22,966 research outputs found

    Major Mergers Host the Most Luminous Red Quasars at z ~ 2: A Hubble Space Telescope WFC3/IR Study

    Full text link
    We used the Hubble Space Telescope WFC3 near-infrared camera to image the host galaxies of a sample of eleven luminous, dust-reddened quasars at z ~ 2 -- the peak epoch of black hole growth and star formation in the Universe -- to test the merger-driven picture for the co-evolution of galaxies and their nuclear black holes. The red quasars come from the FIRST+2MASS red quasar survey and a newer, deeper, UKIDSS+FIRST sample. These dust-reddened quasars are the most intrinsically luminous quasars in the Universe at all redshifts, and may represent the dust-clearing transitional phase in the merger-driven black hole growth scenario. Probing the host galaxies in rest-frame visible light, the HST images reveal that 8/10 of these quasars have actively merging hosts, while one source is reddened by an intervening lower redshift galaxy along the line-of-sight. We study the morphological properties of the quasar hosts using parametric Sersic fits as well as the non-parametric estimators (Gini coefficient, M_{20} and asymmetry). Their properties are heterogeneous but broadly consistent with the most extreme morphologies of local merging systems such as Ultraluminous Infrared galaxies. The red quasars have a luminosity range of log(L_bol) = 47.8 - 48.3 (erg/s) and the merger fraction of their AGN hosts is consistent with merger-driven models of luminous AGN activity at z=2, which supports the picture in which luminous quasars and galaxies co-evolve through major mergers that trigger both star formation and black hole growth.Comment: Submitted to ApJ. This version includes the response to the referee repor

    Properties of galaxy dark matter halos from weak lensing

    Full text link
    We present the results of a study of weak lensing by galaxies based on 45.5 deg2^2 of RCR_C band imaging data from the Red-Sequence Cluster Survey (RCS). We present the first weak lensing detection of the flattening of galaxy dark matter halos. We use a simple model in which the ellipticity of the halo is ff times the observed ellipticity of the lens. We find a best fit value of f=0.77−0.21+0.18f=0.77^{+0.18}_{-0.21}, suggesting that the dark matter halos are somewhat rounder than the light distribution. The fact that we detect a significant flattening implies that the halos are well aligned with the light distribution. Given the average ellipticity of the lenses, this implies a halo ellipticity of =0.33−0.09+0.07=0.33^{+0.07}_{-0.09}, in fair agreement with results from numerical simulations of CDM. This result provides strong support for the existence of dark matter, as an isotropic lensing signal is excluded with 99.5% confidence. We also study the average mass profile around the lenses, using a maximum likelihood analysis. We consider two models for the halo mass profile: a truncated isothermal sphere (TIS) and an NFW profile. We adopt observationally motivated scaling relations between the lens luminosity and the velocity dispersion and the extent of the halo. The best fit NFW model yields a mass M200=(8.4±0.7±0.4)×1011h−1M⊙M_{200}=(8.4\pm0.7\pm0.4)\times 10^{11} h^{-1} M_\odot and a scale radius rs=16.2−2.9+3.6h−1r_s=16.2^{+3.6}_{-2.9} h^{-1} kpc. This value for the scale radius is in excellent agreement with predictions from numerical simulations for a halo of this mass.Comment: Significantly revised version, accepted for publication in ApJ 11 pages, 6 figure

    A SINFONI view of Galaxy Centers: Morphology and Kinematics of five Nuclear Star Formation Rings

    Full text link
    We present near-infrared (H- and K-band) integral-field observations of the circumnuclear star formation rings in five nearby spiral galaxies. The data, obtained at the Very Large Telescope with the SINFONI spectrograph, are used to construct maps of various emission lines that reveal the individual star forming regions ("hot spots") delineating the rings. We derive the morphological parameters of the rings, and construct velocity fields of the stars and the emission line gas. We propose a qualitative, but robust, diagnostic for relative hot spot ages based on the intensity ratios of the emission lines Brackett gamma, HeI, and [FeII]. Application of this diagnostic to the data presented here provides tentative support for a scenario in which star formation in the rings is triggered predominantly at two well-defined regions close to, and downstream from, the intersection of dust lanes along the bar with the inner Lindblad resonance.Comment: 45 pages incl. 4 tables and 12 (mostly color) figures. Accepted for publication in AJ. A version with full resolution figures can be obtained at ftp://ftp.rssd.esa.int/pub/tboeker/SINFONI/ms.pd

    Black Holes: from Speculations to Observations

    Full text link
    This paper provides a brief review of the history of our understanding and knowledge of black holes. Starting with early speculations on ``dark stars'' I discuss the Schwarzschild "black hole" solution to Einstein's field equations and the development of its interpretation from "physically meaningless" to describing the perhaps most exotic and yet "most perfect" macroscopic object in the universe. I describe different astrophysical black hole populations and discuss some of their observational evidence. Finally I close by speculating about future observations of black holes with the new generation of gravitational wave detectors.Comment: 15 pages, 6 Figures; to appear in the Proceedings of the Albert Einstein Century International Conference, Paris, France, 200

    Biases in Virial Black Hole Masses: An SDSS Perspective

    Full text link
    We compile black hole (BH) masses for ∼60,000\sim 60,000 quasars in the redshift range 0.1≲z≲4.50.1 \lesssim z \lesssim 4.5 included in the Fifth Data Release of the Sloan Digital Sky Survey (SDSS), using virial BH mass estimators based on the \hbeta, \MgII, and \CIV emission lines. We find that: (1) within our sample, the widths of the three lines follow log-normal distributions, with means and dispersions that do not depend strongly on luminosity or redshift;(2) the \MgII- and \hbeta-estimated BH masses are consistent with one another; and (3) the \CIV BH mass estimator may be more severely affected by a disk wind component than the \MgII and \hbeta estimators, giving a positive bias in mass correlated with the \CIV-\MgII blueshift. Most SDSS quasars have virial BH masses in the range 108−109M⊙10^8-10^9 M_\odot. There is a clear upper mass limit of ∼1010M⊙\sim 10^{10} M_\odot for active BHs at z≳2z \gtrsim 2, decreasing at lower redshifts. Making the reasonable assumptions that the underlying BH mass distribution decreases with mass and that the Eddington ratio distribution at fixed BH mass has non-zero width, we show that the measured virial BH mass distribution and Eddington ratio distribution are subject to Malmquist bias. A radio quasar subsample (with 1.5≲z≲2.31.5\lesssim z\lesssim 2.3) has mean virial BH mass larger by ∼0.12\sim 0.12 dex than the whole sample. A broad absorption line (BAL) quasar subsample (with 1.7≲z≲2.21.7\lesssim z\lesssim 2.2) has identical virial mass distribution as the nonBAL sample, with no mean offset. (Abridged)Comment: Updated virial mass measurements; improved presentation of the MC simulation; added new discussion sections; conclusions unchanged. The full table1 is available at http://www.astro.princeton.edu/~yshen/BH_mass/datafile1.txt.tar.g

    Morphological analysis of the cm-wave continuum in the dark cloud LDN1622

    Full text link
    The spectral energy distribution of the dark cloud LDN1622, as measured by Finkbeiner using WMAP data, drops above 30GHz and is suggestive of a Boltzmann cutoff in grain rotation frequencies, characteristic of spinning dust emission. LDN1622 is conspicuous in the 31 GHz image we obtained with the Cosmic Background Imager, which is the first cm-wave resolved image of a dark cloud. The 31GHz emission follows the emission traced by the four IRAS bands. The normalised cross-correlation of the 31 GHz image with the IRAS images is higher by 6.6sigma for the 12um and 25um bands than for the 60um and 100um bands: C(12+25) = 0.76+/-0.02 and C(60+100) = 0.64+/-0.01. The mid-IR -- cm-wave correlation in LDN 1622 is evidence for very small grain (VSG) or continuum emission at 26-36GHz from a hot molecular phase. In dark clouds and their photon-dominated regions (PDRs) the 12um and 25um emission is attributed to stochastic heating of the VSGs. The mid-IR and cm-wave dust emissions arise in a limb-brightened shell coincident with the PDR of LDN1622, where the incident UV radiation from the Ori OB1b association heats and charges the grains, as required for spinning dust.Comment: accepted for publication in ApJ - the complete article with uncompressed figures may be downloaded from http://www.das.uchile.cl/~simon/ftp/l1622.pd
    • …
    corecore