71 research outputs found

    Axisymmetric Thermoelastic Response in a Semi-elliptic Plate With Kassir’s Nonhomogeneity in the Thickness Direction

    Get PDF
    The main objective is to investigate the transient thermoelastic reaction in a nonhomogeneous semi-elliptical elastic plate heated sectionally on the upper side of the semi-elliptic region. It has been assumed that the thermal conductivity, calorific capacity, elastic modulus and thermal coefficient of expansion were varying through thickness of the nonhomogeneous material according to Kassir’s nonhomogeneity relationship. The transient heat conduction differential equation is solved using an integral transformation technique in terms of Mathieu functions. In these formulations, modified total strain energy is obtained by incorporating the resulting moment and force within the energy term, thus reducing the step of the calculation. The thermal deflection equation derived from the Berger approach is compared with Von Karman approaches, and its maximum normal stresses are determined. The numerical calculation is performed over the metal-metal based composite and graphically portrayed. Furthermore, by applying limiting conditions, the semi-elliptic region can be degenerate into a semi-circular plate. Results reveal that the highest tensile stress exists on the semi-circular core relative to the semi-elliptical core, suggesting the propagation of low heating due to insufficient heat penetration into the elliptic surface

    Oscillatory regime in the Multidimensional Homogeneous Cosmological Models Induced by a Vector Field

    Full text link
    We show that in multidimensional gravity vector fields completely determine the structure and properties of singularity. It turns out that in the presence of a vector field the oscillatory regime exists in all spatial dimensions and for all homogeneous models. By analyzing the Hamiltonian equations we derive the Poincar\'e return map associated to the Kasner indexes and fix the rules according to which the Kasner vectors rotate. In correspondence to a 4-dimensional space time, the oscillatory regime here constructed overlap the usual Belinski-Khalatnikov-Liftshitz one.Comment: 9 pages, published on Classical and Quantum Gravit

    Spectrum of low energy excitations in the vortex state: comparison of Doppler shift method to quasiclassical approach

    Full text link
    We present a detailed comparison of numerical solutions of the quasiclassical Eilenberger equations with several approximation schemes for the density of states of s- and d-wave superconductors in the vortex state, which have been used recently. In particular, we critically examine the use of the Doppler shift method, which has been claimed to give good results for d-wave superconductors. Studying the single vortex case we show that there are important contributions coming from core states, which extend far from the vortex cores into the nodal directions and are not present in the Doppler shift method, but significantly affect the density of states at low energies. This leads to sizeable corrections to Volovik's law, which we expect to be sensitive to impurity scattering. For a vortex lattice we also show comparisons with the method due to Brandt, Pesch, and Tewordt and an approximate analytical method, generalizing a method due to Pesch. These are high field approximations strictly valid close to the upper critical field Bc2. At low energies the approximate analytical method turns out to give impressively good results over a broad field range and we recommend the use of this method for studies of the vortex state at not too low magnetic fields.Comment: 11 pages, 11 figures; revised version, error in Fig. 6b remove

    Effects of Fermi surface and superconducting gap structure in the field-rotational experiments: A possible explanation of the cusp-like singularity in YNi2_2B2_2C

    Full text link
    We have studied the field-orientational dependence of zero-energy density of states (FODOS) for a series of systems with different Fermi surface and superconducting gap structures. Instead of phenomenological Doppler-shift method, we use an approximate analytical solution of Eilenberger equation together with self-consistent determination of order parameter and a variational treatment of vortex lattice. First, we compare zero-energy density of states (ZEDOS) when a magnetic field is applied in the nodal direction (νnode(0)\nu_{node}(0)) and in the antinodal direction (νanti(0)\nu_{anti}(0)), by taking account of the field-angle dependence of order parameter. As a result, we found that there exists a crossover magnetic field H∗H^* so that νanti(0)>νnode(0)\nu_{anti}(0) > \nu_{node}(0) for Hνanti(0)H \nu_{anti}(0) for H>H∗H > H^*, consistent with our previous analyses. Next, we showed that H∗H^* and the shape of FODOS are determined by contribution from the small part of Fermi surface where Fermi velocity is parallel to field-rotational plane. In particular, we found that H∗H^* is lowered and FODOS has broader minima, when a superconducting gap has point nodes, in contrast to the result of the Doppler-shift method. We also studied the effects of in-plane anisotropy of Fermi surface. We found that in-plane anisotropy of quasi-two dimensional Fermi surface sometimes becomes larger than the effects of Doppler-shift and can destroy the Doppler-shift predominant region. In particular, this tendency is strong in a multi-band system where superconducting coherence lengths are isotropic. Finally, we addressed the problem of cusp-like singularity in YNi2_2B2_2C and present a possible explanation of this phenomenon.Comment: 13pages, 23figure
    • …
    corecore