420 research outputs found

    Advancements and Challenges in Arabic Optical Character Recognition: A Comprehensive Survey

    Full text link
    Optical character recognition (OCR) is a vital process that involves the extraction of handwritten or printed text from scanned or printed images, converting it into a format that can be understood and processed by machines. This enables further data processing activities such as searching and editing. The automatic extraction of text through OCR plays a crucial role in digitizing documents, enhancing productivity, improving accessibility, and preserving historical records. This paper seeks to offer an exhaustive review of contemporary applications, methodologies, and challenges associated with Arabic Optical Character Recognition (OCR). A thorough analysis is conducted on prevailing techniques utilized throughout the OCR process, with a dedicated effort to discern the most efficacious approaches that demonstrate enhanced outcomes. To ensure a thorough evaluation, a meticulous keyword-search methodology is adopted, encompassing a comprehensive analysis of articles relevant to Arabic OCR, including both backward and forward citation reviews. In addition to presenting cutting-edge techniques and methods, this paper critically identifies research gaps within the realm of Arabic OCR. By highlighting these gaps, we shed light on potential areas for future exploration and development, thereby guiding researchers toward promising avenues in the field of Arabic OCR. The outcomes of this study provide valuable insights for researchers, practitioners, and stakeholders involved in Arabic OCR, ultimately fostering advancements in the field and facilitating the creation of more accurate and efficient OCR systems for the Arabic language

    A Comprehensive Review of Sentiment Analysis on Indian Regional Languages: Techniques, Challenges, and Trends

    Get PDF
    Sentiment analysis (SA) is the process of understanding emotion within a text. It helps identify the opinion, attitude, and tone of a text categorizing it into positive, negative, or neutral. SA is frequently used today as more and more people get a chance to put out their thoughts due to the advent of social media. Sentiment analysis benefits industries around the globe, like finance, advertising, marketing, travel, hospitality, etc. Although the majority of work done in this field is on global languages like English, in recent years, the importance of SA in local languages has also been widely recognized. This has led to considerable research in the analysis of Indian regional languages. This paper comprehensively reviews SA in the following major Indian Regional languages: Marathi, Hindi, Tamil, Telugu, Malayalam, Bengali, Gujarati, and Urdu. Furthermore, this paper presents techniques, challenges, findings, recent research trends, and future scope for enhancing results accuracy

    UTRNet: High-Resolution Urdu Text Recognition In Printed Documents

    Full text link
    In this paper, we propose a novel approach to address the challenges of printed Urdu text recognition using high-resolution, multi-scale semantic feature extraction. Our proposed UTRNet architecture, a hybrid CNN-RNN model, demonstrates state-of-the-art performance on benchmark datasets. To address the limitations of previous works, which struggle to generalize to the intricacies of the Urdu script and the lack of sufficient annotated real-world data, we have introduced the UTRSet-Real, a large-scale annotated real-world dataset comprising over 11,000 lines and UTRSet-Synth, a synthetic dataset with 20,000 lines closely resembling real-world and made corrections to the ground truth of the existing IIITH dataset, making it a more reliable resource for future research. We also provide UrduDoc, a benchmark dataset for Urdu text line detection in scanned documents. Additionally, we have developed an online tool for end-to-end Urdu OCR from printed documents by integrating UTRNet with a text detection model. Our work not only addresses the current limitations of Urdu OCR but also paves the way for future research in this area and facilitates the continued advancement of Urdu OCR technology. The project page with source code, datasets, annotations, trained models, and online tool is available at abdur75648.github.io/UTRNet.Comment: Accepted at The 17th International Conference on Document Analysis and Recognition (ICDAR 2023

    Handwritten OCR for Indic Scripts: A Comprehensive Overview of Machine Learning and Deep Learning Techniques

    Get PDF
    The potential uses of cursive optical character recognition, commonly known as OCR, in a number of industries, particularly document digitization, archiving, even language preservation, have attracted a lot of interest lately. In the framework of optical character recognition (OCR), the goal of this research is to provide a thorough understanding of both cutting-edge methods and the unique difficulties presented by Indic scripts. A thorough literature search was conducted in order to conduct this study, during which time relevant publications, conference proceedings, and scientific files were looked for up to the year 2023. As a consequence of the inclusion criteria that were developed to concentrate on studies only addressing Handwritten OCR on Indic scripts, 53 research publications were chosen as the process's outcome. The review provides a thorough analysis of the methodology and approaches employed in the chosen study. Deep neural networks, conventional feature-based methods, machine learning techniques, and hybrid systems have all been investigated as viable answers to the problem of effectively deciphering Indian scripts, because they are famously challenging to write. To operate, these systems require pre-processing techniques, segmentation schemes, and language models. The outcomes of this methodical examination demonstrate that despite the fact that Hand Scanning for Indic script has advanced significantly, room still exists for advancement. Future research could focus on developing trustworthy models that can handle a range of writing styles and enhance accuracy using less-studied Indic scripts. This profession may advance with the creation of collected datasets and defined standards

    Multimodal representation and learning

    Get PDF
    Recent years have seen an explosion in multimodal data on the web. It is therefore important to perform multimodal learning to understand the web. However, it is challenging to join various modalities because each modality has a different representation and correlational structure. In addition, various modalities generally carry different kinds of information that may provide enrich understanding; for example, the visual signal of a flower may provide happiness; however, its scent might not be pleasant. Multimodal information may be useful to make an informed decision. Therefore, we focus on improving representations from individual modalities to enhance multimodal representation and learning. In this doctoral thesis, we presented techniques to enhance representations from individual and multiple modalities for multimodal applications including classification, cross-modal retrieval, matching and verification on various benchmark datasets

    A Novel Deep Convolutional Neural Network Architecture Based on Transfer Learning for Handwritten Urdu Character Recognition

    Get PDF
    Deep convolutional neural networks (CNN) have made a huge impact on computer vision and set the state-of-the-art in providing extremely definite classification results. For character recognition, where the training images are usually inadequate, mostly transfer learning of pre-trained CNN is often utilized. In this paper, we propose a novel deep convolutional neural network for handwritten Urdu character recognition by transfer learning three pre-trained CNN models. We fine-tuned the layers of these pre-trained CNNs so as to extract features considering both global and local details of the Urdu character structure. The extracted features from the three CNN models are concatenated to train with two fully connected layers for classification. The experiment is conducted on UNHD, EMILLE, DBAHCL, and CDB/Farsi dataset, and we achieve 97.18% average recognition accuracy which outperforms the individual CNNs and numerous conventional classification methods

    Urdu Poetry Generated by Using Deep Learning Techniques

    Full text link
    This study provides Urdu poetry generated using different deep-learning techniques and algorithms. The data was collected through the Rekhta website, containing 1341 text files with several couplets. The data on poetry was not from any specific genre or poet. Instead, it was a collection of mixed Urdu poems and Ghazals. Different deep learning techniques, such as the model applied Long Short-term Memory Networks (LSTM) and Gated Recurrent Unit (GRU), have been used. Natural Language Processing (NLP) may be used in machine learning to understand, analyze, and generate a language humans may use and understand. Much work has been done on generating poetry for different languages using different techniques. The collection and use of data were also different for different researchers. The primary purpose of this project is to provide a model that generates Urdu poems by using data completely, not by sampling data. Also, this may generate poems in pure Urdu, not Roman Urdu, as in the base paper. The results have shown good accuracy in the poems generated by the model.Comment: 11 pages, 2 figure

    Multimodal representation and learning

    Get PDF
    Recent years have seen an explosion in multimodal data on the web. It is therefore important to perform multimodal learning to understand the web. However, it is challenging to join various modalities because each modality has a different representation and correlational structure. In addition, various modalities generally carry different kinds of information that may provide enrich understanding; for example, the visual signal of a flower may provide happiness; however, its scent might not be pleasant. Multimodal information may be useful to make an informed decision. Therefore, we focus on improving representations from individual modalities to enhance multimodal representation and learning. In this doctoral thesis, we presented techniques to enhance representations from individual and multiple modalities for multimodal applications including classification, cross-modal retrieval, matching and verification on various benchmark datasets
    corecore