qp<-+-<ony

The vertical homomorphismsl, in M**(«) are those induced by the differentials in the
various

Tot*(M**(ap---ap)), ¢ € C(a).
The horizontal ones are defined by generalized restriction as follows. Let

¢ e &y Toth(M**(ag - - - ap)),

ag<---<ap,ajeC(a)

with
¢ao ..... ap = @ ¢g[0 ap?
0<j=<q
and
Plo.oap € Mg~ ap).
We define

5 P Tt Mt ap) — P Tot M (a0 apia))

ag<--<ap,ajeC(a) Qo<-<Upi1
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by
- _ni j.a-j j
5 Plavaps = B D P 10T @l i)

O<i<p+1 0<j=<q
noting that for each, 0 <i < p+1,a0---dj - - - ops1 iS an ancestor afg - - - ep1, and

levellag - - - dij - - - apy1) = levellag - - - apy1) = level) + 1,

and hence the homomorphisnj;sqij are already defined by induction.
0@ 0py1,00 " Xpil

Now leta, B € As with o an ancestor o and levela) = level(8). We definelhe restriction
homomorphism
foh s M%) — M**(8)
as follows.
As before, forp € M%O(a) and By € C(B) we define
0,0
T8 (@) o = Pag.a (b | Xs, -
ForO< p,0< p+q < ¢ —levella) + 1, we define
rag s MP@) — MP9(B),

as follows.

Letgp € MPY(a) =P cCle) TOH(M®*(ap- - - ap)). We define

Qo< <dp,

PO,y _ ig—i i

fap ($) = D D oo b0) 050 P B, a5 B
Bo<--<Pp,BieC(B) 0<i=<q

whereag o (Bo- - - Bp) = 8g.o(Po) - - - g« (Bp). Note that each of thag «(6i),0 <i < p, are
all distinct and belong t6(«). Moreover,

level(ag,« (Bo - - - Bp)) = level(Bo- - - Bp) = levellw) + 1,
and hence we can assume that the homomorphi%mgﬂo

r;:ﬁ are already defined by induction.

~Bp).Bo--Bp used in the definition of

Itis easy to verify by induction on levet) thatM*-*(«), defined as above, is indeed a double
complex, that is the homomorphismsnds satisfy the equations

d>=52=0, ds+éd=0.
4.3. Example

Before proving the main properties of the complexet-*(«) defined above, we illustrate
their construction by means of a simple example. We take for th®, skeéunit spheres? ¢ R3.
Even though this example looks very simple,siaictually illustrative of the main topological
ideas b&ind the construction of the complex1®-*(S) starting from a cover ofS by two
closed hemispheres meeting at the equatarcesthe intersamn of the two hemispheres is a
topological circle which is not contractibl&heorem 2.2s not applicable. Usind heorem 2.3
we can compute {S), H1(S), but it is not enough to compute?dS). The ecursive construction
of M** described in the last section overcomes this problem and this is illustrated in the
exanple.
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Example 4.5. We firstfix some notation (se€ig. 2). Let H; andH2 denote the closed upper and
lower hemispheres respectively. l¢i> = Hi N H2 denote the equator, and ld2 = C; U Cy,
whereC,, C, are closed semi-circular arcs. Finally, @&t = C1 NCy = {P1, P>}, wherePy, P,
are two antipodal points.

For thepurpose of this example, we will take for the covéfshe obvbus ones, namely:

C'(S) = {Hy, Ha},
i

C'(H) = {Hi}, =12,
C'(H12) = {C1, C2},
C'(CH=({C}, i=12
C'(C12) = {P1, P2},
C'(P)={R}, i=12

Note that, in order not to complicate notation further, we are using the same names for the
elements of’’(-), as well as their associated sets. Strictly speaking, we should have defined

C/(S) = {alv a2}1 XO(]_ = H17 XO(2 = H21 s

However, since each set occurs at most once, this does not create confusion in this example.
Note that the elements of the sets occurring on the right are all closed, bounded contractible

subsets ofS. It is noweasy to check frorefinition 4.2that the elements dfs in order d their

levels are as follows.

(1) LevelO:
0 € Ag, levell0) =0,
and
C(0) = {az, a2}, Xy = Ha, Xy = Ha.
(2) Level 1: The elements of level 1 are

o1, 02, a1 - @2,
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and

Cla1) = {B1}, Xp, = Ha,
Claz) = {B2}, Xp, = Ha,
Clo1-az) = {B3, Ba}, Xpg; =C1, Xg, =Ca.

(3) Level 2: The elements of level 2 aée, B2, B3, Ba, B3 - B4. We also have

CB) = {nt Xy=Hi, 1=12
CB) = {nt, Xy =Ciz, 1=34,
C(ﬁ3 : ﬁ4) = {7/5: V6}7 X}/| = I:)I74, i = 5, 6.

We now diplay diagrammatically the various complexgg**(«), for « € Ag starting at
level 2.

(1) Level 2: For 1<i < 4, we have

0 -~ 0 -~ 0
M**B) = 0 ~ 0 -~ 0
HO(X,,) 0 0

Notice thafor1 <i < 4,
HO(Tot* (M** () = HO(Xg) = Q.
The complexM*:*(83 - Ba) is shown lelow.

0 0 >0

0 0 >0

HO(P) @D HO(Py) 0 0
Notice that

HO(Tot (M** (B3 - B))) = HO(Xp,5,) = Q@ Q.
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(2) Level 1: Fori = 1, 2, the complexM*-*(«¢;) is as follows.

0 0 0 0
0 0 0 0
0 0 0 0
HO(Hi) 0 0 0

Notice hatfori = 1,2 andj =0, 1,
HI (Tot* (M**(@))) = HI (Hj).

The complexM*®* (a1 - a2) is shown kelow.

0 0 0 0
0 0 0 0
0 0 0 0
H(C) P H(C2) — HO(P) P HO(P2) - 0 - 0

Notice hatforj =0, 1,

H) (Tot* (M** (a1 - @2))) = H! (H12).

(3) Level O:
The complexM*®-*(0) is shown lelow:

1145
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0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0— +~ HYPY EB HO(Py) 0 0 0
dl,O
0 0 320 0
HO(H1) @ HO(H2) — HO(C1) P H(Co) 0 0 0

The matrices for the homomorphisiafs® andd-? in the obvious baseareboth equal to

11
1 1/)°
From the fact that the rank of the above matrix is 1, it is not too difficult to deduce that
H! (Tot* (M**(0))) = H!(S), for j =0, 1, 2, that is
HO(Tot* (M**(0))) = Q,
HY(Tot*(M**(0))) = 0,
H?(Tot* (M**(0))) = Q.

We now pove poperties (1) and (2) of the various(®*(«).

Proposition 4.6. For eacha € Ag the double complexM*®*(«x) satisfies the following

properties:

(1) H (Tot* (M**(a))) = H (Xq) for 0 <i < ¢ — level().

(2) For every 8 € As suchthat « is an ancestor of8, and levellw) = level(8), the
homomorphismo‘r_; : M**(a) — M**(B) induces the restriton honomorphisms
between the cohomology groups:

r*: H' (Xq) — H (Xp)
for0 <i < ¢ — level(w) via the isomorphisms i(i).

The main idea behind the proof Bfoposition 4.8s as follows. We consider a triangulation
ho : Ap — S such that for anya € As, hg restricts to a semi-algebraic triangulation,
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h, : A, — X,. Note hat thisimpliesthati € Asanda € ancestorgs), then the triangulation
he : Ay — X, restricts to the triangulatiohg : Ag — Xg, and inparticularAg is a sub-
complex ofA,.

For eacha € As, we hae thatA, = Uyyec(a)Qag, aNd eachdy, for ap € C(a) is a sub-
complex ofA,. We denote by **(A,) the Mayer—Vietoris double complex af, with respect
to the sub-complexes,,. ag € C(a) (cf. Definition 3.2.

We definen, = ¢ — level(o) + 1. Recall that\Vyy* (4, ) is the following truncated complex:

NP Ay = NP9(A,), 0<p+Q=ng,
NP9(A,) = 0, otherwise

By Corollary 3.4we have that
H (Tot' (Wp*(A0)) £ H' (Xe), 0 <i <€ level).

We then prove by induction on levet) that for each € As there exists a double complex
D** (@) and homomorphisms

o3 M** (@) — D**(@)
Yy 1 C*(Ay) — Tot*(D**(w))

suchthat
Tot*(¢gy®) : Tot*(M**(a)) — Tot*(D**(a)).

as well asf; (as shown in the following figure) are quasi-isomorphisms.

Tot*(D**(a))
oD b
N Zq
Tot* (M**(@)) C*(A)

These quasi-isomorphisms will together imply that
H' (Tot* (M**(@))) = H' (Tot* (D**(@))) = H' (Tt (W3:* (Ae))) = H'(X),
forO<i < ¢ —level(w).

Proof of Proposition 4.6. The proof of the proposition is by induction on legel. When
levell@) = ¢, we letD**(a) = Np.*(Ay), anddefine the homomorphisngg®, ¢ 3 as follows.
From the definition of\**(«) it is clear that in order to defings*, it suffices to defing%-°
andgot.

We define

3"0 : M%) = @ HO(Xao) - @ CO(AUO) = Nlo’o(Axw)’

ag € C(a) ap € C(a)

by defining for € @B, < ¢y H(Xao), @nd any ertexuv of the complexdyy, ¢32(6)uy (v) to
be the value of the locally constant functigg on Xg,.
Similarly, we define

qbg’l : @ HO(Xao.al) — @ CO(Aaoul)v

ag<ar,aj€C () ag<ayaj €C(a)
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noting that
MUy = P HXaga).
ap<aq,qi€C(a)
and
MU= P g

ag<ar,aj€C(a)

by defining foré € @gyya;.0icc@) HO(Xagay), @nd any ertex v of the complexAyg.q,,
¢2’1(9)a0,a1(v) to be the vale of the locally constant functidl, ., on the connected component
Of Xog-ay CONtAININGNGg.04 (V).

The homomorphisngg is induced by restriction as in the definitionyf, , in Corollary 3.4.

Itis now easy to verify that T8t¢3 *) andy; are indeed quasi-isomorphisms.

In general fora € Ag, with levellw) < ¢, we hawe by induction that for each
®g,...,ap,@py1 € C(a),0 < p < £ — levellw) + 2, there exists a double complex
D**(ap - - - ap) @and quasi-isomorphisms

TOI’( ‘;E).ap) : TOt.(M."(OZO R ap)) N Tot.(D.’.(ao o ap))
1#;0.._% : Cf.w (Ay) — Tot*"(D**(ag- - - ap)).

We now cefineD*-*(«) by

DP9(a) = b Tot!(D** (a0 - @p)), 0= p+q=<n,,
ag<--<ap, ajeC(a)
=0, else

The homomorphisng?® is the oneinduced by the different Tb(f(b&gﬁ..ap) defined already by
induction, that is

29 : MPYa) - DP9 (),
is defired by
Pi= D Tothelr.,)

ap<--<ap, o €C(a)
In order to define the homomorphisgp}, we first definea homomorphism
oyt :/\/R;'(Aa) — D**()

induced by the differents .
We define

P& N (Aa) - DPY(@),
by

Pe B W,

ag<--<ap, aj€C(a)
We now @mpose the homomorphism

Tot*(pg*) : Tot* (N *(Ag)) —> Tot*(D**(e))
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with the quasisomaphism
Yo, : Ch, (Aa) — TOt' (NV3*(Ad))

(seeProposition 3.3

Using the induction hypothesis it is easy to see that the homomorpifstinduces an
isomorphism between théE; terms of the corresponding spectral sequences. It follows from
Proposition 3.that Tot (¢2*) is a quasi-isomorphism. A sifar argumentows that Tot(p%'*)
is also a quasi-isomorphism and hence sa/fs since it is a composition of two quasi-
isomorphisms. This completes the inductiorn

5. Algorithmic preliminaries
In this section, we describe some algorithmasults which we need in the main algorithms.
5.1. Computation with complexes

In the description of our algorithm, we compute in a recursive way certain complicated double
complexes, whose constructions have already been described in SkcTioa canputation of
a oomplex (or a double complex) means compgtitases for each term of the complex (or
double complex), as well as the matrices representing the differentials in these bases. Given
a conplex C (in terms of some fixed bases), we can compute its homology grotiG°H
using elementary algorithms from linear algebra for computing kernels and images of vector
space homomorphisms. Similarly, given a double compl2%;, we can compute the complex
Tot*(D**), as well as Fi(Tot*(D*:*)), usingstandard algorithms from linear algebra. Since the
naive algorithms (using say Gsgian elimination for computing kernels and images of linear
maps) run in time polynomial in thdimensions of the vector spaces involved, it is clear that all
the @ove computations involving complexes can be done in time polynomial in the sum of the
dimensions of all terms in the input complex. This is sufficient for proving the main result of
this paper, and weainot make any attempt to perform these computations in an optimal manner
using more sophisticated algorithms.

5.2. Covers by contractible sets

We first recall some results proved Basu etal. (2005 on constructing a singly exponential
sized cover of a given clodesemialgebraic set by closed, contractible semi-algebraic sets. We
recall the input, output and the complexdf/the algorithms, referring the readerBasu efal.
(2009 for all details including the proofs of correctness.

We sg that a finite set of polynomiat® c D[Xj, ..., Xk] is in strong £-general position
if any ¢ 4+ 1 polynomials belonging t® have no common zeros‘Rand any? polynomials
belonging taP have at most a finite number of zeros in common fa R

In our algorithms we will use make use ioffinitesimals In order to do spwe will extend
the gound field R to Re), the eal closed field of algebraic Puiseux series imith coefficients
in R. The sign of a Puiseux series ifdR agrees with the sign of the coefficient of the lowest
degree term ir. This induces a unique order on& which makes infinitesimal:¢ is positive
and smaller than any positive element of R. Wleer R{e) is bounded by an element of R,
limg(a) is the constant term af, obtained by substituting O far in a. We will also denote the
field R(es) - - - {(e1) by R{es - - - £1), where 1> ¢ > --- > &1 > 0. More details regarding the
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use of infinitesimals in algorithms and complexity aspects of their use can be found in (amongst
several possie sourcespBasu eal. (2006.

5.2.1. Replacement by closed sets without changing cohomology

The following algorithm allows us to replace a given semi-algebraic set by a new one which
is closed and defined by polynomials in getgrasition and which has the same homotopy
type as the given set. This construction is essentially due to Gabrielov and Vor@gbvi¢lov
and Vorobjoy 2005, where it was shown that the sum of the Betti numbers is preserved. The
homotopy equivalence property is showrBasu efal. (2005.

Algorithm 5.1 (Cohomology Preserving Modification to Cloged
INPUT. The input consists of

o afinite set ofs polynomials
P={P1,...,Ps} CR[Xy,...,Xk], and
e a ubsety C Sign(P), definng a semi-algebraic sét by
X =[] Re).
oeX
OuTPUT.

A degription of aP’-closed and bounded semi-algebraic subset,

X' C Rle, e1, ..., e25) <,

with P = Us<i<s 1<j<osl P £ ]} U {2(XE + - + X + XE, 1) — 4. Xky1) suchthat
e H*(X) = H*(X), and
o the family of polynomialsP’ is in strong(k + 1)-general position.

PROCEDURE.
Step 1

e Let e be an infitesimal and letX be the intersection of EZX, R(¢)) with the ball of center
0 and raius le.

o LetQ=PU{eA(X{+ -+ XZ+ X2, 1) — 4, Xky1}.

e RephceX by the Q-semi-algebraic se® defined as the intersection of the cylinderx R(e)
with the upper hemisphere defined b§(X$ + - - + X + X2, ;) = 4, Xk11 > 0.

Step 2 Using the Galwiov—\Vorobjov construction describedBasu etal. (2005, replaceS by
aP’-closed seB. Ouput P’ and the formula describing.

Complexity Let d be the maximum degree among the polynomialRiThe tdal complexity is
bounded bys*t1d°® (seeBasu etl. (2005). O

5.2.2. Algorithm for computing covers by contractible sets

The following algorithm described in detail Basu etal. (2005 is usedobtain a cover of
a gven closed and bounded semi-algebraic sefndd by polynomials in general position by
closed, bounded and contractible semi-algebraic sets.
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Algorithm 5.2 (Cover by Contractible Se}s
INPUT. The input consists of

o afinite set ofs polynomialsP c D[ X4, ..., Xk] in strongk-general position, with d&p,) <
dforl1<i <s,and
e aboundedP-closed semi-algebraic s&f defined by gP-closed brmulag.

OuTPUT. A set of formulagd¢1, . . ., ¢m} suchthat

e eachR(¢i, R¥)is semi-algebraically contractible, and
[ ]

U R@i.R* =Ex(SR),

1<i<M
where R = R{gps, ..., €1).

Complexity The total complexity is bounded tf+D*dOK*) (seeBasu etl. (2005). O

6. Algorithm for computing thefirst £ Betti numbers of a semi-algebraic set

We are finally in a position to describe the main algorithm of this paper.

Algorithm 6.1 (First £ Betti Numbers of & Semi-algelnic Se}.
INPUT. The input consists of

o afinite set of polynomial® c D[Xj, ..., Xk], and
o a formuladefining aP semi-algebaic setS.

OUTPUT. bg(9), ..., be(S).

PROCEDURE.
Step 1. UsingAlgorithm 5.1(Cohomology Preserving Modification to Closed), repl&day a
P’-closed and bounded semi-algebraic Setz R¥*1, where R= R{(e, e1, . .., &25).

Step 2. Usdefinition 4.2to conputeA g usingAlgorithm 5.2(Cover by Contratible Sets) for
computing the variou§’(-) occurring in the definition of\g. For each element € Ag, we also
compute the set of ancestors ancestors- Ag, C(«), as well & levelw).

More precisely, we do the following.

(D (@) Initialize,

AS’ < @,
(b)
Ag <~ Ag U {0},
level(0) < O,
Xo <« S,

C(0) < C(9),
ancestor®) = {0}.

Also, maintain a directed grapls with the current setAg as its set of vertices
representing the ancestor-descendent relationships.
(2) Fori = 0to¢ do the following:
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(a) For eaclw € Ag at leveli, with ancestor&) = {1, ..., an},

Ca)— |J CcBrpn-w
BieClai),1<i<N
usingAlgorithm 5.2(Cover by Contratible Sets).

(b) ForO< j <€ —i+l1landeachn,...,aj € C(a),
Ag <~ AgUfagp-a1---aj},
XUO“'aj < XUO n---N Xaj )
levellwo - 1 ---aj) < i + 1.

(c) ForeacHwo, ..., @i} C{Bo,...,Bj} CCla), with j <€ —i +1,
ancestor&o - - - Bj) < ancestor§o- - - Bj) U {ao- - ai},

and updates.
(d) Foreachw' e C'(B1----- BN - @),
ancestor&:’) < ancestor&’) U {B1, ..., BN}-

and updateG. Use any graph émsitive closure algorithm to transitively closg.
Accordingly update all the sets ancestajsa € Ag.

Step 3. UsingDefinition 4.4 compute for eaclw € Ag, the complexM*®*(«) starting with
elementse € Ag with levello) = ¢. Note that for eacle € Ag, C(a) has already been
computed in Step 2. This allows us to compute matrices corresponding to all the homomorphisms
in M**(a) for @ € Ag with level(w) = £. The recursive definition aM* *(«) implies that we

can compute the matrices corresponding to all the homomorphisov$®ifi(«) for @ € Ag

with levell@) < ¢ once we have compedl the same form**(8), for all B € Ag with
level(8) > levellw). The same is also true for the matrices corresponding to the restriction

homomorphisms; ;.

Step 4. Foreach 0 <i < ¢, conpute
bi (S) = dimg H' (Tot* (M**(0))),

using standard linear algebra algorithms for computing dimensions of kernels and images of
linear transformations.

Proof of correctnessThe corectness of the algorithm is a consequence of the correctness of
Algorithms 5.1(Cohomology Preserving Modification to Closed),gorithm 5.2 (Cover by
Contractible Sets), androposition 4.6 O

Compexity analysis The complexity of Step 1 is bounded lggd)°® using the cenplexity
analysis ofAlgorithm 5.1(Cohomology Preserving Modification to Closed). In order to bound
the complexityof Step 2, note that the number of callsAtgorithm 5.2(Cover by Contadible
Sets). for computig various covers(’(-), is bounded by #g, which in turn is bounded by
(sd)kw) by Proposition 4.3Moreover, the cost of each such call is also boundedsti)ﬁow,

The cost of all other operations, including updating the list of ancestors of elemefits, a$
polynomial in #\g. Thus, the total complexity of this step is bounded(bgl)kom. Findly, the
complexity of the computations involving linear algebra in Step 3 is polynomial in the cost of
computing the various complexgg(*-*(«), as well their sies (see Sectiob.1). All these are
bounded b)(sd)kom by Proposition 4.3Thus, the complexity of the whole algorithm is bounded

by (sd)<°”. O
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7. Implementation and practical aspects

The problem of computing all the Betti numbers of semi-algebraic sets in single exponential
time (as well as the related problems of existence of single exponential sized triangulations
or even stratifications) is considered a very important question in quantitative real algebraic
geometry. The main result of this paper should be considered to be partial progress on this
theoretical problem. Since the complexity Afgorithm 5.2(Cover by Contactible Sets) for
computing contractible covers is very high (even though single exponential), the complexity
of Algorithm 6.1is prohibitively expensive for practical implementation. The topological ideas
underlying our algorithm have been implementedvery limited setting in order to compute the
first two Betti numbers of sets defined by quadratic inequalitiesBsese and Kttner(2005).

In this implementation, the covering is obtained by means different #dgorithm 5.2 The
practical implementation for general semi-algebraic sets remains a formidable challenge.
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