1,386 research outputs found

    Formal Specification and Verification for Automated Production Systems

    Get PDF
    Complex industrial control software often drives safety- and mission-critical systems, like automated production plants or control units embedded into devices in automotive systems. Such controllers have in common that they are reactive systems, i.e., that they periodically read sensor stimuli and cyclically execute the same program to produce actuator signals. The correctness of software for automated production is rarely verified using formal techniques. Although, due to the Industrial Revolution 4.0 (IR4.0), the impact and importance of software have become an important role in industrial automation. What is used instead in industrial practice today is testing and simulation, where individual test cases are used to validate an automated production system. Three reasons why formal methods are not popular are: (a) It is difficult to adequately formulate the desired temporal properties. (b) There is a lack of specification languages for reactive systems that are both sufficiently expressive and comprehensible for practitioners. (c) Due to the lack of an environment model the obtained results are imprecise. Nonetheless, formal methods for automated production systems are well studied academically---mainly on the verification of safety properties via model checking. In this doctoral thesis we present the concept of (1) generalized test tables (GTTs), a new specification language for functional properties, and their extension (2) relational test tables (RTTs) for relational properties. The concept includes the syntactical notion, designed for the intuition of engineers, and the semantics, which are based on game theory. We use RTTs for a novel confidential property on reactive systems, the provably forgetting of information. Moreover, for regression verification, an important relational property, we are able to achieve performance improvements by (3) creating a decomposing rule which splits large proofs into small sub-task. We implemented the verification procedures and evaluated them against realistic case studies, e.g., the Pick-and-Place-Unit from the Technical University of Munich. The presented contribution follows the idea of lowering the obstacle of verifying the dependability of reactive systems in general, and automated production systems in particular for the engineer either by introducing a new specification language (GTTs), by exploiting existing programs for the specification (RTTs, regression verification), or by improving the verification performance

    A Reactive and Cycle-True IP Emulator for MPSoC Exploration

    Get PDF
    The design of MultiProcessor Systems-on-Chip (MPSoC) emphasizes intellectual-property (IP)-based communication-centric approaches. Therefore, for the optimization of the MPSoC interconnect, the designer must develop traffic models that realistically capture the application behavior as executing on the IP core. In this paper, we introduce a Reactive IP Emulator (RIPE) that enables an effective emulation of the IP-core behavior in multiple environments, including bitand cycle-true simulation. The RIPE is built as a multithreaded abstract instruction-set processor, and it can generate reactive traffic patterns. We compare the RIPE models with cycle-true functional simulation of complex application behavior (tasksynchronization, multitasking, and input/output operations). Our results demonstrate high-accuracy and significant speedups. Furthermore, via a case study, we show the potential use of the RIPE in a design-space-exploration context

    Regression Verification for Programmable Logic Controller Software

    Get PDF
    Automated production systems are usually driven by Programmable Logic Controllers (PLCs). These systems are long-living - yet have to adapt to changing requirements over time. This paper presents a novel method for regression verification of PLC code, which allows one to prove that a new revision of the plant\u27s software does not break existing intended behavior. Our main contribution is the design, implementation, and evaluation of a regression verification method for PLC code. We also clarify and define the notion of program equivalence for reactive PLC code. Core elements of our method are a translation of PLC code into the SMV input language for model checkers, the adaptation of the coupling invariants concept to reactive systems, and the implementation of a toolchain using a model checker supporting invariant generation. We have successfully evaluated our approach using the Pick-and-Place Unit benchmark case study

    Methods and tools for the integration of formal verification in domain-specific languages

    Get PDF
    Les langages dédiés de modélisation (DSMLs) sont de plus en plus utilisés dans les phases amont du développement des systèmes complexes, en particulier pour les systèmes critiques embarqués. L’objectif est de pouvoir raisonner très tôt dans le développement sur ces modèles et, notamment, de conduire des activités de vérification et validation (V and V). Une technique très utilisée est la vérification des modèles comportementaux par exploration exhaustive (model-checking) en utilisant une sémantique de traduction pour construire un modèle formel à partir des modèles métiers pour réutiliser les outils performants disponibles pour les modèles formels. Définir cette sémantique de traduction, exprimer les propriétés formelles à vérifier et analyser les résultats nécessite une expertise dans les méthodes formelles qui freine leur adoption et peut rebuter les concepteurs. Il est donc nécessaire de construire pour chaque DSML, une chaîne d’outils qui masque les aspects formels aux utilisateurs. L’objectif de cette thèse est de faciliter le développement de telles chaînes de vérification. Notre contribution inclut 1) l’expression des propriétés comportementales au niveau métier en s’appuyant sur TOCL (Temporal Object Constraint Language), une extension temporelle du langage OCL; 2) la transformation automatique de ces propriétés en propriétés formelles en réutilisant les éléments clés de la sémantique de traduction; 3) la remontée des résultats de vérification grâce à une transformation d’ordre supérieur et un langage de description de correspondance entre le domaine métier et le domaine formel et 4) le processus associé de mise en oeuvre. Notre approche a été validée par l’expérimentation sur un sous-ensemble du langage de modélisation de processus de développement SPEM, et sur le langage de commande d’automates programmables Ladder Diagram, ainsi que par l’intégration d’un langage formel intermédiaire (FIACRE) dans la chaîne outillée de vérification. Ce dernier point permet de réduire l’écart sémantique entre les DSMLs et les domaines formels. ABSTRACT : Domain specific Modeling Languages (DSMLs) are increasingly used at the early phases in the development of complex systems, in particular, for safety critical systems. The goal is to be able to reason early in the development on these models and, in particular, to fulfill verification and validation activities (V and V). A widely used technique is the exhaustive behavioral model verification using model-checking by providing a translational semantics to build a formal model from DSML conforming models in order to reuse powerful tools available for this formal domain. Defining a translational semantics, expressing formal properties to be assessed and analysing such verification results require such an expertise in formal methods that it restricts their adoption and may discourage the designers. It is thus necessary to build for each DSML, a toolchain which hides formal aspects for DSML end-users. The goal of this thesis consists in easing the development of such verification toolchains. Our contribution includes 1) expressing behavioral properties in the DSML level by relying on TOCL (Temporal Object Constraint Language), a temporal extension of OCL; 2) An automated transformation of these properties on formal properties while reusing the key elements of the translational semantics; 3) the feedback of verification results thanks to a higher-order transformation and a language which defines mappings between DSML and formal levels; 4) the associated process implementation. Our approach was validated by the experimentation on a subset of the development process modeling language SPEM, and on Ladder Diagram language used to specify programmable logic controllers (PLCs), and by the integration of a formal intermediate language (FIACRE) in the verification toolchain. This last point allows to reduce the semantic gap between DSMLs and formal domains
    • …
    corecore