1,637 research outputs found

    Studies related to ocean dynamics. Task 3.2: Aircraft Field Test Program to investigate the ability of remote sensing methods to measure current/wind-wave interactions

    Get PDF
    The feasibility of remote sensing of current flows in the ocean and the remote sensing of ocean currents by backscattering cross section techniques was studied. It was established that for capillary waves, small scale currents could be accurately measured through observation of wave kinematics. Drastic modifications of waves by changing currents were noted. The development of new methods for the measurement of capillary waves are discussed. Improvement methods to resolve data processing problems are suggested

    S-193 scatterometer backscattering cross section precision/accuracy for Skylab 2 and 3 missions

    Get PDF
    Procedures for measuring the precision and accuracy with which the S-193 scatterometer measured the background cross section of ground scenes are described. Homogeneous ground sites were selected, and data from Skylab missions were analyzed. The precision was expressed as the standard deviation of the scatterometer-acquired backscattering cross section. In special cases, inference of the precision of measurement was made by considering the total range from the maximum to minimum of the backscatter measurements within a data segment, rather than the standard deviation. For Skylab 2 and 3 missions a precision better than 1.5 dB is indicated. This procedure indicates an accuracy of better than 3 dB for the Skylab 2 and 3 missions. The estimates of precision and accuracy given in this report are for backscattering cross sections from -28 to 18 dB. Outside this range the precision and accuracy decrease significantly

    Time dependent wind fields

    Get PDF
    Two tasks were performed: (1) determination of the accuracy of Seasat scatterometer, altimeter, and scanning multichannel microwave radiometer measurements of wind speed; and (2) application of Seasat altimeter measurements of sea level to study the spatial and temporal variability of geostrophic flow in the Antarctic Circumpolar Current. The results of the first task have identified systematic errors in wind speeds estimated by all three satellite sensors. However, in all cases the errors are correctable and corrected wind speeds agree between the three sensors to better than 1 ms sup -1 in 96-day 2 deg. latitude by 6 deg. longitude averages. The second task has resulted in development of a new technique for using altimeter sea level measurements to study the temporal variability of large scale sea level variations. Application of the technique to the Antarctic Circumpolar Current yielded new information about the ocean circulation in this region of the ocean that is poorly sampled by conventional ship-based measurements

    Fourth Annual Earth Resources Program Review. Volume 4: National Oceanic and Atmospheric Administration programs and US Naval Research Laboratory programs

    Get PDF
    Conference of Earth Resources Program with emphasis on analysis of data obtained by aircraf

    Investigation of the applications of GEOS-3 radar altimeter data in remote sensing of land and sea features

    Get PDF
    A number of GEOS-3 passes over the Atlantic Ocean and Southeastern U.S. are examined. Surface-truth and radar altimeter data comparisons are given in terms of surface correlation length, signal fluctuation characteristics, and altitude tracker dynamic response. Detailed analyses are given regarding spatial resolution and its dependency on angular backscatter behavior. These analyses include data from passes over ocean (diffuse scatter), land (large body scatter), and mirror-like inland water areas (pseudo-specular scatter). Altimeter data are examined for a pass over a large reservoir and marsh area of differing water levels; this geometry represents a stepchange in altitude which is usable in determination of the transient response of the tracker. The extent to which pulse-length limited operation pertains over-land is examined. A Wiener filter altitude algorithm is discussed which permits specification of tracker variance and geoidal spectral characteristics during operation

    The First Seasat-A Industrial Users Workshop

    Get PDF
    The purpose of this workshop was to begin the process of definition and development of the SEASAT-A Demonstration Program, leading to the implementation of a set of experiments which would begin during the latter part of 1978 following the launch of SEASAT-A (now scheduled for May 1978). NASA through the SEASAT-A program, has encouraged the planning of cooperative experiments by industry and government agencies that operate in areas of ocean activity that could benefit from improved measurements and forecasts of weather and ocean conditions. The objectives of these experiments are to: (1) evaluate the significance of SEASAT-A data to commercial user organizations; (2) assist in identifying those characteristics of follow-on systems that are important to industrial users; (3) obtain experimental evidence that could be used to refine estimates of the economic potential of an operational system; and (4) begin the technology transfer process to the industrial users

    Technical approaches, chapter 3, part E

    Get PDF
    Radar altimeters, scatterometers, and imaging radar are described in terms of their functions, future developments, constraints, and applications

    Scientific opportunities using satellite surface wind stress measurements over the ocean

    Get PDF
    Scientific opportunities that would be possible with the ability to collect wind data from space are highlighted. Minimum requirements for the space platform and ground data reduction system are assessed. The operational uses that may develop in government and commercial applications of these data are reviewed. The opportunity to predict the large-scale ocean anomaly called El Nino is highlighted

    Shuttle imaging radar-C science plan

    Get PDF
    The Shuttle Imaging Radar-C (SIR-C) mission will yield new and advanced scientific studies of the Earth. SIR-C will be the first instrument to simultaneously acquire images at L-band and C-band with HH, VV, HV, or VH polarizations, as well as images of the phase difference between HH and VV polarizations. These data will be digitally encoded and recorded using onboard high-density digital tape recorders and will later be digitally processed into images using the JPL Advanced Digital SAR Processor. SIR-C geologic studies include cold-region geomorphology, fluvial geomorphology, rock weathering and erosional processes, tectonics and geologic boundaries, geobotany, and radar stereogrammetry. Hydrology investigations cover arid, humid, wetland, snow-covered, and high-latitude regions. Additionally, SIR-C will provide the data to identify and map vegetation types, interpret landscape patterns and processes, assess the biophysical properties of plant canopies, and determine the degree of radar penetration of plant canopies. In oceanography, SIR-C will provide the information necessary to: forecast ocean directional wave spectra; better understand internal wave-current interactions; study the relationship of ocean-bottom features to surface expressions and the correlation of wind signatures to radar backscatter; and detect current-system boundaries, oceanic fronts, and mesoscale eddies. And, as the first spaceborne SAR with multi-frequency, multipolarization imaging capabilities, whole new areas of glaciology will be opened for study when SIR-C is flown in a polar orbit

    Science opportunities from the Topex/Poseidon mission

    Get PDF
    The U.S. National Aeronautics and Space Administration (NASA) and the French Centre National d'Etudes Spatiales (CNES) propose to conduct a Topex/Poseidon Mission for studying the global ocean circulation from space. The mission will use the techniques of satellite altimetry to make precise and accurate measurements of sea level for several years. The measurements will then be used by Principal Investigators (selected by NASA and CNES) and by the wider oceanographic community working closely with large international programs for observing the Earth, on studies leading to an improved understanding of global ocean dynamics and the interaction of the ocean with other processes influencing life on Earth. The major elements of the mission include a satellite carrrying an altimetric system for measuring the height of the satellite above the sea surface; a precision orbit determination system for referring the altimetric measurements to geodetic coordinates; a data analysis and distribution system for processing the satellite data, verifying their accuracy, and making them available to the scientific community; and a principal investigator program for scientific studies based on the satellite observations. This document describes the satellite, its sensors, its orbit, the data analysis system, and plans for verifying and distributing the data. It then discusses the expected accuracy of the satellite's measurements and their usefulness to oceanographic, geophysical, and other scientific studies. Finally, it outlines the relationship of the Topex/Poseidon mission to other large programs, including the World Climate Research Program, the U.S. Navy's Remote Ocean Sensing System satellite program and the European Space Agency's ERS-1 satellite program
    corecore