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Abstract

The main objective is to investigate the transient thermoelastic reaction in a nonhomogeneous semi-
elliptical elastic plate heated sectionally on the upper side of the semi-elliptic region. It has been
assumed that the thermal conductivity, calorific capacity, elastic modulus and thermal coefficient of
expansion were varying through thickness of the nonhomogeneous material according to Kassir’s
nonhomogeneity relationship. The transient heat conduction differential equation is solved using
an integral transformation technique in terms of Mathieu functions. In these formulations, modified
total strain energy is obtained by incorporating the resulting moment and force within the energy
term, thus reducing the step of the calculation. The thermal deflection equation derived from the
Berger approach is compared with Von Karman approaches, and its maximum normal stresses are
determined. The numerical calculation is performed over the metal-metal based composite and
graphically portrayed. Furthermore, by applying limiting conditions, the semi-elliptic region can
be degenerate into a semi-circular plate. Results reveal that the highest tensile stress exists on the
semi-circular core relative to the semi-elliptical core, suggesting the propagation of low heating
due to insufficient heat penetration into the elliptic surface.

Keywords: Semi-elliptic plate; Nonhomogeneous material; Heat conduction; Large deflection;
Berger approach; von Karman approach; Thermal stress
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1. Introduction

In many fields of engineering, semi-elliptic plate structures are widely used as integral structural
components. These components are likely to be subjected to various types of static loading or
excitation, such as seismic, mechanical, hydrodynamic, blast, aerodynamic, etc., with or without
thermal loading. Engineers and scientists worldwide are making unwavering efforts to design and
construct economic and efficient structures with a very low probability of failure. In view of this,
the thermoelastic behaviour of such structural elements with different boundary and loading con-
ditions should be well known for proper modeling, analysis and design of structural engineers.
In plates, the deflections are small compared to the thickness of the elements. This conclusion is
based on the assumption that the strain and deflected middle surface components are of marginal
significance. Based on linear theory, a large volume of static and dynamic study of thin plates with
various boundary and loading conditions has been carried out by many researchers.

In many cases, the spatial properties of the structures combined with the restrictive operating con-
ditions cause large deflections, i.e., deflections of the same size as the thickness of the plate and
low for addition to the in-plane dimensions of the structures, even within the elastic limit (pro-
portional limit) of the structural material and therefore generates a nonlinear result. It is worth
mentioning that any attempt to restrict the deflections that are relevant to linear theory results in
uneconomic systems. Thus, since the deviations are no longer small relative to the width, how-
ever significant relative to the in-plane proportions, the intermediate plane stresses must be taken
into consideration in deriving the differential equations of thin plate structures. It may be remem-
bered that structural elements undergoing significant deflections (nonlinear deformations) may ex-
hibit strain-hardening or strain-softening behaviour. The benefit of extra strength due to strain-
hardening as well as the optimal degree of normal stress frequency can be obtained by carefully
integrating and constructing the geometrical features of the systems and their final conditions. In
the presence of thermal gradients, the material properties of homogeneous materials are functions
of space variables. Therefore, in this case, the determination of dynamic properties of the con-
tinuous elastic system must be focused on a nonhomogeneous elastic theory. As a result, during
the past decades, there have been many studies based on the large deflection on homogeneous
plates, but only a few are mentioned here. Extensive studies on the large deflections of elastic
circular plates have been made by Berger’s method (Pal (1970a); Pal (1970b); Biswas (1983);
Sathyamoorthy and Pandalai (1974)) as well as by von Karman’s method (Nowiski (1963);
Biswas and Kapoor (1984); Banerjee and Datta (1979)). Berger’s approach has some advantages
over von Karman’s approach since it leads to decoupled equations. However, Nowiski (1963) and
Prathap (1970) have pointed out certain inaccuracies in Berger’s equations and because of this von
Karman’s method should be resorted to until some alternative theory is set forth.

Similarly, during the literature review for nonhomogeneous, it was noted that most of the previous
researchers treated the problem theoretically taking the assumption that the thermomechanical
material properties change according to the relation of simple power-law G(z) = G 2° (Kassir
(1972)), exponential law G(z) = Gy exp(az) (Buffer (1963b)), power-law G(z) = Go(1 + az)’
(Buffer (1963a)), and hyperbolic law G(z) = Go/(1 + az) (Kassir and Sih (1975)). It is also well
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known that nonhomogeneous material studies involve a lot of exciting topics, including static and
dynamic analyzes, stability analysis, buckling analysis, etc.

With regards to nonhomogenous problems, Tanigawa (1995) reviewed the method of analytical de-
velopment of thermoelastic problems for nonhomogeneous materials. Jeon et al. (1997) obtained
the thermoelastic solution for a medium with Kassir’s nonhomogeneous material properties. Su-
tradhar et al. (2002) used Green’s function for deriving the three-dimensional transient heat con-
duction (diffusion equation) for functionally graded materials. Chiba and Sugano (2007) calculated
the statistics of temperature and thermal stress in functionally graded material plates exposed to
random external temperatures. Ootao and Tanigawa (2012) obtained the transient thermoelastic
solution involving a multilayered hollow circular disk with piecewise power-law nonhomogeneity
due to uniform heat supply from inner and outer surfaces. Abd-Alla et al. (2000), El-Naggar et
al. (2002), Abd-Alla et al. (2003), and Farhan et al. (2019) have investigated few papers on non-
homogeneous taking into consideration of isotropic and orthotropic type inhomogeneity in solid
and multilayered object profiles using a finite-difference model. Edfawy (2016) studied the tran-
sient temperature field in the functionally graded plate by solving a nonhomogeneous heat con-
duction problem for a multilayered plate with linear nonhomogeneous thermal conductivity and
different homogeneous heat capacity in each layer. Manthena et al. (2017) determined the temper-
ature distribution, displacement, and thermal stresses in a rectangular plate with inhomogeneous
material properties by integral transform method. There are a few more studies reported on this
subject. From the literature review, it is noted that none of the researchers has considered Kassir’s
nonhomogeneity to study the thermally induced instability in the plate. There are a few more heat
transfer studies reported, the details of which are cited below. The heat transfer on a stretching
porous surface exerted by a magnetic field was studied by Agrawal et al. (2020), and the solution
was found numerically using the fourth-order Runga-Kutta shooting technique. Khan et al. (2020a)
presented a novel model for oblique channels made of Copper and Aluminum oxide and treated
numerically by using coupled shooting and Runge-Kutta scheme. Khan et al. (2020b) studied the
thermal transfer, and Joule heating effects on the wire coating process, and evaluated using a dom-
inant numerical technique known as the fourth-order Runge-Kutta method. Tassaddiq et al. (2020)
studied heat transfer over an infinite vertical plate in developing an Atangana-Baleanu fractional
partial differential equations by making use of the Laplace transform technique. From the literature
review, it is noticed that none of the researchers has considered Kassir’s nonhomogeneity to study
the thermally induced instability on the plate.

The article is organized as follows. In Section 2, the mathematical statement of a transient heat
conduction problem in a non-simple medium and its associated thermally induced bending stress
is formulated. In Section 3, theoretical solutions of heat conduction, large deflection and stress are
expressed in terms of Mathieu function. Section 4 is devoted to the estimates of solutions of the
numerical solution is discussed in Section 5. The transition to the nonhomogeneous circular plate
as a limiting case is presented in Section 6. Finally, some conclusions are drawn in Section 7.
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2. Formulation of the Problem

The elliptic-cylindrical coordinates £, 1 and 2 are used, as shown in Figure 1.

Y

U}}' U‘;

n= const.
&= const.

Figure 1. Semi-elliptic plate configuration

The relations between the elliptic coordinate (£, 71, z) and rectangular coordinate (x, y, z) are ex-
pressed as © = ccosh&cosn, y = csinh&sin n and z = z, where 2¢ = 2(a2 — b2)/? is the
distance between the focuses of an ellipse. The surfaces of £ = constant and 1 = constant show
an ellipsoid and a hyperboloid, respectively. The side surface of the elliptic plate is represented by
¢ = &. The major axis of the ellipse is ag, the minor axis is 2b,, and the eccentricity e is given by

(ag — b5)"/* /ao.

2.1. Heat conduction formulation

It is assumed that a thin semi-elliptic plate is occupying the space D : {(£,1,2) € R% 0 <
£ <&,0<n<m—L/2 <z < (/2} under transient temperature state having no internal heat
source within it, while simply supported at the boundaries as non-rigid. The geometrical parameters
are denoted as £ € [0,&], n € [0, 7) and z € (—{/2, £/2), and that can be referred as the
elliptic boundary &, = tanh™'(by/ao). Initially, the body was kept at zero temperature. The heat
conduction differential equation takes the following form,

0? 0? 0 0 oT
2 J— [ PR PR e —_—
{h [k (652 ! 8772” E {kaz]}T‘pC” o M

in which T' = T' (&, n, z,t) is the temperature distribution, x = k/pC,, representing thermal dif-
fusivity in which £ is the thermal conductivity of the material, p is the density, C, is the calorific
capacity and the metric coefficient / is given by h? = 2/[c*(cosh 2£ — cos 27)].

The two-temperature model is one of the non-classical thermoelasticity theories of elastic solids.
In this regards, Chen and Gurtin (1968), and Chen et al. (1969) proposed the classification of real
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materials into simple and non-simple materials by considering two temperatures (viz., thermody-
namic and conductive) and they have shown that the two temperatures are related by

¢6=T—bV*T, b>0, (2)

in which ¢ is the thermodynamic temperature, 7" is the conductive temperature and b is the tem-
perature discrepancy factor.

After a few manuscripts, it was noticed that within the context of extended thermodynamics Ciar-
letta (1996) had developed a theory of thermoelasticity for non-simple material. Quintanilla (2003),
Quintanilla (2004), and Sare et al. (2010) proposed some models of non-simple thermoelastic the-
ory with no dissipation of energy. The influence of the dual-phase-lag model of generalized ther-
moelastic theory without energy dissipation was estimated by Zenkour and Abouelregal (2016).
Thus, the thermodynamics and conductive temperatures for non-simple materials are not identical,
while they are identical for simple materials. The critical factor that set the two-temperature ther-
moelasticity theory apart from the classical theory is the material parameter b. Specifically, in the
limit as b — 0, ¢ — T and the classical theory, i.e., one-temperature generalised thermoelasticity
theory, is recovered. Therefore, in the case of a non-simple medium, Equation (1) maybe written
in a non-homogenous semi-elliptic plate for a temperature function that varies along the z— axis

as
(1802 (i (24 2]+ 2 [ 2] -0

The boundary and initial conditions for temperature are

Olio = Tlimo = 0, @)

T|e_e, =0, 5)

T|,o gy =0, (©)

T|,_yj = [H(E) — H(E — &)] sin wt fort > 0, )

in which H (&) is well-known as the Heaviside function, thermal diffusivity is represented as
k(z) = k(z)/pC,(z) with k(z) as the conductivity of the material and C,,(z) as the calorific capac-
ity follows general power-law dependence on the axial coordinate, respectively. This assumption
is due to the fact that the ratio of the elasticity matrix to the mass density and thus, the normal
frequency or collection of frequencies at which they vibrate would be constant for various hetero-
geneity parameters for a nonhomogenous material whose mass density sometimes varies accord-
ing to the power law. To perform a tractable thermoelastic analysis of non-homogeneous material,
certain simplifications are therefore required. It is fair to regard Young’s nonhomogeneous plate
modulus as a durable property (great value in gigapascal unit) that varies along the direction of
thickness, with average mass density or a constant value. We have found the mass density and
Poisson ratio with a constant value for our convenience in overcoming the mathematical difficulty
in finding the exact solution.
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We assume that the nonhomogenous property of the thermal conductivity k& and the calorific ca-
pacity C', are described in terms of the variable z of the axial coordinate with Kassir’s nonhomo-
geneous material properties as

k(z) = k' (2 4+ £/2)°,Cy(2) = C (2 + £/2)", 8)

where k9, CS and x° are arbitrary constant having the same dimension as k, C), and «, respectively.
Here (3 is considered as the material parameter whose combination forms a wide range of nonlin-
ear and continuous profiles to describe the reasonable variation of material constants and thermal
expansion coefficients, when the thermal effect is neglected.

Substituting Equation (8) into Equations (3) - (7), one obtains

(i) U (G o)+ 2ot o) T ®
0lico = Tlio =0, (10)

T|,_, =0 (11)

T, =0, (12)

T|,_,=2n[H(§) — H(¢ — &)] sin wt fort > 0, (13)

inwhich z = 2 +¢/2, T =T (&, 1, %,t) is the temperature distribution.

2.2. Basic equation and stress formulation

The potential energy Bhad et al. (2017) obtained taking into account the strain energy due to
thermal bending and stretching in mid-surface during transient temperature change is taken as

2 2 2 2
V=06 {7 g o - [ o - (22) )] o
z)

- IS e - sy Tz} s

(14)

where W is the lateral displacement, D(z) is varying flexural rigidity, £/(z) is varying Young’s
modulus, o;(z) is varying coefficient of thermal expansion in the thickness direction, v is Poisson
ratio, V2 is a Laplacian operator, s the surface under consideration, e; is first invariant and e, is
second invariant, respectively, and is represented as

ds = dzdy, e1 = e, + ey, €2 = €yey — 7§y/4>

2
_ ou ow _ou 1 (oW
Cz 8gc+ (8x)’6 8y+ <8y> ’ (15)
__ Ou ou oW oW 2 02
Yy — oz + Ay + o oz oy’ \ 812 + Y2

with u and v as the in-plane displacement in cartesian coordinate (x, y). By adding potential energy
due to the thermal load and of the foundation reaction to the energy expression of Equation (4)

https://digitalcommons.pvamu.edu/aam/vol16/iss1/26
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and neglecting the terms containing the second strain invariant, the modified energy expression
becomes

2 2 2 2
=5 J,D(z { (V2W)? + el —2(1 - v) [%g%;f - (gxg;) ]} dz dy (16)
—m -ﬂs {GlNT — V2WMT} dS,

in which M7 is bending resultant moment and N7 is a resultant force as
0/2

/2
My = / a(2)E(2) 2T (z)dz, Ny = / a(2)E(2) T(z)dz. (17)

—t/2 —1/2
Applying Euler-Lagrange variational principle equations to Equation (2), one yields
VA(V2W) — &*V2W = —120(V?M7p) /03, (18)
in which o = 12¢,; /¢* is a normalized constant of integration.

The von Karman-type equations with large deflection under thermal load can also be derived from
the equations of equilibrium and compatibility as

VAVIF) = [oa(2) E(2) /(1 = v)]V*Np = — [ E(2) L(W, W)] /2, (19)

V(W) + [eu(2)E(2)/(1 = v)]V* My = L(W, F), (20)
in which the operator L applied to the functions (W, F') is
PW O?F N OPW 9*°F 282W O*F
ox? 0y2 = Oy? 022 0x0y Oxdy’

and the stress function /' which is analogous to the Airy’s thermal stress function that satisfies the
equation as

L(W,F) =

21

V3(VHF = — V?Ny. (22)

In order to obtain the solution of large deflection under thermal load, we assume Poisson’s ratio
v as a constant value; however, thermal expansion coefficient a; and Young’s modulus £ has a
power-law dependence on the axial coordinate as

01(2) = ao(z +¢/2)", B(2) = Eo(z + (/2)”, (23)
in which o and Ej are arbitrary constant having the same dimension as a; and £, respectively.

2.3. Transient thermal bending stress

The resultant bending moments per unit width is given as

_ 2 02w 82 (1—v) sinh 2¢ aW (1—v)sin2n oW M.
M£ = —Dh o€2 +v - (cosh 26 —cos 2n) O, + (cosh 26—cos 2n) On - 172’
_ 2 W 8W (1—v)sinh 2¢ 8W _ _(=vy)sin2y ow | _ Mg
M, = —Dh"\ (vGa + 5 ) + (cosh2§ cos 217) ag (cosh 2€—cos 217) O v 24)

Mg, = D(1 —v)h? { sin 27 —|— smh 26 — ZW (cosh 2¢ — cos 277)}

aga
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The maximum bending stresses distributed linearly over the thickness of the plate is

Me < M, o My, <
1\ 2/kl 70 =172kl 775 =%l 775 25
¢ {62/6} 02 7m lﬁ?/G] 02 7 {62/6 /2 (23)
The boundary condition of the clamped plate is given as
t
W(En.t) |eee, = % = 0, forall . (26)
5 &§=&o

Equations (1) to (26) constitute the mathematical formulation of the considered problem.

3. The Solution to the Problem
3.1. Solution for temperature distribution

Taking the Laplace transform of the Equations (9) and (11) - (13), one gets

b , [0 9 mo 0?4 ps

() (e o)+ e o) =00 <0
f) —0, (28)

fifo
Tl =o, (29)

z=0

. w

TZ:Z_QW (]m) f(6), (30)

where p is transform parameter, and f(£) = H(§) — H( — &).

Now, multiply both sides of Equations (27) and (29) - (30), by Ce2, (€, q2nm)c€2n(1, ¢on.m) and
integrate with respect to 1 from 0 to 7 and with respect to ¢ from 0 to &y, and applying the integral
transform defined by Gupta (1964), one yields

2T moT =
T 7= 31
572 "7z ’ 1)
Tl =o, (32)
z=0
B w
T = (m) F(@2n.m), (33)
z=/
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where ga,,, is the root of the transcendental equation Cey,(a, ¢) = 0, ces,(n, ¢) is a Mathieu
function, C'ezn (€, ¢) is a modified Mathieu function, A3, ,, = 4qanm/c? 7% = A3, ,, + A% A? =

(p/ko)/[1 + (b/ko)p], and

&o ™
f(QQn,m) = /0 /0 f(§7 77) (COSh 25 — COs 277)062n (fa q2n,m)ce2n (777 q2n,m)dfdn

—~

It is convenient to first introduce a new dependent variable 5 in Equations (31) to (33) as

—~ —~

T=z0-m)/2 ¢ (34)

20 100 AN
i (7 E) =0 G
gl =o, (36)

z=0
5 _ 1 “ 37
%— Vi m f(@2nm) (37)
where
fg=(m—1)/2

The solution of Equation (35) is obtained as

—~

0= C115(vz) + CoKp(yz), (38)

in which I3 and K are modified Bessel functions of the first and second kind of order 3, respec-
tively.

The arbitrary constants C'; and C5 given in Equation (38), can be determined by using Equations

(36) and (37) as
G = m <szw2> S (20.m) K5 (0), (39)
CQ = Wl(p) <p2fw2> f(q2n,m)jﬁ(0)7

where
G(p) = Ig(v0) K3(0) — 15(0) Ks(v0). (40)

Applying inversion Mathieu transformation, one gets

6= 0 s iy (75 Haman) 6(0) Tn2) = LO)Ks02)]
X C€2n (57 Q2n,m)C€2n(7)7 q2n,m)~
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Applying inversion Laplace transformation, one gets

S T
0=— g e’ dt, (42)
27TZ P—ioco

where ) is a real number such that all the poles of the integrand in Equation (42) lie on the left of
the line p = v in the complex plane p.

Now substituting p = ¢ and using properties of Bessel functions, one obtains
G(ip) = G(—ip) = m[J5(0) Ys(v'0) = Js(7'0) Y5(0)]/2, (43)
where
= Mo + (9/80) /[1 + (b/Ko) ).
Since G(ip) = G(—iyp), the roots of the Equation (58) maybe denoted by +iR, (s = 1,2, ...).

The poles of the integrand in Equation (42) are at +iw and iR, (s = 1,2,...). Applying the
Residue Theorem to inversion integral in Equation (42), one obtains

é(f, n, z, t) = Zn =0 Zm 1 f((3q€2/n2m {58/?) sin (Wt) + Z:OZI <WZTR§> A};’[((Zi)) sin (R5t>} (44)
X Ce?n (f, Q2n,m)C€2n (777 Q2n,m)a

where

F(yw) = Jg(0) Ys(y @) — Ja(yw) Y3(0),
H(Rs) = Js(v'Rs) J5(0){J5(0) Ys(y Rs) — Js(v Rs) Y5(0)} Ry,
M(Ry) = [J3(v'R,)]* — [J5(0)]%.

Finally using the dependent variable defined in Equation (32), it results in

F(yw) _- ) Tw H(Rs) _:
T(f?”u Z,t) = Zn 0 Zm 1 (wz R2) {F((»;/Y/w)) S]H(Wt) + ZS:l (WQ—RE) M((RS)) S1n (Rst)} (45)
x [z +£/2]0—™ /2Ce2n(§, Q2n.m) €20 (N, Q2nm,)-

The above function, which is given in Equation (45), represents the temperature at every instance
and at all points of the non-homogenous semi-elliptic plate under the influence of ramp-type
boundary conditions.

3.2. The solution for thermal displacement and stresses

Substituting Equation (45) into Equation (17), one arrives at the resultant moment and resultant
force as

(@ —R2)?(m—5—4 B)(m—3—45) ()

M — Zn 0 Zm 1 aoEo f Q2n,m)£(57m+4ﬂ) (_m+1+4ﬁ) {5('Ylw) Sin (wt)
H(R;
+ ZS 1 <w2 R2> M((Rg)) sin (Rst)} CeZn(fy q2n,m)062n(n7 q2n,m>7

(46)
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— 200 E f q2n, m)z( m+3+4f) F(’)/W) .
Np =3 00 2t ey Ty {F(,Y,w) sin (wt)

47)
+ Zs 1 (w2 R2> 1\}/11((25) sin (Rst)} CeQn(£7 q2n,m)C€2n(lr]7 q2n,m)-

Substituting Equation (46) into Equation (18), one obtains the thermal deflection as

! 5(1-m)/2 (y=) Tw H(R,) _:
W= >r Az {F( =) sin (wt) + Yoy (wLR§> MR Sin (Rst)} 48)
X Ce?n (57 q2n,m>062n (777 q2n,m>)

where

! oo o0 12 aOEOf(Q2n,m)e(5_m+4ﬁ) (7m+1+4 /8)
A =— Zn 0 Zm 1~ 3(w?—R2)#(m—5—48)(m—3—40)

X062n (57 QQn,m)062n<7]7 Q2n,m)/ <{O€,2/n (57 QQn,m>C€,2/n (777 Q2n,m)
X[=14+(m—1)/2](1—=m)[z+ 6/2]7377”/2/2}
—a*{Cean(&, Ganm)ceon(n, Ganm)|z + g/Q](l—m)/2}> '

Substituting Equation (48) into Equation (24), one obtains resultant bending moments per unit
width as

MgZDh2Zn =0 m= 1{5( )Sln<Wt)

+ ZS 1 ( > H(R.) o) (Rs t)} <[z +g/2](1—m)/2A/

P R2 M(R.)
x {—[Ces, (&, qanm)cean(n, Gonm) + vCe20(&, G2n.m)ces, (1, Gonm)]
1—v) sinh 2 1—v)sin2
+(CE)S}12272§”)C6271 (f; Q2n,m)C€2n (777 Q2n,m) - m

X CeQn (57 Q2n,m)C€/2n(777 QZn,m> } + A2nm Ce2n (57 Q2n,m)662n (777 QZn,m>> )

(49)

My = Dh? 370703 s {5 =) sin (wot)
25 (w? R2> ﬁ((ﬁi) sin (Rst)} ([ +€/2)=m/2 4
{_ [UCG n(fa QQn,m)CGQn(na QQn,m) + Cegn(f, QZn,m)Celgln<’l7, QQn,m)]

(1—v) sinh 2¢ (1—v) sin 2y
" (cosh 26 —cos 27) €on (§7 q2n,m)662n (777 q2n,m> + (cosh 2£—cos 2n)

X Ce2n (57 QQn,m)CeIZn (777 QQn,m> } + AQnm CeQn (f? QZn,m)CeQn (777 QQn,m>> )

(50)

Mgy = D(1 —v)h® 3207 >0 1A/{ 7w)) sin (wot)

F(y
+ 20 (wz R2> ]I\j((g':) sin (Rst)} [z + £/2)(1-m)/2 1)
x { sin 2n Ceh,, (€, gan.m)ce2n (1, G2nm) + sinh 26Cea, (€, G2n.m)
scely (1, Ganm) — (cosh 2€ — cos 20)Cely (€, Ganm)CChr (0 Gonm) }

in which

aoEof(QQn7m)€(5im+4B) (—m + 1+ 46)
(1 —v)(w@® = R)P(m —5—-45)(m—3—48)

A2nm -
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Substituting Equations (49) - (51) into Equation (25), one obtains maximum normal bending
stresses as

2, [e'e) o] F(yw .
g = 12Dz 50 shee {F((z,w)) sin (wot)

+ 25 (w? R2) Z\If[((}}z%)) sin (Rst)} ([ +£/2)1=m)/2 4

{_ [ n(£7 Q2n,m>ce2n (777 Q2n,m) + UC@Qn (fa Q2n,m)cel2/n(777 QZn,m)]
1—v) sinh 2 1—v)sin2
+ (cE)sh 225—605 2577) 06/271 (5’ q2n7m)062n(777 q2n,m) B (césh 2§)—Scosg7})

X Ce2n(£7 q2n,m)cel2n(n7 q2n,m) } + A2nm C€2n(€7 Q2n,m)C€2n(777 q2n,m)> 5

0'777] e 12D3h22 Zn 0 Zm ) { ) Sln (wt)
+Zs 1 <w2 R2> AIjEI;%Sln(R t)}<[2+€/2](1—m)/2A/
{_ [UCG n(fa C]2n,m)cezn(777 QQn,m) + Cegn(f, Q2n,m>06/2/n(77, q2n,m)]

(1—v) sinh 2¢ / (1—v) sin 2n
" (cosh 26—cos 2n) C€2n (57 q2n,m)C€2n (777 q2n,m) + (cosh 2§—cos 2n)

X C€2n (57 Q2n,m)cel2n (777 Q2n,m) } + A2nm CeZn (57 Q2n,m)062n (777 Q2n,m)> )

12D(1—v)h?z
Ogy = (g—a‘)zn 0D 1A/{F( ) sin (wt)

+ Zzil <W§TR§> 1\};((1;) sin (R t)} [z 4+ £/2](1—m)/2 54)
x {sin 21 Ceb,, (€, Ganm)cean (1, Gonm) + sinh 26Ce9, (&, Ganm)
X ceh, (N, qanm) — (cosh 2 — cos 2n)Cel, (€, qanm)C€hy, (M, Ganm) }-

(52)

(53)

From Equation (22) and (47), the following thermal stress function is obtained as
F =% > | Bopnsin[(1 —m) z] {% sin (wt)

. (55)
+ Zs 1 <w2 R2> ]\B/I]((};i)) S (Rst)} Ce?n(éa q2n,m)062n(7]7 QQn,m)a

in which

— oo o0 2OCOE‘Of(q2n,7n)6(77n+3+4‘8)
Bomn = ano Zm:l h2(1—m)2 (w2 —R2)#(—m+3+4 B)
Cean(€,q2n.m)c2n (1,920, m)
sin[(1—m) z]Cef,, (§,q2n,m)cey (1,92n,m)

We assume now that W is identical to that taken in Equation (48), and putting 1/ and F' from
Equation (55) into Equation (20), one arrives at the desired von Karman-type large deflection on
a nonhomogeneous semi-elliptic elastic plate undergoing ramp-type heating on the upper face of
the semi-elliptic region. The constant term A’ seems to be quite lengthy; therefore, it is not written
here for the sake of brevity, but the same is plotted in the deflection graph.

4. Numerical Results, Discussion and Remarks

For the sake of simplicity of calculation, we introduce the following dimensionless values,
g 5/507 zZ = [Z - ( £/2)]/£OJ € = 0/507 h2 h2§07
T=nrt/E T =T/Ty,, W =W/[12(1 + v)]ayTo&o, (56)
My = Myj/Eaj, 55 = 05/ EaiTy (i, § = &)
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The mechanical material properties taken by Hata (1985) are considered for a semi-elliptic plate is
shown in Table 1.

Table 1. Thermo-mechanical properties of isotropic materials at room temperature

Calorific value Kcal/Kg'C 0.092 0.052
Modulus of Elasticity Gpa 110 50
Shear Modulus GPa 45 18
Poisson Ratio 0.34 0.36
Thermal Expansion coefficient | 10 = m/m°C | 17.6 22
Parameters Units Copper | Tin
Thermal Conductivity W/mK 401 66.8
Density Kg/m? 8940 5750

For numerical computation, a mixture of Copper (Cu) and Tin (Sn) in the ratio 70:30 is consid-
ered. In this regard, Young’s modulus is denoted by the expression F(z) = (0.1174 — 0.2246z +
1.3472% — 5.8142%) x 9.8 GPa. Here z : (weight of Tin%-+100), 0 < x < 0.3). The physical
parameters are &y = 1, ¢ = 0.08 and 7j = 150°C'. In order to examine the influence of heating on
the semi-elliptic plate, we performed the numerical calculation and illustrated graphically with the
help of MATHEMATICA software.

t n=n/2
2.5 p=x/4

p=x/8

N
o

-
[ ]

Temperature

1.0 | Thermodynamic
[ Conductive
0.5)

S

pr- .88

0.0/

0.0 0.2 0.4 0.8

Figure 2. Temperature distribution along the £ — direction for different 7

Figure 2 depicts distributions of thermodynamic and conductive temperatures in the ¢ direction for
various values of 7). It is clearly noticed from the graph that the effect of the material parameter f3 is
most prominent in thermodynamic temperature distribution. Both temperatures gradually increase
up to & = 0.4 then attains the maximum value at the inner core due to tensile forces along the
middle part. Further temperature tends to become zero towards the extreme outer end due to the
more compressive strength acting towards the outer edges. Both temperature distributions along the
angular direction are precisely shown in Figure 3. The temperature distributions attain its maximum
value in the neighbourhoods of the center of the heating region along with the 7 for various time
values. It can be seen that the temperature change on the heated surface increases as the thermal
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Figure 3. Variation of temperature along the n— direction for different time 7

0.15

e
=
o

Thermodynamic

Conductive

Temperature

e
o
a

0.00

N

0.00 0.02 0.04 0.06 0.08

Figure 4. Effect of temperature along the thickness direction for different £

load time is increased. The variation in the thickness direction of the plate is shown in Figure 4.
The thermodynamic and conductive temperatures found to be increasing along the zZ— direction
for different values of £ due to the available sectional heat supply at z = 0.08.

In Figure 5, as time proceeds, the temperature distribution gradually increases up to 7 = 1 and
attains the highest peak and reduces to zero at 7 = 2.2 due to the nature of sectional heat supply.
As 7 — o0, the curves follow a sinusoid trend, but the magnitude of crest and trough goes on
decreasing. The deflection due to heating according to the Berger method is lower than the Von
Karméan method. Figures 6 and 7 show the comparison with the solutions of the Berger and von
Karman equations for large deflection due to the temperature distribution by means of integral
transform technique. The results by the Berger equation is denoted by dotted lines and solutions by
the Von Kdrman equation are shown as dash-dotted lines. The deflection, due to heating according
to the Berger method, is lower than the Kdrman method, as shown in Figures 6 and 7, and found
in agreement with Mizuguchi and Ohnabe (1996). In Figure 6, as time proceeds, the deflection
distribution gradually increases from the origin, thus satisfying the initial boundary condition at
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7. Figure 7 represents the maximum deflection on the middle of the plate, and it also meets the
clamped boundary conditions taken in Equation (26).

O {max

z=0.07
0.0 0.2 0.4 3 0.6 0.8 1.0

Figure 8. Radial stress distribution along the £— direction for different 17 and z
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Figure 10. Variation of hoop stress along the Z direction for a varied £ and 7
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Figure 11. Tangential stress distribution along the £ — direction for different 7 and 7
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Figure 12. Variation of shear stress along the £ — direction for a varied £ and 7
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Figures 8 through 13 depict the variations of dimensionless thermal bending stresses of the elliptic
plate subjected to thermal loading. From Figure 8, it can be seen that the maximum value of tensile
stresses occurs up to & = 0.4 along the radial direction, and then the compressive stress acts
towards the end. For o¢ in Figure 9, as time proceeds the stress distribution gradually decreases
is at the lowest at 7 = 1.6. Further, it again starts slowly increasing due to the accumulation of
energy owing to sectional heat supply.

In Figure 10, it is observed that the tangential stresses linearly decrease along the axial direction
for different value of time, and it may be due to the physical thickness. Figure 11 shows that the
tensile stresses are maximum at the first part of thickness which is later overlaid by compressive
stress at the end along the thickness direction. From Figure 12, it can be seen that the maximum
value of the shear stresses occurs up to & = 0.6 along the radial direction, and the compressive
stress acts towards the end. In Figure 13, the shear stress distribution shows a sinusoidal nature
with two extremes at zero. The interval (0, 7/2) is the region of compressive stresses, and the
range (7/2, ) is the region of tensile stress.

5. Transition to a circular plate

If the elliptic plate degenerates into a circular plate, then 6 is independent of 7. Then, from McLach-
lan (1947) X, = of,./a* = ol /a® = X2 .a3,,, — pom/a®,m = 0,1,2.. etc. Here
Pom = Pm» Pom being the roots of Jy(po.,). Also e — 0 as & — oo, sinhé — coshé,
cosh2£ d¢ — 2rdr/h?, Aéo) — 272 Aéo) — 0, Oy — 0, ceo(n,q,,) — 2-1/2,
Ceo(0,q,,.) = . Jo(p,,.r)/a, in which a is the radius of the circular plate and p/ is constant.

The temperature field in the circular region can be given as

T(r,z,t) =5 Ly (wzf%)g {Fév/w)) sin (wt) + Y02, (w;riﬂfﬁ) ﬁ((ﬁ)) sin (Rst)} (57)
X [z 4 £/2]0=m) 20 Jo (e /a),

in which
F0) = | rdanr/a) ()
0
The thermally-induced deflection in the circular region can be denoted as

! 5(1-m)/2 (y=) Tw H(Rs)
W= Zn 0 Z A z {F(’y w) sin (Wt) + Zs 1 <w2—R§> M(Ry) sin (Rst)} (58)
XCQQn (57 q2n,m)062n(777 QQn,m) y

where

120 Eo f(p)C~m 1) (—m4-144 )
= =3 Xt 0 (w?—R2)? (m—5—4 8)(m—3—4 ) poJo(omr/a)/

<{J”(Oém7"/a)[ L+ (m—1)/2)(1 —m) [z +¢/2]7>~/2/2}
—o{[phJo(amr/a)/2][z + £/2]1™/2}).

The author has applied the proposed method in calculating the deflection of a heated semi-circular
plate under thermal load with same parameters considered as by Biswas (1976). The comparative
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results are illustrated in Table 2, and the results below nearly agrees with the previously given
conclusion:

Table 2. Comparison of the proposed results with a previously published paper

Q 0.0060 | 0.0070 | 0.0080 | 0.0090
Deflection (Biswas) W 0.0160 | 0.0291 | 0.0301 | 0.0385
Deflection (Proposed) W 0.0164 | 0.0298 | 0.0323 | 0.0392

6. Conclusion

In this study, we treated the three-dimensional thermoelastic problem of a medium with nonhomo-
geneous material properties, such as Young’s modulus F, the calorific capacity C,, the coefficient
of linear thermal expansion oy, and the thermal conductivity k, and with D as varying flexural
rigidity as given by Kassir’s nonhomogeneity of the axial coordinate variable 2.

We successfully established a system of fundamental large deflection equations and its associated
bending stresses with an elliptical-cylindrical system utilizing thermal forces and moments. Fur-
ther, to examine the validity of the proposed method, the elliptic plate degenerated into a circular
plate and compared it to those published in the literature. It is also noticed that the assessed re-
sults show a strong consensus with those presented in the literature. Moreover, we discussed how
these nonhomogeneous material properties affect the temperature distribution, the associated stress
distribution and large deflection. Finally, it was also observed that maximum tensile stress arises
on the main axis’s circular center, contrasting to the elliptical core assumption about the weak
heat distribution. This might be owing to insufficient heat penetration through the inner elliptic
structure.

Finally, we may conclude that the proposed thermally-induced thermoelastic system can be adapted
to other three-dimensional thermoelastic boundary value problems, such as mixed boundary value
problems with a penny-shaped crack or traction-free boundary value problems with a moving heat
source.
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