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Abstract This article presents the results of an empirical experiment designed to gain 
insight into what is the effect of the minimax algorithm on the evaluation 
function. The experiment’s simulations were performed upon the KRK chess 
endgame. Our results show that dependencies between evaluations of sibling 
nodes in a game tree and an abundance of possibilities to commit blunders 
present in the KRK endgame are not sufficient to explain the success of the 
minimax principle in practical game-playing as was previously believed. The 
article shows that minimax in combination with a noisy evaluation function 
introduces a bias into the backed-up evaluations and argues that this bias is 
what masked the effectiveness of the minimax in previous studies.  
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1. Introduction 

Over twenty years ago Beal (1980) set out to analyze whether and why 
values backed up from minimax search are more trustworthy than the 
heuristic values themselves. He constructed a simple mathematical model to 
analyze the minimax algorithm. To his surprise the analysis of the model 
showed that the backed-up values were actually somewhat less trustworthy 
than the heuristic values themselves. He then wrote: “This result is 
disappointing. It was hoped that the analysis would show that the probability 
of error reduced with backing-up.” A couple of years later two articles (Beal, 
1982; Bratko and Gams, 1982) simultaneously conducted further analysis 
into why minimax does yield good results in practical game-playing while 
apparently backed-up values seem less reliable; both articles reached the 
same conclusion. They argued that the true values of sibling nodes in a game 
tree are not independent of one another. This clustering of similar values is a 
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major feature in practical games and it was this phenomenon that Beal’s 
mathematical model did not account for. The problem with the minimax 
paradigm under the assumption of independence of sibling values was also 
confirmed by Nau (1982, 1983), who called this a search-depth pathology in 
game trees. In a simulation Nau (1982) introduced strong dependencies 
between sibling nodes and discovered that this can cause search-depth 
pathology to disappear. 

However, Pearl (1984) partly disagreed with the conclusion reached by 
Beal, Bratko, Gams and Nau, and claimed that while strong dependencies 
between sibling nodes in a game tree can eliminate the pathology, practical 
games like chess do not possess dependencies of sufficient strength. He 
pointed out that few chess positions are so strong that they cannot be spoiled 
abruptly if one really tries hard to do so. He concluded that the success of 
minimax in game-playing programs is “based on the fact that common 
games do not possess a uniform structure but are riddled with early terminal 
positions, colloquially named blunders, pitfalls or traps. Close ancestors of 
such traps carry more reliable evaluations than the rest of the nodes, and 
when more of these ancestors are exposed by the search, the decisions 
become more valid.” Moreover, Schrüfer (1986) and its follow-up (Althöfer, 
1989) did some further analysis of pathology in game trees. Especially 
interesting is their observation that to avoid pathology, an evaluation 
function must, among other things, have negligible probability of 
underestimating a position from the perspective of the player to move. 

All of the above studies have two things in common: (a) they accept the 
empirical evidence that the minimax principle works in practical game-
playing programs and (b) they try to model mathematically the minimax 
algorithm and theoretically deduce what happens when heuristic values 
assigned to leaves are backed-up towards the root of the game tree. To make 
such mathematical analysis feasible the researchers are forced to make 
certain assumptions about the game they model and to make simplifications 
in their model. Thus, the results of these models are always to be viewed 
with the acknowledgement of this assumptions and simplifications in the 
back of one’s mind. In contrast to that, our approach in this article is to take 
(part of) a real game with a real evaluation function and observe empirically 
what is going on when we change the search depth and the quality of the 
evaluation function. We have at our disposal an absolutely correct evaluation 
function which we can corrupt in a controlled way. We also have a minimax 
search engine that is capable of searching to very high depths because of its 
efficient implementation. 

The next section describes our choice of the game, the evaluation 
function and its artificial corruption, as well as the search engine. Section 3 
presents the results for various settings of our simulation parameters and 
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gives our explanations for the observed phenomena. In Section 4 we give our 
conclusions and some ideas for further work. 

2. Experimental Design 

We have decided to centre our simulations on a simple subset of chess: 
the KRK endgame. In this endgame White has a King and a Rook, while 
Black has only a King. The goal for White is to mate the opponent, striving 
to do so in as little moves as possible. There are two possible outcomes of 
this endgame: a win for White or a draw. While the KRK endgame is very 
simple, it still possesses all the interesting attributes: positions are of various 
difficulties (measured in the number of moves to mate), there surely exist 
dependencies between the values of sibling nodes in a game tree, and there is 
a possibility of blunders and early termination for both sides (stalemate or 
losing a Rook for White; premature mate for Black). 

We are interested in the quality of play for White under different 
conditions. Therefore, unless stated otherwise, we always look at things from 
the White player’s perspective. Also, White is our MIN player and Black is 
our MAX player. 

For the KRK endgame we have at our disposal an absolutely correct 
evaluation function. It tells us how many moves are needed to reach mate in 
the case that both players play optimally and is measured in moves. It is in 
the form of a database that consists of all possible legal positions and their 
evaluations. The database can be obtained from UCI Machine Learning 
Repository (Blake and Merz, 1998). The positions in the database always 
assume it is Black’s turn to move. There are two special cases: value 0 
means Black is mated and value 255 means that Black has a draw (either the 
position is a stalemate or Black can capture the white Rook). 

The database consists of 28,056 positions. There are actually over 
200,000 legal KRK positions, however board symmetries allow for such a 
reduction. Detailed description of the database and board symmetries is 
given in Bain (1992). Our version of the database is implemented as an array 
of 28,056 cells and can be viewed as a sort of transposition table. Apart from 
positions having special evaluations of 0 or 255, there are 25,233 positions 
divided into 16 levels of difficulty. Positions from level 1 require one move 
(2 plies) to mate (assuming optimal play); positions from level 2 require two 
moves to mate, and so on. Positions from the most difficult level require 16 
moves (32 plies) to mate. Different levels have different number of 
positions; for example, there are 4,553 positions of level 14 and only 390 
positions of level 16. Figure 1 shows how many cases (positions) are left 
unsolved if we applied searches of various depths without any knowledge 
apart from the rules of the game. The term ‘unsolved’ in this context means 
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that White has to make a move without knowing at that time the complete 
move-tree that guarantees a mate. The curve starts to fall significantly 
between depths of 14 and 20 plies and after ply 20 it steeply drops towards 
zero. 
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Figure 1.    Number of unsolved cases as a function of search depth. 

 
For the purpose of our experiments we corrupted the ideal evaluation 

function in a controlled manner. Our method of doing this is as follows. We 
take a position value and add to it a certain amount of Gaussian noise. The 
formula and a plot are as follows: 

( ) ( ) ( )22 2/ σµ ⋅−−= xexP   

The formula gives the probability P(x)dx that given the correct evaluation µ 
and standard deviation σ the new (corrupted) evaluation x will take on a 
value in the range [x, x + dx], which is a real number. The error of new 
evaluation is µ − x. We do this for all positions in the database, including the 
positions where Black is already mated (special value 0). The corruption is 
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symmetrical, meaning that there is practically equal chance that the new 
evaluation will be optimistic or pessimistic. We allow x to take on a negative 
value – in this way we are able to preserve the symmetry for positions that 
have true values close or equal to 0. 

The level of corruption is controlled by the parameter σ, which is in fact 
the standard deviation and which controls how dispersed are the corrupted 
values x around the correct values µ (the width of the hill on the plot above). 
The standard deviation is measured in moves. For example, if σ equals 0.5, 
this means that approximately two thirds of corrupted evaluations are within 
0.5 moves around the true evaluation and over 95% of corrupted evaluations 
are within 1.0 move (two standard deviations) around the true evaluation. 

To be able to compare the quality of initial knowledge (evaluation 
function) to the quality of knowledge after backing up the values with the 
minimax algorithm, we have to be able to calculate the standard deviation 
after minimaxing. This is easy, because our search algorithm returns the 
backed-up values from a fixed search depth for every unique KRK position 
in an array exactly the same as our initial database. This array is in fact our 
‘backed-up’ evaluation function. We thus have one such array for every 
search depth from 0 (initial database) to 32 ply (our chosen final search 
depth). After obtaining such an array, we calculate σ with the formula: 

( )∑
=

−=
N

i
iix

N 1

21 µσ  

where xi is the backed-up corrupted value and µi is the true value for position 
i. N is the number of positions in the array. This gives us a tool to monitor 
directly how minimax affects the quality of evaluation function. 

Our search engine is the standard fixed-depth minimax search. The only 
built-in knowledge it has is the ability to detect fatal errors for White 
(stalemates and losing a Rook); the ability to detect mates is not given. We 
were able to search to very high search depths of 32 plies and beyond (if 
desired) by exploiting the fact that the KRK endgame only has a 
comparatively small number of unique (under symmetries) positions 
(28,056) which we can all store in a sort of transposition table. We start at 
depth 0 by loading the values from a (corrupted) database, then move on to 
depth 2, perform a 2-ply minimax search and use the results of the previous 
depth as evaluations of the leaves, store results of depth 2 search, move on to 
depth 4 and so on. Such an implementation of the search algorithm allows it 
to have a linear time complexity instead of the usual and very constraining 
exponential time complexity. 
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3. The Results of the Experiments 

Figure 2 shows what happens to the quality of the evaluation function 
when we change the search depth. The x-axis represents the search depth 
measured in plies and the y-axis represents the standard deviation σ 
measured in moves. Each curve in the graph represents a different evaluation 
function – they differ in the level of their corruption (the initial σ). The 
legend marks these different evaluation functions with the size of their initial 
σ. The best way to separate the curves is to look at their initial corruption. 
The last evaluation function with initial σ of 20 is off the scale and its 
corruption level never drops. We performed the experiments with several 
evaluation functions having the same initial σ, because the introduction of 
noise is a random process. We found out that the main characteristics remain 
the same for all evaluation functions with the same σ and have therefore 
plotted just one evaluation function with certain initial σ in all the figures. 

It seems that we have to divide the evaluation functions into two groups: 
in the first group we have evaluation functions with a (relatively) low initial 
error of less than 3.0 and in the second group those with a high initial error. 
The first group is a realistic model of ‘real-life’ evaluation functions, while 
the second group contains evaluation functions with (almost) zero 
knowledge. We can observe that evaluation functions from the first group do 
not exhibit the tendency to drop towards 0 (perfect knowledge). They drop 
slightly or remain on the same level of corruption at best; some even 
increase. In contrast, evaluation functions from the second group only 
increase with increased search depth.  

The experiment demonstrates that for the evaluation functions tested 
searching deeper does not improve the quality of the evaluation function for 
playing the KRK endgame, not even for those with a small initial level of 
corruption. The endgame undoubtedly contains dependencies between the 
values of sibling nodes in a game tree. It is also full of possibilities for 
blunders on the part of white player. White can, after all, lose the Rook in at 
most two moves if Black plays normally. This means that the two reasons 
why minimax is believed effective in practice are present and yet the 
pathology is present as well. How can this be explained? 
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Figure 2.    Influence of search depth on quality of evaluation function. 

 
One thing we were interested in was how the backed-up evaluations are 

corrupted. We were curious whether backed-up evaluations are excessively 
optimistic or excessively pessimistic. To this end we calculated the bias of a 
backed-up evaluation function. Bias is defined as: 

( )∑
=

−=
N

i
ii x

N
bias

1

1 µ  

where µi and xi are again the true and backed-up value of position i, 
respectively. If bias is highly negative then the backed-up values are 
generally overly pessimistic and if bias is highly positive then the backed-up 
values are generally overly optimistic. Since the noise introduced into the 
various evaluation functions was symmetrical we expected the bias to be 
close to zero, meaning some backed-up evaluations are too optimistic and 
others too pessimistic. Figure 3 charts how biased various evaluation 
functions are with respect to search depth. All curves start in close proximity 
of zero and then without exception they all exhibit a highly positive bias. 
The higher the level of initial corruption the higher the bias gets. Most of the 
bias is acquired in transition from search depth 0 to search depth 2. These 
two levels differ the most of any two consecutive levels – depth 0 means the 
algorithm goes directly to the lookup table, while on level 2 it performs 
minimaxing for the first time. Other transitions just increase the depth of 
minimaxing. 
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Figure 3.    Influence of search depth on bias of the evaluation function. 

 
If we look closely at what is happening at the last level of minimaxing we 

can come up with an explanation why the bias occurs. On the last level we 
either have a max or a min operation. In our case we always had White to 
choose on the last level which meant a min operation. In presence of noise 
the operation of choosing a minimum value will be biased towards lower 
values. This is not saying that the value chosen will always be lower than it 
would be without noise, but in general this will be so much more often than 
not. We can thus see that the lowermost operation of the minimax algorithm 
introduces a bias. But surely the opposite operation, finding a maximum, 
which follows on the next higher level should (partly) negate this bias? It 
does not, however, because the majority of the values it operates on are 
already biased and all it does is selecting one of them. The bias is actually 
introduced on that lowest level of minimaxing. 

If we look at Figures 2 and 3 simultaneously we find out that the 
corruption level and the level of bias are highly correlated. For evaluation 
functions with a lower initial level of corruption (0.25 and 0.50) this 
correlation begins to manifest with the higher search depths of 16 to 20, 
while for others it begins much sooner, from a search depth of 10 for curve 
0.75 and from a search depth of 4 for curve 1.0. For curves with initial 
corruption higher than 1.0 the correlation is strong immediately from search 
depth 2 onward. It is no wonder then that backed-up evaluation functions 
could not get any better – they were prevented from doing so by the bias. 
However, bias, at least in general, equally affects all evaluations. It 
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resembles adding a constant to all evaluations. This in turn means that we do 
not change the order of the available moves relatively to one another in the 
position we are trying to evaluate. If this is true, then minimax actually does 
improve the evaluation, but on the surface it is not seen, because of the bias. 
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Figure 4.  Influence of search depth on quality of evaluation function with bias accounted for. 
 

To confirm this claim, we calculated another statistic, a standard 
deviation as before. However, this time we have taken into account that all 
the values were shifted away from the true values by the bias. The formula 
for this statistic, σ’, is: 

( )( )∑
=

+−=′
N

i
ii biasx

N 1

21 µσ  

where µi and xi are again the true and backed-up value of position i, 
respectively. How this new standard deviation changes in relation with 
search depth is shown in Figure 4. Here we can see that it drastically falls 
with the increase of search depth. Again, the evaluation functions from the 
two groups defined earlier behave differently. Evaluation functions from 
group one drop and then stay more or less on the same level, while 
evaluation functions from group two first drop and then start to rise back up 
again. This positive effect of the minimax principle with increasing search 
depth on the evaluation functions from group one is exactly the result that 
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Beal was expecting from his model in 1980, but he was unable to prove it 
because the model did not account for the introduced bias. 

Up to this point, we did not say anything about how well a computer 
program using one of our corrupted evaluation functions would actually 
play. The answer is given in Figure 5. We have played out all unique KRK 
positions except the ones with special values of 0 or 255, in total 25,233 
positions. White was guided by a corrupted evaluation function. 
Additionally, White was allowed to use a simple mechanism to avoid 
repeating the same position over and over again. The mechanism kept a list 
of all positions that already occurred in the game and if the position was to 
be repeated a different move was selected (the next best move according to 
the evaluation function). Black was always playing optimally. We measured 
the quality of play as the average number of moves above what an optimal 
white player (using a non-corrupted database) would need. This statistic is 
computed as the difference between the number of moves spent by White for 
all positions and the number of moves needed for all positions using optimal 
play, divided by the number of positions (25,233). The curves representing 
play using evaluation functions with initial corruption level of 5 and 20 are 
off the scale and result in play that is not even able to mate the opponent 
within the required 50 moves. 

In Figure 5 we can see that an evaluation function with initial corruption 
level of 0.25 moves provides practically optimal play starting already at 
search depth 0. The quality of play using other evaluation functions 
gradually increases with deeper searches until it reaches a sort of threshold 
for a given evaluation function. From that point onward the quality of play 
remains more or less on the same level. This is true for evaluation functions 
with initial corruption level below 3. Those evaluation functions with initial 
corruption level higher than 3 result in a play that is not even good enough to 
mate the opponent within the required 50 moves. We can observe a 
correlation between the quality of play in Figure 5 and the knowledge 
corruption level of the evaluation functions in Figure 4.  
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Noise effect on actual play
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Figure 5.    Quality of play using corrupted evaluation functions. 

4. Conclusions and Further Work 

Some theoretical studies of the minimax principle in the past have shown 
that it has a negative effect on the quality of the evaluation function. As the 
answer why it is nevertheless successful in practice they suggested two 
reasons: (a) dependencies between the true values of sibling nodes in a game 
tree, and (b) existence of traps that cause early terminations of the game. 

We have taken the opposite approach to the problem; we tried to check 
empirically these conclusions using the KRK chess endgame. We can 
confirm that the minimax algorithm appears to be a poor preserver of the 
knowledge built into the evaluation. Yet, regardless of that, it proved to be 
still successful in actual play (Figure 5). It turns out that even with 
dependencies between evaluations of sibling nodes in a game tree and an 
abundance of possibilities to commit blunders present in our endgame, the 
anomaly still existed. 

However, we claim that the minimax principle in combination with noisy 
evaluation functions introduces a bias into backed-up evaluations. This bias 
is the culprit why mathematical models could not prove the effectiveness of 
the minimax that was observed in practice. Once bias is properly accounted 
for, the positive influence of the minimax principle with increasing search 
depth is unmasked. The main problem is that bias moves the backed-up 
evaluations away from the true values, hence causing the illusion that they 
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are more corrupted. Yet, since it more or less affects all the evaluations 
equally it does not affect the relative ordering of the available moves with 
respect to their quality. So, if we look at the evaluations in absolute terms 
they are increasingly corrupted with a growing bias, but if we look at them in 
relative terms they become progressively better with higher search depths. 

In view of the presented results it would be very interesting to recheck 
our results using a more complex game – perhaps a KQKR or KRKN chess 
endgame, or some artificially designed game. A further study of how the 
bias behaves and what affects it is also necessary. Especially interesting 
would be to investigate what happens with the bias if we mix the functions 
(min and max) at the lowest level of minimaxing – some branches we search 
to even depths, others to odd depths. 
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