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Introduction and Motivation

MoFEM (Mesh-oriented Finite Element Method) is a C++ library for managing complexities
related to the finite element method (FEM). FEM is a widely used numerical approach for
solving partial differential equations (PDEs) arising in various physical problems. MoFEM is
developed to provide a finite element library incorporating modern approximation approaches
and data structures for engineers, students and academics.
MoFEM belongs to a class of open source finite element libraries, such as Deal.II (Arndt
et al., 2019), MFEM (Kolev & Dobrev, 2010), libMesh (Kirk, Peterson, Stogner, & Carey,
2006), FEniCS (Alnæs et al., 2015) and FreeFEM++ (Hecht, 2012), which provide users with
generic tools for solving PDEs and developers with frameworks for implementing bespoke finite
elements. MoFEM is specifically designed to solve complex engineering problems, enabling
seamless integration of meshes that comprise multiple element types and element shapes,
which are typically encountered in industrial applications. The development of MoFEM has
been primarily targeting the problem of crack propagation for structural integrity assessment
of safety critical structures (see Figure 1).

Figure 1: Brittle crack propagation.

The need for solutions to increasingly complex problems demands control over numerical errors;
otherwise, it would be difficult to distinguish discretisation artefacts from the real physical
phenomena. A brute force approach based on mesh refinement (so-called h-adaptivity) leads to
a low polynomial convergence rate and, therefore, is severely limited by the current computing
capabilities. A more elegant approach was paved by Guo & Babuška (1986), who showed that
if one could simultaneously increase the mesh density and the interpolation order, i.e. employ
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hp-adaptivity, exponential convergence is achievable. This has been seen as the ‘Holy Grail’
of numerical methods.
However, raising the order of approximation comes with a computational cost: the algebraic
solver time and the matrix assembly time are increased. Unfortunately, there is no universal
solution to tackle these two difficulties simultaneously. To reduce the solver time, properties of
hierarchical and heterogeneous approximation bases, constructed using Legendre (Ainsworth
& Coyle, 2003) or Jacobi (Fuentes, Keith, Demkowicz, & Nagaraj, 2015) polynomials, can
be exploited. Such bases permit to increase approximation order locally and produce sparse
and well-conditioned systems of equations. Moreover, algebraic systems constructed with
hierarchical bases can be naturally restricted to lower dimensions for use as a preconditioner,
e.g. with multi-grid solvers. This approach is ideal for elliptic problems such as solid elasticity;
however, for hyperbolic problems the efficiency bottleneck could be in the assembly time,
e.g. for acoustic wave propagation. In the latter case, different approximation bases, such
as the Bernstein-Bézier basis (Ainsworth, Andriamaro, & Davydov, 2011), allowing for fast
numerical integration, could be an optimal solution. Finally, the adaptive choice of the mesh
density and the approximation order is driven by numerical errors, which can be effectively
estimated if error evaluators are embedded into the FE formulation. This leads to a family of
mixed or mixed-hybrid finite elements that are stable if combinations of different approximation
spaces (H 1, H(curl), H(div) and L2) are used.
MoFEM incorporates all solutions discussed above for hp-adaptivity, enabling rapid implemen-
tation of the finite element method, i.e. relieving the user from programming complexities
related to bookkeeping of degrees of freedom (DOFs), finite elements, matrix assembly, etc.
Therefore, MoFEM provides efficient tools for solving a wide range of complex engineering-
related problems: multi-dimensional (involving solid, shell and beam elements), multi-domain
(e.g. interaction between solid and fluid), multi-scale (e.g. homogenisation with FE2) and
multi-physics (e.g. thermo-elasticity). Moreover, MoFEM supports mixed meshes, consisting of
different element types, for example, tetrahedra and prisms.

Design

Modern finite element software is an ecosystem that manages various complexities related
to mesh and topology, sparse algebra and approximation, numerical integration and dense
tensor algebra at the integration point level. However, MoFEM has not developed all these
capabilities from scratch. Instead, MoFEM integrates advanced scientific computing tools for
sparse algebra from PETSc (Portable, Extensible Toolkit for Scientific Computation) (Balay et
al., 2019), components for handling mesh and topology from MOAB (Mesh-Oriented Database)
(Tautges, Meyers, Merkley, Stimpson, & Ernst, 2004) and data structures from Boost libraries
(“Boost Web page,” 2020). An illustration of how these packages are utilised in MoFEM is
shown in Figure 2. Moreover, MoFEM’s core library is developed to manage complexities
directly related to the finite element method. Therefore, each part of this ecosystem has its
own design objectives, and appropriate programming tools can be selected from a spectrum of
solutions. Resilience of the MoFEM ecosystem is ensured since the underpinning components
have dynamic and established groups of developers and a significant number of users. Different
components employed in the ecosystem are illustrated in Figure 3, including popular pre- and
post-processing software.
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Figure 2: Basic design of MoFEM. Adopted from (“MoFEM Web page,” 2020).
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Figure 3: Ecosystem of MoFEM. Adopted from (“MOAB Web page,” 2020).

Traditional finite element codes are element-centric, i.e. the type of an element defines the
approximation space and basis. Therefore, they are not able to fully exploit the potential of
emerging approximation methods. On the contrary, the design of data structures for approx-
imation of field variables in MoFEM is independent of the specific finite element formulation,
e.g. Lagrangian, Nédélec or Raviart-Thomas, since each finite element is constructed by a
set of lower dimension entities on which the approximation fields are defined. Consequently,
different approximation spaces (H 1, H(curl), H(div) and L2) can be suitably combined in a
finite element to create new stable mixed formulations for solving complex problems efficiently.
MoFEM data structures enable easy enrichment of approximation fields and modification of basis
functions, for example, for resolution of singularity at a crack front. Applying such technique,
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it is almost effortless to construct transition elements between domains with different problem
formulation and physics, e.g. from two-field mixed formulation to a single-field. One can easily
implement elements with an anisotropic approximation order, which depends on direction in
curvilinear basis, e.g. solid shells with arbitrary higher approximation order on the surface and
arbitrary lower order through the thickness of the shell. This approach also sets a benchmark
on how finite element codes could be implemented, introducing a concept of pipelines of
user-defined data operators acting on fields that are associated with entities (vertices, edges,
faces and volumes). Such an approach simplifies code writing, testing and validation, making
the code more resilient to bugs.
Furthermore, MoFEM’s core library provides functionality for developing user modules (see
Figure 2) where applications for particular problems can be implemented. This toolkit-like
structure allows for independent development of modules with different repositories, owners
and licences, being suitable for both open-access academic research and private industrial
sensitive projects. At the same time, the MoFEM core library is licensed under the GNU Lesser
General Public License and it can be deployed and developed using the package manager
Spack; see the MoFEM installation instructions for more details.

Examples and Capabilities

MoFEM was initially created to solve the problem of brittle crack propagation using ther-
modynamically consistent framework (Kaczmarczyk, Ullah, & Pearce, 2017). Over time,
the domain of applications expanded to include computational homogenisation (Ullah et al.,
2019), bone remodelling and fracture (Lewandowski, Kaczmarczyk, Athanasiadis, Marshall, &
Pearce, 2020), modelling of gel rheology (Richardson, 2018) and acoustics problems. More-
over, MoFEM includes an extensive library of example applications such as soap film, solid shell,
topology optimisation, phase field fracture, Navier-Stokes flow, cell traction microscopy, bone
remodelling, configurational fracture, plasticity, mortar contact, magnetostatics and acoustic
wave propagation as shown in Figure 4.

Figure 4: Examples of user modules implemented using MoFEM.
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MoFEM is designed to provide efficient tools for solving a wide variety of user-defined problems.
In Figure 5 an example of error-driven p-adaptivity is presented, where a hierarchical approx-
imation basis with a multi-grid solver is applied to the perforated Scordelis-Lo Roof problem
(Kaczmarczyk, Ullah, & Pearce, 2016).

Error distribution 
(Uniform 2nd order approximation)

Error distribution
(Heterogeneous approximation)

Heterogeneous distribution of approximation order

Error-driven 
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Multi-grid
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functions

Approximation error
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Figure 5: Example of p-adaptivity for hierarchical and heterogeneous approximation with multi-grid
solver applied to the perforated Scordelis-Lo roof problem using a solid shell element.

MoFEM provides a convenient application programming interface allowing user to freely choose
the approximation basis (e.g. Legrende or Jacobi polynomials) independently of the approxi-
mation space, and type and dimension of the field. A user can approximate scalar and vectorial
fields on scalar basis functions, or vectorial and tensorial fields on vectorial bases. Moreover,
MoFEM permits the construction of tensorial fields on tensorial bases, e.g. bubble basis of
zero normal and divergence-free basis functions; see Gopalakrishnan & Guzmán (2012) for
an example of such a space. A MoFEM user can also freely set the approximation order on
each entity of an element separately, e.g. edge, face, volume, or define a field on the skeleton.
Figure 6 presents a convergence study for the mixed formulation of a transport/heat conduc-
tion problem; the code snippet below outlines the definition of approximation space, basis and
order for each field in this example.

// add fields of fluxes and values to the mesh
// define approximation space, basis and number of coefficients
mField.add_field(fluxes, HDIV, DEMKOWICZ_JACOBI_BASE, 1);
mField.add_field(values, L2, AINSWORTH_LEGENDRE_BASE, 1);
// get meshset consisting of all entities in the mesh
EntityHandle mesh_set = mField.get_moab().get_root_set();
// add mesh entities of different type to each field
// adding tetrahedra implies adding lower dimension entities
mField.add_ents_to_field_by_type(mesh_set, MBTET, fluxes);
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mField.add_ents_to_field_by_type(mesh_set, MBTET, values);
// define approximation order for each field
// separately for each entity
mField.set_field_order(mesh_set, MBTET, fluxes, order+1);
mField.set_field_order(mesh_set, MBTRI, fluxes, order+1);
mField.set_field_order(mesh_set, MBTET, values, order);
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Figure 6: A convergence study of h-adaptivity for the mixed formulation of the stationary trans-
port/heat conduction problem (see inset of the figure for the geometry) with comparison of different
polynomial orders, denoted as Pn-Pm, where n is the order of approximation for the flux and m
is the order for the field values (temperature or density). Note that the flux is approximated in a
subspace of H(div) while the field values are in a subspace of L2 . For more details, see the “Mixed
formulation and integration on skeleton” tutorial on (“MoFEM Web page,” 2020).

Conclusions

MoFEM introduces a novel architecture of FEM software, designed to exploit advantages of
emerging finite element technologies and to enable rapid implementation of numerical models
for complex engineering problems involving multi-physics and multi-scale processes.
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