5 research outputs found

    Prototype to Increase Crosswalk Safety by Integrating Computer Vision with ITS-G5 Technologies

    Get PDF
    Human errors are probably the main cause of car accidents, and this type of vehicle is one of the most dangerous forms of transport for people. The danger comes from the fact that on public roads there are simultaneously different types of actors (drivers, pedestrians or cyclists) and many objects that change their position over time, making difficult to predict their immediate movements. The intelligent transport system (ITS-G5) standard specifies the European communication technologies and protocols to assist public road users, providing them with relevant information. The scientific community is developing ITS-G5 applications for various purposes, among which is the increasing of pedestrian safety. This paper describes the developed work to implement an ITS-G5 prototype that aims at the increasing of pedestrian and driver safety in the vicinity of a pedestrian crosswalk by sending ITS-G5 decentralized environmental notification messages (DENM) to the vehicles. These messages are analyzed, and if they are relevant, they are presented to the driver through a car’s onboard infotainment system. This alert allows the driver to take safety precautions to prevent accidents. The implemented prototype was tested in a controlled environment pedestrian crosswalk. The results showed the capacity of the prototype for detecting pedestrians, suitable message sending, the reception and processing on a vehicle onboard unit (OBU) module and its presentation on the car onboard infotainment system.info:eu-repo/semantics/publishedVersio

    Wireless Sensor Network Based Real-Time Pedestrian Detection and Classification for Intelligent Transportation System

    Get PDF
    Pedestrian safety has become a critical consideration in developing society especially road traffic, an intelligent transportation need of the hour is the solution left. India tops the world with 11% of global road accidents. With this data, we have moved in the direction of computer vision applications for efficient and accurate pedestrian detection for intelligent transportation systems (ITS). The important application of this research is robot development, traffic management and control, unmanned vehicle driving (UVD), intelligent monitoring and surveillance system, and automatic pedestrian detection system. Much research has focused on pedestrian detection, but sustainable solution-driven research must still be required to overcome road accidents. We have proposed a wireless sensor network-based pedestrian detection system that classifies the real-time set of pedestrian activity and samples the reciprocally received signal strength (RSS) from the sensor node. We applied a histogram of oriented gradient (HOG) descriptor algorithm K-nearest neighbor, decision tree and linear support vector machine to measure the performance and prediction of the target. Also, these algorithms have performed a comparative analysis under different aspects. The linear support vector machine algorithm was trained with 481 samples. The performance achieves the accuracy of 98.90%and has accomplished superior results with a maximum precision of 0.99, recall of 0.98, and F-score of 0.95 with 2% error rate. The model’s prediction indicates that it can be used in the intelligent transportation system. Finally, the limitation and the challenges discussed to provide an outlook for future research direction to perform effective pedestrian detection

    Midrange exploration exploitation searching particle swarm optimization with HSV-template matching for crowded environment object tracking

    Get PDF
    Particle Swarm Optimization (PSO) has demonstrated its effectiveness in solving the optimization problems. Nevertheless, the PSO algorithm still has the limitation in finding the optimum solution. This is due to the lack of exploration and exploitation of the particle throughout the search space. This problem may also cause the premature convergence, the inability to escape the local optima, and has a lack of self-adaptation in their performance. Therefore, a new variant of PSO called Midrange Exploration Exploitation Searching Particle Swarm Optimization (MEESPSO) was proposed to overcome these drawbacks. In this algorithm, the worst particle will be relocating to a new position to ensure the concept of exploration and exploitation remains in the search space. This is the way to avoid the particles from being trapped in local optima and exploit in a suboptimal solution. The concept of exploration will continue when the particle is relocated to a new position. In addition, to evaluate the performance of MEESPSO, we conducted the experiment on 12 benchmark functions. Meanwhile, for the dynamic environment, the method of MEESPSO with Hue, Saturation, Value (HSV)-template matching was proposed to improve the accuracy and precision of object tracking. Based on 12 benchmarks functions, the result shows a slightly better performance in term of convergence, consistency and error rate compared to another algorithm. The experiment for object tracking was conducted in the PETS09 and MOT20 datasets in a crowded environment with occlusion, similar appearance, and deformation challenges. The result demonstrated that the tracking performance of the proposed method was increased by more than 4.67% and 15% in accuracy and precision compared to other reported works

    Vulnerable road users and connected autonomous vehicles interaction: a survey

    Get PDF
    There is a group of users within the vehicular traffic ecosystem known as Vulnerable Road Users (VRUs). VRUs include pedestrians, cyclists, motorcyclists, among others. On the other hand, connected autonomous vehicles (CAVs) are a set of technologies that combines, on the one hand, communication technologies to stay always ubiquitous connected, and on the other hand, automated technologies to assist or replace the human driver during the driving process. Autonomous vehicles are being visualized as a viable alternative to solve road accidents providing a general safe environment for all the users on the road specifically to the most vulnerable. One of the problems facing autonomous vehicles is to generate mechanisms that facilitate their integration not only within the mobility environment, but also into the road society in a safe and efficient way. In this paper, we analyze and discuss how this integration can take place, reviewing the work that has been developed in recent years in each of the stages of the vehicle-human interaction, analyzing the challenges of vulnerable users and proposing solutions that contribute to solving these challenges.This work was partially funded by the Ministry of Economy, Industry, and Competitiveness of Spain under Grant: Supervision of drone fleet and optimization of commercial operations flight plans, PID2020-116377RB-C21.Peer ReviewedPostprint (published version
    corecore