6,158 research outputs found

    The 8Li Calibration Source for the Sudbury Neutrino Obervatory

    Full text link
    A calibration source employing 8Li (t_1/2 = 0.838s) has been developed for use with the Sudbury Neutrino Observatory (SNO). This source creates a spectrum of beta particles with an energy range similar to that of the SNO 8B solar neutrino signal. The source is used to test the SNO detector's energy response, position reconstruction and data reduction algorithms. The 8Li isotope is created using a deuterium-tritium neutron generator in conjunction with a 11B target, and is carried to a decay chamber using a gas/aerosol transport system. The decay chamber detects prompt alpha particles by gas scintillation in coincidence with the beta particles which exit through a thin stainless steel wall. A description is given of the production, transport, and tagging techniques along with a discussion of the performance and application of the source.Comment: 11 pages plus 9 figures, Sumbitted to Nuclear Instruments and Methods

    The Detection of Ionizing Radiation by Plasma Panel Sensors: Cosmic Muons, Ion Beams and Cancer Therapy

    Full text link
    The plasma panel sensor is an ionizing photon and particle radiation detector derived from PDP technology with high gain and nanosecond response. Experimental results in detecting cosmic ray muons and beta particles from radioactive sources are described along with applications including high energy and nuclear physics, homeland security and cancer therapeuticsComment: Presented at SID Symposium, June 201

    Performance of Geant4 in simulating semiconductor particle detector response in the energy range below 1 MeV

    Full text link
    Geant4 simulations play a crucial role in the analysis and interpretation of experiments providing low energy precision tests of the Standard Model. This paper focuses on the accuracy of the description of the electron processes in the energy range between 100 and 1000 keV. The effect of the different simulation parameters and multiple scattering models on the backscattering coefficients is investigated. Simulations of the response of HPGe and passivated implanted planar Si detectors to \beta{} particles are compared to experimental results. An overall good agreement is found between Geant4 simulations and experimental data

    Coincidence analysis in ANTARES: Potassium-40 and muons

    Full text link
    A new calibration technique using natural background light of sea water has been recently developed for the ANTARES experiment. The method relies on correlated coincidences produced in triplets of optical modules by Cherenkov light of beta-particles originated from Potassium-40 decays. A simple but powerful approach to atmospheric muon flux studies is currently being developed based on similar ideas of coincidence analysis. This article presents the two methods in certain detail and explains their role in the ANTARES experiment.Comment: 4 pages, 3 figures, published in the proceedings of Rencontres de Moriond EW 200

    Half-Life of 14^{14}O

    Get PDF
    We have measured the half-life of 14^{14}O, a superallowed (0+0+)(0^{+} \to 0^{+}) β\beta decay isotope. The 14^{14}O was produced by the 12^{12}C(3^{3}He,n)14^{14}O reaction using a carbon aerogel target. A low-energy ion beam of 14^{14}O was mass separated and implanted in a thin beryllium foil. The beta particles were counted with plastic scintillator detectors. We find t1/2=70.696±0.052t_{1/2} = 70.696\pm 0.052 s. This result is 1.5σ1.5\sigma higher than an average value from six earlier experiments, but agrees more closely with the most recent previous measurement.Comment: 10 pages, 5 figure
    corecore