520 research outputs found

    Structural Equation Modeling and simultaneous clustering through the Partial Least Squares algorithm

    Full text link
    The identification of different homogeneous groups of observations and their appropriate analysis in PLS-SEM has become a critical issue in many appli- cation fields. Usually, both SEM and PLS-SEM assume the homogeneity of all units on which the model is estimated, and approaches of segmentation present in literature, consist in estimating separate models for each segments of statistical units, which have been obtained either by assigning the units to segments a priori defined. However, these approaches are not fully accept- able because no causal structure among the variables is postulated. In other words, a modeling approach should be used, where the obtained clusters are homogeneous with respect to the structural causal relationships. In this paper, a new methodology for simultaneous non-hierarchical clus- tering and PLS-SEM is proposed. This methodology is motivated by the fact that the sequential approach of applying first SEM or PLS-SEM and second the clustering algorithm such as K-means on the latent scores of the SEM/PLS-SEM may fail to find the correct clustering structure existing in the data. A simulation study and an application on real data are included to evaluate the performance of the proposed methodology

    On the Interference Alignment Designs for Secure Multiuser MIMO Systems

    Full text link
    In this paper, we propose two secure multiuser multiple-input multiple-output transmission approaches based on interference alignment (IA) in the presence of an eavesdropper. To deal with the information leakage to the eavesdropper as well as the interference signals from undesired transmitters (Txs) at desired receivers (Rxs), our approaches aim to design the transmit precoding and receive subspace matrices to minimize both the total inter-main-link interference and the wiretapped signals (WSs). The first proposed IA scheme focuses on aligning the WSs into proper subspaces while the second one imposes a new structure on the precoding matrices to force the WSs to zero. When the channel state information is perfectly known at all Txs, in each proposed IA scheme, the precoding matrices at Txs and the receive subspaces at Rxs or the eavesdropper are alternatively selected to minimize the cost function of an convex optimization problem for every iteration. We provide the feasible conditions and the proofs of convergence for both IA approaches. The simulation results indicate that our two IA approaches outperform the conventional IA algorithm in terms of average secrecy sum rate.Comment: Updated version, updated author list, accepted to be appear in IEICE Transaction
    • …
    corecore