100,037 research outputs found

    On Monte-Carlo tree search for deterministic games with alternate moves and complete information

    Full text link
    We consider a deterministic game with alternate moves and complete information, of which the issue is always the victory of one of the two opponents. We assume that this game is the realization of a random model enjoying some independence properties. We consider algorithms in the spirit of Monte-Carlo Tree Search, to estimate at best the minimax value of a given position: it consists in simulating, successively, nn well-chosen matches, starting from this position. We build an algorithm, which is optimal, step by step, in some sense: once the nn first matches are simulated, the algorithm decides from the statistics furnished by the nn first matches (and the a priori we have on the game) how to simulate the (n+1)(n+1)-th match in such a way that the increase of information concerning the minimax value of the position under study is maximal. This algorithm is remarkably quick. We prove that our step by step optimal algorithm is not globally optimal and that it always converges in a finite number of steps, even if the a priori we have on the game is completely irrelevant. We finally test our algorithm, against MCTS, on Pearl's game and, with a very simple and universal a priori, on the games Connect Four and some variants. The numerical results are rather disappointing. We however exhibit some situations in which our algorithm seems efficient

    Search versus Knowledge: An Empirical Study of Minimax on KRK

    Get PDF
    This article presents the results of an empirical experiment designed to gain insight into what is the effect of the minimax algorithm on the evaluation function. The experiment’s simulations were performed upon the KRK chess endgame. Our results show that dependencies between evaluations of sibling nodes in a game tree and an abundance of possibilities to commit blunders present in the KRK endgame are not sufficient to explain the success of the minimax principle in practical game-playing as was previously believed. The article shows that minimax in combination with a noisy evaluation function introduces a bias into the backed-up evaluations and argues that this bias is what masked the effectiveness of the minimax in previous studies

    Fast Approximate Max-n Monte Carlo Tree Search for Ms Pac-Man

    Get PDF
    We present an application of Monte Carlo tree search (MCTS) for the game of Ms Pac-Man. Contrary to most applications of MCTS to date, Ms Pac-Man requires almost real-time decision making and does not have a natural end state. We approached the problem by performing Monte Carlo tree searches on a five player maxn tree representation of the game with limited tree search depth. We performed a number of experiments using both the MCTS game agents (for pacman and ghosts) and agents used in previous work (for ghosts). Performance-wise, our approach gets excellent scores, outperforming previous non-MCTS opponent approaches to the game by up to two orders of magnitude. © 2011 IEEE
    corecore