21,623 research outputs found

    The Green Choice: Learning and Influencing Human Decisions on Shared Roads

    Full text link
    Autonomous vehicles have the potential to increase the capacity of roads via platooning, even when human drivers and autonomous vehicles share roads. However, when users of a road network choose their routes selfishly, the resulting traffic configuration may be very inefficient. Because of this, we consider how to influence human decisions so as to decrease congestion on these roads. We consider a network of parallel roads with two modes of transportation: (i) human drivers who will choose the quickest route available to them, and (ii) ride hailing service which provides an array of autonomous vehicle ride options, each with different prices, to users. In this work, we seek to design these prices so that when autonomous service users choose from these options and human drivers selfishly choose their resulting routes, road usage is maximized and transit delay is minimized. To do so, we formalize a model of how autonomous service users make choices between routes with different price/delay values. Developing a preference-based algorithm to learn the preferences of the users, and using a vehicle flow model related to the Fundamental Diagram of Traffic, we formulate a planning optimization to maximize a social objective and demonstrate the benefit of the proposed routing and learning scheme.Comment: Submitted to CDC 201

    Emergence of Equilibria from Individual Strategies in Online Content Diffusion

    Get PDF
    Social scientists have observed that human behavior in society can often be modeled as corresponding to a threshold type policy. A new behavior would propagate by a procedure in which an individual adopts the new behavior if the fraction of his neighbors or friends having adopted the new behavior exceeds some threshold. In this paper we study the question of whether the emergence of threshold policies may be modeled as a result of some rational process which would describe the behavior of non-cooperative rational members of some social network. We focus on situations in which individuals take the decision whether to access or not some content, based on the number of views that the content has. Our analysis aims at understanding not only the behavior of individuals, but also the way in which information about the quality of a given content can be deduced from view counts when only part of the viewers that access the content are informed about its quality. In this paper we present a game formulation for the behavior of individuals using a meanfield model: the number of individuals is approximated by a continuum of atomless players and for which the Wardrop equilibrium is the solution concept. We derive conditions on the problem's parameters that result indeed in the emergence of threshold equilibria policies. But we also identify some parameters in which other structures are obtained for the equilibrium behavior of individuals

    Joint Head Selection and Airtime Allocation for Data Dissemination in Mobile Social Networks

    Full text link
    Mobile social networks (MSNs) enable people with similar interests to interact without Internet access. By forming a temporary group, users can disseminate their data to other interested users in proximity with short-range communication technologies. However, due to user mobility, airtime available for users in the same group to disseminate data is limited. In addition, for practical consideration, a star network topology among users in the group is expected. For the former, unfair airtime allocation among the users will undermine their willingness to participate in MSNs. For the latter, a group head is required to connect other users. These two problems have to be properly addressed to enable real implementation and adoption of MSNs. To this aim, we propose a Nash bargaining-based joint head selection and airtime allocation scheme for data dissemination within the group. Specifically, the bargaining game of joint head selection and airtime allocation is first formulated. Then, Nash bargaining solution (NBS) based optimization problems are proposed for a homogeneous case and a more general heterogeneous case. For both cases, the existence of solution to the optimization problem is proved, which guarantees Pareto optimality and proportional fairness. Next, an algorithm, allowing distributed implementation, for join head selection and airtime allocation is introduced. Finally, numerical results are presented to evaluate the performance, validate intuitions and derive insights of the proposed scheme

    The smart home in the mind and in the practice of digital natives. The case of “Sapienza” University

    Get PDF
    Smart home e giovani: quale la percezione? La presente indagine pilota, effettuata da un gruppo di studiosi dell’Università Sapienza di Roma mira ad analizzarne i risultati, rappresentando una ricognizione essenziale di quello che è l’universo dei giovani in relazione al mondo smart e alla domotica. L’Ateneo Sapienza sposa appieno la sfida lanciata da Horizon 2020 con il progetto ReStart4Smart, un laboratorio pratico in cui poter conoscere e sperimentare, fare ricerca e innovare, condividere e divulgare, tanto problemi quanto, e più possibile, soluzioni ambientali ed abitative. Chi sono realmente i nativi digitali? E qual è il loro livello di conoscenza della smart home? Quali i valori e quali i comportamenti concreti in relazione all’utilizzo intelligente delle nuove tecnologie
    • …
    corecore