2 research outputs found

    Unsupervised Induction of Frame-Based Linguistic Forms

    Get PDF
    This thesis studies the use of bulk, structured, linguistic annotations in order to perform unsupervised induction of meaning for three kinds of linguistic forms: words, sentences, and documents. The primary linguistic annotation I consider throughout this thesis are frames, which encode core linguistic, background or societal knowledge necessary to understand abstract concepts and real-world situations. I begin with an overview of linguistically-based structured meaning representation; I then analyze available large-scale natural language processing (NLP) and linguistic resources and corpora for their abilities to accommodate bulk, automatically-obtained frame annotations. I then proceed to induce meanings of the different forms, progressing from the word level, to the sentence level, and finally to the document level. I first show how to use these bulk annotations in order to better encode linguistic- and cognitive science backed semantic expectations within word forms. I then demonstrate a straightforward approach for learning large lexicalized and refined syntactic fragments, which encode and memoize commonly used phrases and linguistic constructions. Next, I consider two unsupervised models for document and discourse understanding; one is a purely generative approach that naturally accommodates layer annotations and is the first to capture and unify a complete frame hierarchy. The other conditions on limited amounts of external annotations, imputing missing values when necessary, and can more readily scale to large corpora. These discourse models help improve document understanding and type-level understanding

    Better informed training of latent syntactic features

    No full text
    We study unsupervised methods for learning refinements of the nonterminals in a treebank. Following Matsuzaki et al. (2005) and Prescher (2005), we may for example splitNP without supervision into NP[0] andNP[1], which behave differently. We first propose to learn a PCFG that adds such features to nonterminals in such a way that they respect patterns of linguistic feature passing: each node’s nonterminal features are either identical to, or independent of, those of its parent. This linguistic constraint reduces runtime and the number of parameters to be learned. However, it did not yield improvements when training on the Penn Treebank. An orthogonal strategy was more successful: to improve the performance of the EM learner by treebank preprocessing and by annealing methods that split nonterminals selectively. Using these methods, we can maintain high parsing accuracy while dramatically reducing the model size.
    corecore