5 research outputs found

    Best Practices for Publishing, Retrieving, and Using Spatial Data on the Web

    Get PDF
    Data owners are creating an ever richer set of information resources online, and these are being used for more and more applications. With the rapid growth of connected embedded devices, GPS-enabled mobile devices, and various organizations that publish their location-based data (i.e., weather and traffic services), maps and geographical and spatial information (i.e., GIS and open maps), spatial data on the Web is becoming ubiquitous and voluminous. However, the heterogeneity of the available spatial data, as well as some challenges related to spatial data in particular make it difficult for data users, web applications and services to discover, interpret and use the information in large and distributed web systems. This paper summarizes some of the efforts that have been undertaken in the joint W3C/OGC Working Group on Spatial Data on the Web, in particular the effort to describe the best practices for publishing spatial data on the Web. This paper presents the set of principles that guide the selection of these best practices, describes best practices that are employed to enable publishing, discovery and retrieving (querying) this type of data on the Web, and identifies some areas where a best practice has not yet emerged

    Next Generation of Spatial Data Infrastructure: Lessons from Linked Data implementations across Europe

    Get PDF
    The need for integration of geospatial data across national borders poses questions on how to overcome technical and organizational barriers between national mapping agencies. Existing National Spatial Data Infrastructures (NSDIs) inherited heterogeneous technology stacks and user cultures. Example integration solutions are based on cascading data services on the Web using open standards. However, this approach is often cumbersome since it requires substantial efforts aimed at harmonisation of data structures and semantics of the content between NSDIs. In contrast, the Linked Data technology as an innovative approach for publishing heterogeneous data sources on the Web is able to transcend the traditional confines of separate databases, as well as, the confines of separate institutions - keeping existing infrastructures intact. Moreover, exposing national data as Linked Data on the Web makes it a part of the Semantic Web. This allows shifting focus from collection and dissemination of data to meaningful data consumption. Here, we present and discuss the results of the Open European Location Services project, a collaboration between the national mapping agencies of Finland, the Netherlands, Norway, and Spain which is aimed at demonstrating the capabilities of Linked Data technology in the context of Pan-European geospatial data provision

    FAIR data and metadata: GNSS precise positioning user perspective

    Get PDF
    ABSTRACTThe FAIR principles of Wilkinson et al. [1] are finding their way from research into application domains, one of which is the precise positioning with global satellite navigation systems (GNSS). Current GNSS users demand that data and services are findable online, accessible via open protocols (by both, machines and humans), interoperable with their legacy systems and reusable in various settings. Comprehensive metadata are essential in seamless communication between GNSS data and service providers and their users, and, for decades, geodetic and geospatial standards are efficiently implemented to support this. However, GNSS user community is transforming from precise positioning by highly specialised use by geodetic professionals to every-day precise positioning by autonomous vehicles or wellness obsessed citizens. Moreover, rapid technological developments allow alternative ways of offering data and services to their users. These transforming circumstances warrant a review whether metadata defined in generic geospatial and geodetic standards in use still support FAIR use of modern GNSS data and services across its novel user spectrum. This paper reports the results of current GNSS users’ requirements in various application sectors on the way data, metadata and services are provided. We engaged with GNSS stakeholders to validate our findings and to gain understanding on their perception of the FAIR principles. Our results confirm that offering FAIR GNSS data and services is fundamental, but for a confident use of these, there is a need to review the way metadata are offered to the community. Defining standard compliant GNSS community metadata profile and providing relevant metadata with data on-demand, the approach outlined in this paper, is a way to manage current GNSS users’ expectations and the way to improve FAIR GNSS data and service delivery for both humans and the machines

    Best practices for publishing, retrieving, and using spatial data on the web

    Get PDF
    Data owners are creating an ever richer set of information resources online, and these are being used for more and more applications. Spatial data on the Web is becoming ubiquitous and voluminous with the rapid growth of location-based services, spatial technologies, dynamic location-based data and services published by different organizations. However, the heterogeneity and the peculiarities of spatial data, such as the use of different coordinate reference systems, make it difficult for data users, Web applications, and services to discover, interpret and use the information in the large and distributed system that is the Web. To make spatial data more effectively available, this paper summarizes the work of the joint W3C/OGC Working Group on Spatial Data on the Web that identifies 14 best practices for publishing spatial data on the Web. The paper extends that work by presenting the identified challenges and rationale for selection of the recommended best practices, framed by the set of principles that guided the selection. It describes best practices that are employed to enable publishing, discovery and retrieving (querying) spatial data on the Web, and identifies some areas where a best practice has not yet emerged
    corecore