46 research outputs found

    On Curved Simplicial Elements and Best Quadratic Spline Approximation for Hierarchical Data Representation

    Get PDF
    We present a method for hierarchical data approximation using curved quadratic simplicial elements for domain decomposition. Scientific data defined over two- or three-dimensional domains typically contain boundaries and discontinuities that are to be preserved and approximated well for data analysis and visualization. Curved simplicial elements make possible a better representation of curved geometry, domain boundaries, and discontinuities than simplicial elements with non-curved edges and faces. We use quadratic basis functions and compute best quadratic simplicial spline approximations that are C0C^0-continuous everywhere except where field discontinuities occur whose locations we assume to be given. We adaptively refine a simplicial approximation by identifying and bisecting simplicial elements with largest errors. It is possible to store multiple approximation levels of increasing quality. Our method can be used for hierarchical data processing and visualization

    Exact conversion from Bézier tetrahedra to Bézier hexahedra

    Get PDF
    International audienceModeling and computing of trivariate parametric volumes is an important research topic in the field of three-dimensional isogeo-metric analysis. In this paper, we propose two kinds of exact conversion approaches from Bézier tetrahedra to Bézier hexahedra with the same degree by reparametrization technique. In the first method, a Bézier tetrahedron is converted into a degenerate Bézier hexahedron, and in the second approach, a non-degenerate Bézier tetrahedron is converted into four non-degenerate Bézier hexahedra. For the proposed methods, explicit formulas are given to compute the control points of the resulting tensor-product Bézier hexahedra. Furthermore, in the second method, we prove that tetrahedral spline solids with C k-continuity can be converted into a set of tensor-product Bézier volumes with G k-continuity. The proposed methods can be used for the volumetric data exchange problems between different trivariate spline representations in CAD/CAE. Several experimental results are presented to show the effectiveness of the proposed methods

    Locking-Proof Tetrahedra

    Get PDF
    The simulation of incompressible materials suffers from locking when using the standard finite element method (FEM) and coarse linear tetrahedral meshes. Locking increases as the Poisson ratio gets close to 0.5 and often lower Poisson ratio values are used to reduce locking, affecting volume preservation. We propose a novel mixed FEM approach to simulating incompressible solids that alleviates the locking problem for tetrahedra. Our method uses linear shape functions for both displacements and pressure, and adds one scalar per node. It can accommodate nonlinear isotropic materials described by a Young\u27s modulus and any Poisson ratio value by enforcing a volumetric constitutive law. The most realistic such material is Neo-Hookean, and we focus on adapting it to our method. For , we can obtain full volume preservation up to any desired numerical accuracy. We show that standard Neo-Hookean simulations using tetrahedra are often locking, which, in turn, affects accuracy. We show that our method gives better results and that our Newton solver is more robust. As an alternative, we propose a dual ascent solver that is simple and has a good convergence rate. We validate these results using numerical experiments and quantitative analysis

    High-order composite finite element exact sequences based on tetrahedral-hexahedral-prismatic-pyramidal partitions

    Get PDF
    The combination of tetrahedral and hexahedral elements in a single conformal mesh requires pyramids or prisms to make the transition between triangular and quadrilateral faces. This paper presents high order exact sequences of finite element approximations in H^1 (Ω), H(curl, Ω), H(div, Ω), and L^2(Ω) based on such kind of three dimensional mesh configurations. The approach is to consider composite polynomial approximations based on local partitions of the pyramids into two or four tetrahedra. The traces associated with triangular faces of these tetrahedral elements are constrained to match the quadrilateral shape functions on the quadrilateral face of the pyramid, in order to maintain conformity with shared neighboring hexahedron, or prism. Two classes of composite exact sequences are constructed, one using classic Nédélec spaces of first kind, and a second one formed by enriching these spaces with properly chosen higher order functions with vanishing traces. Projection-based interpolants satisfying the commuting diagram property are presented in a general form for each type of element. The interpolants are expressed as the sum of linearly independent contributions associated with vertices, edges, faces, and volume, according to the kind of traces appropriate to the space under consideration. Furthermore, we study applications to the mixed formulation of Darcy's problems based on compatible pairs of approximations in {H(div, Ω), L^2 (Ω)} for such tetrahedral-hexahedral-prismatic-pyramidal meshes. An error analysis is outlined, showing same (optimal) orders of approximation in terms of the mesh size as one would obtain using purely hexahedral or purely tetrahedral partitions. Enhanced accuracy for potential and flux divergence variables are obtained when enriched space configurations are applied. The predicted convergence orders are verified for some test problems

    Quasi-Splines and their moduli

    Full text link
    We study what we call quasi-spline sheaves over locally Noetherian schemes. This is done with the intention of considering splines from the point of view of moduli theory. In other words, we study the way in which certain objects that arise in the theory of splines can be made to depend on parameters. In addition to quasi-spline sheaves, we treat ideal difference-conditions, and individual quasi- splines. Under certain hypotheses each of these types of objects admits a fine moduli scheme. The moduli of quasi-spline sheaves is proper, and there is a natural compactification of the moduli of ideal difference-conditions. We include some speculation on the uses of these moduli in the theory of splines and topology, and an appendix with a treatment of the Billera-Rose homogenization in scheme theoretic language

    A C r Trivariate Macro-Element Based on the Alfeld Split of Tetrahedra

    Get PDF
    Abstract We construct trivariate macro-elements of class C r for any r ≥ 1 over the Alfeld refinement of any tetrahedral partition in R 3 . In our construction, the degree of polynomials used for these macro-elements is the lowest possible. We also give the dimension formula for the subspace of consisting of these macro-elements
    corecore