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INTRODUCTION

This report .consists of two parts. Part 1 provides the theory and
results of an experimental program.to test the feasiﬁility of remote sens-
ing of current flows in the ocean and was written by Norden Huang. Part II
is a summary of an analytical stﬁdy of the feasibility of remote sensing
of ocean currents by means of backscattering cross-section techniques and

was written by W. A. Flood and G. S. Brown.

The experimental results in Part I represent the contributions of
many investigators. Data anaiysis of the laser profilometer was provided
by E. A. Uliana of Naval Research Laboratory; the probability density
curvés are the result of C. C. Tung of North Caroliné State University; the
- data acquisition was supervised by Richard Shiel of Naval Research Labora-
tory and A. Gene Smith of Applied Science Associates, Inc.; and finally

the ground truth data was provided by Marty Welch of North Carolina State
University. \ |



Part I - Theorectical and Experimental Results of the Remote Sensing of

Ocean Currents.
1.0 INTRODUCTION

When waves propagate over the surface of the ocean their character-
istics are modified continuously. The changes are drastic when they en-
counter a non-uniform current field. From a basic fluid mechanics point
of view, this phenomeﬁon has been studied by a number of investigators,
such as: Longuet-Higgins and Stewart (1960, 1961, 1964), Crapper (1972).
The application of the results as a means to measure the strength of the

current has only been discussed recently (Huang, et al, 1972).

Through preliminary studies in the laboratory (Huang, et al, 1974),
it was established thét, for capillary waves, small scale'currents could
be accurately measured through observations of wave kinematics. The

- changes in gravity waves due to currents, however, have not yet been observ-
ed under controlled measurement conditions. From theoretical results and
from casual observations of waves under na;qgglncon&i%ions, drastic modi-
fications of waves by chang;ng currentéﬂﬁgbe been noted and have provided
ample justification to expect that whatever happened to capillary waves
would also happen to gravity waves. However, because of practical limi-
,tationé in the measurement technique used, the method employed for the
capillary wave studies reported previously (Huang, et al, 1974)’can not
be used here. New methods and new theoretical groundwork will have to be
developed. The theoretical developments required will be discussed in
Chapter 2. -

A field test at Hatteras Inlet, N. C., was conducted during the study.
The test site was not chosen by scientific consideration; rather, the avail-
ability of ground truth data dictated the decision. The results of these
- tests showed qualitative support for the theoretical results. These will
be discussed in Chapter 3. There were, however, problems in the data pro-
cessing procedures and measurement techniques used. Recommendations for
future improvements to aid in resolving these problems are given in the
last chapter.



2.0 THEORETICAL STUDIES ‘ -
2.1 Introduction’

Interactions between currents and waves have been discussed by numer-
ous authors,.but in most of these studies, the diféctional properties of
thg wavefield havg not been duly considered. As a resuit, unidirectional
wave and current fields were assumed. Such approximation will probably
hold in the open ocean where the horizontal scale of currents and wave
fields are muéh lohger than any single wave length; therefore, the wave
field is approximately uniform in the horizontal variable both in ampli-
tude and direction. Wave conditions at inlets, however, poée a different
problem. The current field here is well defined and concentrated. The
horizontal gradient of change is strong. Even if we neglect the influence
of the bottom, the waves will still éhange direction as they propagate.
This problem has been studied by Boone (1974) where directional and ampli-
tude changes wefé investigated. A brief summary of Boone's results will
be given first in the following discussion. The changes in wave charac-

teristics will be discussed through the associated probability distribu-

RO

tion functions. I

2.2 Summary of the Equations for Inlet Wave Patterns

- In developing the wave-current interaction equations in this study,

the following assumptions are made:

(1) the tidal currents are assumed to be steady in time but
non-uniform in space.' This assumption holds because the
periods of the wind waves and even the swells are of the
order éf seconds while the tidal period is of the order of
hours. During the time a wave propagates through the tidal
inlet, tﬁe current condition indeed will not change substan-
tially, but the wave will experience completely different

current conditions across the inlet;

(2) the motions of the fluid are assumed‘to be irrotational.
This is more out of convenience of analysis than reality,
but the assumption is good in most wave studies because the
rotational influence is small in any case; |

(3) the waves are assumed to be in deep water. There are some



difficulties with the deepwater assumption which requires
that the depth of the water, D, be greater than one-half

wave length, L/2; i.e. D/L > 1/2. The maximum depth at a
typical inlet on the Outer Banks of North Carolina is of

the order of 20 feet. Certainly any wave that has a lengthA
less than 40 feet will satisfy the deepwater criteria. How-
ever, the restriction is not critical for most cases in which
we are interested. A wave of 100 feet in length, for example,
Qill iﬁtrbduce an error of only 10%Z. This is well within the
accgptable accuracy limit of the present capability in mea-
sureﬁeh; techniques. 1In the future, a more.precise'model

éhould Be_built for the shallow water case as well.

To beginvthe.étudy of wave patterns, the kinematics involved will be
considéred. For the inlet geometry shown in Figure 2.1, under steady
state conditions, by the kinematic conservation law discussed by Phillips
(1966) we will have a '

-

"Va =0 | @)

where n fepresents’the total frequency actually observed, which

. includes the pure oscillatory and convective frequencies, namely:

n=ke (Hc) = kU+o : - (2.2)

-~ ~ .~

In component form, equations 2.1 and 2.2 give:

k(Ucosb+e) = koc° ) (2.3)

where k is the wave number, U the current magnitude, ¢ the phase épeed,
and 6 the angle between the wave vector and the current direction. The

subscript o indicates the condition when the current is zero.

For the deepwater gravity waves, the phase velocity and the wave

number are related by

CZ kO
.__2 = _l:. , . | | - (2.4)

o

c
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Figure 2.1. Schematic of coordinate system in relation to wave
crest, tidal inlet, current and wave movement



therefore, equations 2.3 and 2.4 combined will give

2 c- U ‘
—°2 - - = cosB =0 : (2.5)
c c c _

o [o] (o]

which has the solution
. 1/2

¢ _1 4Ucos8, /%]
. > 1+(1+ e ) (2.6)

Here only the positive sign fbr the radical has been retained to
reflect physical reality. By combining equations 2.4 and 2.6, the wave

number changes can be written as

- . ' - @7

1/2,2 —°.
1 4UcosB (*°
L {1eqs Sanll

K
"k
o

The inverse of this ratio will give the wave length ratio.

By using the irrotational propefties of the wave number vector,Awe
have ' ' '

oksinB _ dkcosb _
9x oy

0 (2.8)

where the x-axis is parallel to the current direction in this equation.
Wave number changes perpendicular to the current direction should be zero,
thus, )

dksinb - okcosH -
9x oy

0o . - (2.9)

Hence

ksinb = k_sinb - , (2.10)
.o o )
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which is Snell's law of refraction. By combining equations (2.7) and

(2.10), the wave refraction equation under current is obtained as

) 1/2q (2 '
sind _ )1 4Ucosb
sineo,— iZ [l+(1+ c ) ] g (2.11)

. . o

The wave refraction equation showshthat the refraction angle is a function
of the initial wave angle relative to the current direction, the dnitial
wave phase speed, and the curreﬁt'speed. 'Wheh U/c° is greater then zero,
sinQ/sinGo increases with current changes. When the value of U/co is less
than zero, sinS/sineo decreases in an opposing current. The angle of re-

fraction can be obtained from the expanded form of equation 2.1l as

2 .3
4 2 psin 60_-Zsin6

sine + 3

2 sin”9

(1+pzsin29°)2

—

(l—2p2)sin290 —2p° sin49°

3 2 sta’p
(1+p~sin 60)
2pzsin36° p“sinéao-
- 53 sinf + 73 3" 0 (2.12)
(14p"sin eo) (1+p“sin 90)

where p=U/co. This algebraic expansion can be shown to be the same as
Crapper's (1972) wave refraction equation obtained through an independent
method using averaged Lagrangian and variational principles.

The wave aﬁplitude éan be found by using the wave enefgy conservation
equation: '

oU

oE ] i
&, axi{E(Uiﬂgi)} +8, il (2.13)



* where E = energy density of the waves per unit area
i, = indices with values 1,2 corresponding to x,y
U= currén; velocity ‘

S 1j = excess momentum flux associated with the wave motion
c . = group velocity of the waves

€ = the rate of energy dissipation per unit area

Under the steady state and non-dissipative assumptions, equation 2.13 can
be written as ‘

9 1 9 . 1 _ 9Ucosf _ |
N [E(Ucosb +—2-c)] + 3y [EUsin®] + > E —— x 0 (2.14)

The continuity equation for the current field is

dUcos6 , 9UsinB _ B
T Sy '0 . | (2.15)

JORTOR

By combining equations 2.14 and 2.15, and through some algebré, ve get

E(Ucosf +%— c)

c

N

= const =

Eo' | . (2.16)

Combining equation 2.6 with the energy equation, 2.16, finally gives

1+ +ﬂgose) 1/2 | |
-‘E- 4Ucos® > 4Ucosb , 1/2 (2.17)
o [—-c—— L+ Q) :]
. 0 Q

"This equation indicates how the energy of a wave is modified by the
current velocity. Since the energy in a gravity wave is proportional to

the square of the amplitude,

‘ 1/2
1/2
1+ (1L+ éUzose ) :
a o
a _ , (2.18)
a, AUzose +1 + (1.+ 4Ucose) 1/2 '

. o (o]
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. Associated with the wave amplitude is the wave slope or the wave

steepness, s, defined as the ratio of the wave height to the wave length:

=2 _ak

s =1 T (2.19)

Thus
| 4Ucos8, 1/2 1/2
14+ (14 2508
s . 1 . %o
Sy {%+%(1+5g§_os_e)1/2}2 4Ucosb . ; , a+ aucose)l/z
o 0. o
(2.20)

With all the equations of wave characteristics given, the values of
the various quantities can be calculated. The calculation starts with the
equation of wave refraction given in the expanded ffgm. For given 60 and
U/c° values, the refraction angle ?yaggesware'shown in Figure 2.2. The
resulting refracted angle values are then applied to equation 2.17 to solve
for the energy changes under current as shown in Figure 2.3; to equation
2.18 to solve for amplitude changes as shown in Figure 2.4; to equation
" 2.20 to solve for the wave slope changeé as shown in Figure 2.5; to equa-
tion 2.7 to solve for wave number changes as shown in Figure 2.6; and to

equation 2.6 to solve for the phase velocity changes as shown in Figure 2.7.

As the wave propagates against current, the wave élope keeps increas-
ing. The upper'liﬁit of the steepness can not exceel 1/7 as shown by
" Michell (1893). Using this criteria, we can establish a stability curve
to predict the breaking conditions of waves. This limit is shown in Fig-
ure 2.8. '

2.3 The Probability Distribution Function for Random Waves

The calculations presented in the previous section apply to simple
wave trains only. In the natural environment, wave fields are always ran-
dom in amplitude and direction; therefore, a complete description of the
wave problem should be in terms of directional wave spectra. However, prac-

tical capability limited the available experimental data to a simple wave
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Figure 2.2. Wave refracltion angle O (degrees) versus velocity ratio U/ <,
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frequency spectrum only. Consequently a number of very attractive proper-
ties of waves such as the changes in wave numbef, phase speed, direction

et al. can not be fully utilized for measurements of current conditionms.

With this limitation, other statistical characteristics in frequency
space should be considered in more detail. By using the energy equatioms,
the changes in the energy spectra in frequency space can be calculated.
This has been discussed in previous reports (Huang, et al. 1974). In

.addition to the spectra, the probability density functivtn of the surface
elevation offers another measurement of the influence of the current on
wave fields. Another practical adventage of studying the probability
density function is that the quantities are méasurable by radar techniques

(see, for example, Yaplee et al. 1971).

Both theoretical and field studies show that the probability density

function of the surface elevation of a wave field is approximately -Gaussian.
Thus

| -2 e T
B = ueh)  exp(- 3 M) @

where 7 stands for the-surface.elevation measured from the mean sea level,
and the over bar indicates averages. When non-~linear mechanisms are includ-
ed, the density function can be approximated by a Gram—-Charlier series with
the leading term still Gaussian as shown by Longuet-Higgins (1960). Since
all the non-linear interactions are weak in nature, if we neglect the non-
linear effects and accept the first order approximation, the probability
density function of the surface elevation will then depend on Ei.which is

controlled by the current-wave interactions under a given wind condition.

Two cases of current conditions are considered to show the influence
of current on the density function. The first case involves variable cur-
"rents in one dimension only. As an example consider the'Gulf Stream as a
uniform current which is a function of the variable x, measured perpendicu-
lar to the direction of current flow. The Gulf Stream is confined to a
particular region of x space. The energy conservation equation for this

case 1is:



-18-

E(U + %)c = constant , ) (2.22)

where E is the total wave energy; U, the current velocity, and c, the phase

speed of the waves. The changes in the spectral function are given by

Huang et al. as

- ‘Nbo(n)
¢(n) = (2.23)
[1+ (1 + —"—‘g’—‘l)”zl [ +ﬁéﬂ>1’2 + 1 +ig—‘l)1

where n is the frequency and ¢o(n) is the spectral function when the current

equals zero. Various forms of ¢O(n) can be used in equation (2.23).

For the present discussion the Kitaigordoskii-Moskowitz-Pierson spectrum
is adopted, i.e.,

Bob -
n). = E&‘é -—-”'(—E) 2.2
¢°( ) 3 (2.24)
n

where n_ = %-with w standing for wind speed. Since the wave energy‘spectra

are modified by the current, so is cz which equals

n .
— (o4
= J[ $(n)dn (2.25)
Ko

where n, is the cut-off frequency of the wave spectrum taken as that of a
wave 30 cm in length in the present study.

The second case deals with converging or diverging currents with con-
tinuity equation as '

au , U _
= + 3y 0 . (2.26)

Under this condition, the equation for energy conservation is
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E(U + %c) .
—— — = const, . : (2.27)
and. the spectral function becomes
4Un. 1/2

¢, () [n+ (1 + —ETO ]

172
1+.(1+-"-g—‘l)/ +———"g“

. i (2.28)

¢(n) =

Again the changes in ¢(n) are reflected in Cz and the probability
density functions. The results are shown in Figures 2.9, 2.10, 2.11, and
2.12.

These results indicate that the probability density functions are

—

sensitive to whatever causes changes in [“. This is true even when the

higher order expansion terms in Gram-Charlier series are considered. In
course, winds and major currents. However, since we lack more detailed
knowledge of the generation of waves by wind, it is not easy to utilize
these properties as a means to measure wind velocity over the ocean,

because swells from previous storms will also change cz.

On the other hand, current-wave interaction is more definite aﬁd is
a first order effect. Furthermdre, since the change depends on relative
values of currents, it is less susceptible to the error in establishing
an absolute relafionship as required in wind wave generation studies. Under
normal conditions a wind system will cover an area substantially larger
than the scale of waves and thus will provide a homogeneous field for wave
action. In an inlet or a river mouth for example, the local flow will gen-
erate a non-uniform velocity field over a homogeneous wave field. Conse-
quently, the waves will interact and change characteristics depending on
the flow gonditions. Such changes can be detected easily from the proba-
bility density function, but further study is needed to put this approach

on a sound quantitative basis.
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3.0 FIELD STUDIES
3.1 Introduction

The purpose of the field study was to conduct an experimental program
to establish the feasibility of using remotely sensed wave observations to
detect and measure ocean currents. Such a field test program must be sup-
ported by in-situ, ground truth measurementé. The presence of a field
team from North Carolina State University making physical oceanographic
measurements at Hatteras Inlet, on the Outer Banks of North Carolina, sug-
gested that rembtely sensed wave observations made at this location during
the North Caroliha State field peribd might provide the basis of a fruit-
fui test of the theory presented in Part Ii of this report.

The initial plan called for four aircraft flights (two at ebb and two
at flood tides)'cérrying a laser profilometer and the NRL nanosecond radar.
The NRL radar was not available during the planned flight periods and
scheduling difficulties with the aircraft resulted in only three test )
flights. Equipment malfunctions on two of the threé test flights flown
resulted in useable data being restriéféa:to the flight of July 15, 1974.
This data forms the basis for the field study. '

AFigufe 3.1 illustrates the location of Hatteras Inlet on the Outer
Banks of North Carolina. The inlet connects Pamlico Sound to the Atlantic
Ocean. Figure 3.2 is a more detailed drawing of the area and clearly shows
the pfesénce of the small islands near the mouth of the inlet. These is-
lands produce an extremely complicated water flow pattern which make Hatteras
Inlet a less than -ideal experimental site. The presence of gently sloping
beaches on the ocean side of the bank further complicate ﬁhe data interpre-~-
tation by introducing the possibility of shallow water effects which are
not accounted for in the throry. The reason for the selection of Hatteras
for the experimental test site was primarily to take advéntage of the physi-
cal océanographic observations which could be provided by the North Carolina
State University field investigation.

3.2 Collection of Ground Truth Data

The physical oceanographic team from North Carolina State University
made current measurements at Hatteras Inlet from the 9th to the 1l6th of

July, 1974. These ground truth activities can beldescribgd as follows.
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Figure 3.1. Geographic location of Hatteras Inlet
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Bathymetrical Survey
A portable fathometer was used from a 16 ft. boat equipped

with an outboard motor, to make the bathyﬁétfical survey. The

. paths of the survey tracks near the Inlet are shown in Figure 3.3.

Though the width of the inlet is about 8000 ft., the maximum

depth is only 25 ft. The depth profiles obtained are shown in
Figures 3.4 and 3.5. The>survey results indicated the shallow-
ness and the complicated nature of the bottom features of the Inlet.
The Inlet is not stable; dredging and erosion change the Inlet
geometry'continuously. A decision was made at this point to
complete all measurements as quickly as possible; definitely

within the summer and fall before the onset of winter storms

and resulting drastic changes in Inlet conditionms.

Tracking Floating Buoys

- Three dozen disposable buoys were prepared for measure-~
ment of the Lagrangian surface current iq_;he Inlet area
because the boat used was.too.small'fb'bé safely operated there.
The buoys were 2' cubic.éealedcardboardboxes painted bright
orange and weighted with sand to make the boxes slightly buoy-
ant so that only one-half of a box would be above the water
surface. Two transit stations were established on one of the
islands  facing the ocean at the Inlet mouth as shown in Figure 3.3.
The distance between the stations was 1,18l ft., thus providing
a trangulation baseline sufficient for determining the position
of the buoys. A total of 30 buoys were released at various
times and positions and tracked as they moved through the

Inlet. Results of measurements on 15 July are shown in Figure

. 3.6. Surface current values deduced from buoy motion are shown -

on the figure.

Current Meter Measurements

A total of twelve current meters were deployed by the
North Carolina State Uni?ersity Marine Science team. Due to
limitations of the meters none was placed in the Inlet itself.

The locations of the two nearest to the. Inlet mouth, that were

-
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most important to this study are shown in Figure 3.3. The
current meters used were General Oceanics Model 2010 f£ilm
recording meters. These instruments operate on the principle
that a buoyant wand tethered at one end will deflect into the
current stream at an angle and direction that are functions of
the current speed and direction. The sensing and recording of
this deflection yields information that can be readily tran-
slated into current speed and direction data. Accuracies of
measurements of current speed is + 3%, and direction is i_So.
The current meters were attached to 90 1b. weights sunk to

the bottom. The meters were positioned 9 ft. abo&e the bottom.
Currenf magnitudes and directions from these two stations are
showﬁ in Figures 3.7 and 3.8. These values are comparable to
the ones obtained by the surface buoys discussed in the previous

paragraph.

Weather Data

A portable weather s;gpion~waé"é$£ablished 20 miles south-
west of the Inlet at aféoast Guard Station. Standard meteoro-
logical parameters were fecorded continuously. Figure 3.9
shows the wind data during the time of the buoy observations
and the current meter recordings. The wind data indicated that
during the flight time on July 15, 1974, the wind was coming
from the direction pefpendicular to the axis of the 1Inlet, thus
the locally generated waves also moved in that direction. The
wind speed was around 15 knots which generated a sea state too
low to be - tracked continuously by the lager profilometer. This
was not the most favorable condition to conduct the flight test,
but due to problems in scheduling the aircraft for alternate

dates, the aircraft experiment was conducted.

3.3 The Aircraft Experiment

A flight test plan was drawn up for the acquisition of data on wind-

wave height from one of the NASA Wallops Flight Center C-54 aircraft, using
a laser profilometer as the primary and the nanosecond radar as the secon-

dary source of data. The date scheduled for the first
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flight was chosen to be coincident with one of the days when inlet current
measurements were being made at one of the inlets by the ground crew using
floating buoys dropped from a small boat and tracked by two surveyor tran-

sits on an island in the mouth of the inlet.

It was hoped that sequential photographs taken from the aitcraft as
it passed over the inlet could be used as a means of measuring buoy posi-
tions and velocities in order to provide an independent check on the tran-
sit measuremenﬁs. It turned out, unfortunately, that the aircraft alti-
tude required to enable observation of sufficient land mass to permit mea-
surement of relative location of buoys with respect to land was so high
that:the small buoys used (approximately 2 foot cubes) could not be seen

in the photographs.

Initial planning envisioned two data acquisiton flights on each of
two days: one flight each day at ebb tide and one at flood tide, and one
day for Hatteras Inlet and one for Ocracoke Inlet. The days initially
chosen as most desirable based on North Carolina State University research
project schedules and time of occugence-of-eﬁbnéﬁd flood tides were:

10 July at Hatteras and 15 July at Ocracoke.

Data acquisition runs at an altitude of 500 feet (for best laser

) operation conditions) were planned to be flown on courses along radials
froﬁ the center of each inlet mouth; each run to be nominally 10 miles
long to ensure that data would be obtained on ocean surface unaffected by
inlet currents as well as on oceaﬁ surface near the inlet where inlet cur-

rent effects could be observed.

Also, initial planning called for measurements to be made (simultan-~
eous with the laser measurements) on ocean surface conditions using the
NRL nanosecond radar; it turned out that the radar was not available and

it was not used.

Although a detailed flight test.plan originally had been drawn up for
this experiment, it was later modified as will be discussed, to be consis-

tent with final planning practicalities.

Figuré 3.10 shows the ground traces of the flight test runs planned -
for Hatteras Inlet. It can be seen that one run was planned to be flown

perpendicular to the beach rather than the inlet.  The purpose of this run

s e i s e e o Semalistnad ST 5 AT T

LA i ey L
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was to obtain information on changes in surface conditions to be expected

due to waves moving in to land unaffected by currents, so that this effect

could be accounted for in reducing the data from inlet runms.

. The laser profilometer to be flown was a continuous wave type with an

integration time of twenty (20) milliseconds. At an aircraft ground speed

of 140 knots, this is a minimum spatial resolution of 4.7 ft.

In order to produce reasonable measurements, a wave should be sampled about

four times per wavelength, minimum; thus the minimum wavelength observable re-

liably with the profilometer was about 19 feet. This was judged to be more than

adequate, since minimum wavelengths expected were of the order of 60 feet

A.

15 July Flight

The first experimental flight test was conducted on 15 July,
1974, Although the flight test plan called for measurements to
be made at Ocracoke Inlet, a pre-flight check with persomnel at
Hatteras/Ocracoke revealed that ground measurements of current
velocity and direction were not”possible"éi Ocracoke due to
inability to emplace transits for tracking buoys. Plans to

fly data acquisition runs at Ocracoke were, therefore, abandoned.

At this time,-the requirement for color photographs of
inlet geometry was upgraded to mandatory because field personnel
at Hatteras reported that inlet geography differed greatly from

that shown on charts used in experiment planning.

On the 15th, it had been previously estimated that ebb tide
would peék at 10:00. It was planned that flights should be made
near that time to maximize the probability of good data acquisi-
tion. Because the aircraft was not able to depart Wallops until
almost 8:30 it was necessary to change the sequence of experiments
from that in the test plan and begin measurement runs immediately
upon arrival at Hatteras. The photographic runs planned for |
initial activity were postponed until after completion of laser

data runs.

The aircraft arrived at Hatteras at 9:30 and the first data
run was started at 9:30, after deciding that the plan to conduct
runs symmetrically located about the wind directiom would have to
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be abandoned because the -wind direction was observed to be almost
parallel to the beach front. This caused wind-wave/current inter-

actions to become inseparable from bottom effects on waves.

S&ell was observed to be moving in from about the right di-
rection and it was hoped that the laser would be able to measure
interaction between current flowing from the inlet and swell
waves. Although the wave patterns in the vicinity of the inlet
were observed to be very complex due to interactions between
wind-yaves, swell waves, inlet current and inlet bottom caused
effects, it was decided to go ahead with measurement rumns in
the hope that inlet current/swell wave interaction effects wouid
be observable far enough from the inlet mouth to escape the com—

plications introduced by wind-wave/inlet bottom effects.

The direction of the first run was chosen to be parallel to
. the axis of the inlet channel. This run was flown at an altitude
of 700 feet and ground speed of lﬁ@_kno;s. The ground track
heading was about 162°-and the run was flown about & minutes,
.iwhich is about 9.6 nautical miles. The second run w&s simply

an inbound repeat of the first run. Subsequent runs were made
displaced'30°, then 60° clockwise from tﬁe first two rumns, as

is shown in Figure 3.10.

By the time the in-bound/out-bound set at 60° CW (runs 5
and 6) were complete, the time was 10:20 a.m. It was
then decided that instead of proceeding with the plan to make
runs CCW with respect to run #1, it would be better to repeat
the CW runs since wind direction was on thét side and repetition
of data acquisition attempts needed to be conducted while current

conditions were still good.

This was done, with completion of the repeat of the 60° cw
run set (runs 11 and 12) at 11:05. At this time, runs 13 and 14
were flown 30°CCW from run #1, at a ground track heading of approxi-
mately 134° (and 314°).

Following the completion of this one CCW set of runs, the

planned runs out from and into the beach at a point some 5 to 7

-
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July 15, 1974, Flight Pattern Data

Run No. Begin Lat.. & Long. End Lat. & Long.
1 9:34:35 9:38:37 35°10.8'N 75%45.8'W 35° 1.3'N 75%1.8'w
2 9:41:40 9:46:00  34°59.8'N 75°40.9'W  35°11.6'N 75°45.8'W
3 9:49:00 9:53:07 35°11.6'N 75°%5.4"% 35° 2.6'N 75°48.6'W
4 9:57:05 10:01:08 35° 1.3'N 75%9.3'W | 35°11.8'N 75%46.2'W
5 10:03:37 10:08:37 35°11.8'N 75%46.2'W 35° 8.9'N 75%54.5'W
6 '10:12:11  10:16:45 35° 2.0'N 75°55.9'W 35°12.0'N 75%46.6'W
7 10:19:30 10:23:35 35°12.2'N_75%5.7'W 35° 2.8'N 75%42.2'W
8 10:27:40  10:32:30  35° 0.8'N 75%1.3'W  35°12.3'N 75°45.6'W
9 10:35:43  10:40:11  35°1235°N 75%5.2'w 35° 2.6'N 75°48.0'W
10 10:44:20 10:48:28 35° 1.6'N 75%7.8'W 35°12.5'N 75%5.2'W
11 10:51:30 10:56:05 35°12.7'N 75%5.1'W 35° 4.6'N 75°53.0'W
12 11:00:00 - - 11:04:00 35° 3.8'N 75°52.9% 35%12.7'N 75%45.4'W
13 11:06:35 . 11:10:57 35°12.7'N 75%5.0'W  35° 4.9'N 75°35.5'W
14 11:14:55  11:20:37 35°03.2'N 75933.9'W 35°13.0'N 75%45.4'W
15 11:24:15  11:29:09 35°10.8'N 75%51.1'W 35° 1.8'N 75%1.1'W
16 11:34:56 11:39:00 35° 0.1'N 75%49.6'W 35° 9.3'N 75°54.7'W
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miles SW of Hatteras Inlet along Ocracoke Island were fiown,
again at an altitude of 700 feet. The headings for these were
150° and 3300, approximately. This completed the data acquisi-
tion portion of the flight. Table 1 shows the time, heading,
ground speed, and corrected end point coordinates for all data

runs.

. "During the portions Qf some of these runs when the aircraft
was in the vicinity of the inlet, photographs were made éven
at the high altitude involved in the-hope that a floating buoy

would be observed in relation to a land mass. This did not happen.

After completion of the final data acquisition runm, the air-
craft proceeded to Ocracoke Inlet where photographs were taken
at altitudes of 5,00 and 8,000 feet. Photographs were then
taken at Hatteras Inlet at 8,000 feet altitude, with these com- -
-.pleted-.at 12:15 p.m. The aircraft then returned to Wallops
Flight Center, arriving at 1:15 p.m. .-

The film from the”éef{;i“photographs was delivered to photo
processing and the laser data wasvtaken to NRL to be converted
to digital form and processed. The results obtained are dis-
cussed in Section 3.4.

B. Flight on 17 and 18 October, 1974
A second group of flights was executed on October 17 and 18,
1974, to obtain data during flood conditions at Ocracoke before
the inlet geometry had undergone substantial changes due to winter
storms. The same flight plan as that of the July 15, 1974, test
was essentially adopted.

However, due to an undetected malfunction of éhe laser pro-
filometer, no useful data were collected during these fligﬁts.
Therefore discussions of test results preéented in this report
will be limited to these data obtained on the flight of July 15, 1974.

3.4 Remote Sensing Results

The July 15th flight data were processed at the Naval Research Labora-
tory, Washington, D. C. Since the sea state during this flight was low,
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a number of data anomalies occurred on each run of the fliéht; the laser
profilometer did not provide continuous data. Therefore the single run
data were cut into segments of 28 second duration and only those segments

whiqh were free of anomalies were processed.

Five typical runs are selected for this report. The wave spectra for
selected 28 second segments of these runs are shown in Figures 3.11 through
3.15. Probability density functions (for the surface ﬁeight fluctuations)
for . these same segments are shown in Figures 3.16 through 3.20

From Table 3.1 we see that Run 1 occurred between 0934 and 0939 and
Run 3 occurred between 0949 and 0953. During the time period 0934 and
0953 the wind was approximately 12 knots from 120°. These t&o runs tracked
- sufficiently similar wind and current conditions to allow an inter compari- ~
son on the'basis of theory. Runs 9 and 12 occurred when the wind direction
and magnitude were changing and might be intercompared but should not be
compared with Runs 1 and 3. o

Run 1 is the most encouraging in Eg;mswof~thééfy valuation. Figure
3.11 shows a pronounced spectral”éhaﬁée and increase in energy as one
approaches the inlet. In the inlet case, the water coming out of the mouth
during‘ebb tidé will diverge and hgnce decrease in speed. As a result the
waveienergy should be higher near the inlet and decrease as the distance
from the inlet increases. This is the result shown for Run 1 in Figure 3.11.
As the energy of the wave field increases, the variance of the distribution
of wave heights fncreases. This is clearly evident for Run 1 in Figure 3.16.
However, agreement-between theoretical predictions and the observed
spectral and density function cannot be made quantitative. At this time
it is not possible to locate the geographic wavemakers corresponding to each
28 second data segment. These locations determinations are crucial because
of the complex bottom topography and current distributiqns in the Hatteras

Inlet area.

While the data from Run 1 are encouraging, the data from Run 3 are not
so easily explained. The first data seément analyzed, océurring farthest
from the inlet has a peak value of approximately 2 ft.lez occurring at
«35 Hz. The spectrum for the farthest position in Run 1 had a peak value
of less than one ft.z/Hz,occurring at approximately 0.6 Hz. It is likely
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ft.2/Hz .
5 _ Co T e |
. . ( \l : : Run # 13 - .
l ] - ——@swu-zal ft.
/‘, ‘ S ——@swn =2.98 ft.
4- A; ! . ' ‘ . . . .
.'3~
2 L
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0

. Figure 3.15. Frequency spectra measured by laser profilometer-for Run No. 13.
' Numbers in circles increase as the distance gets smaller to the inlet.
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that the first spectrum for Run 1 was taKen at a considerably greater dis-
tance from the inlet mouth than was the first spectrum of Run 3. Neverthe-
 less as one approaches the inlet the spectra for Both runs peak at about
.35 hertz although the peak value of Run I is almost twice the peak value
of Run 3. It may be that this period, (.35)”l seconds, is a consequence

of the bottom topography as well as current effects. In view of our in-
ability to locate the positions appropriate to egch 28 second data segment
and the complex current distribution and bottom topography, it does not

seem fruitful to attempt further inter comparisons between Runs 1 and 3.

~ Notwithstanding these shortcomings, Run 1 -will be discussed in more
detail to provide evidence of feasibility of the use of wave-current inter-
actions as a means of measuring current. The reasons for picking this set
of data are as follows: (1) Run 1 is along the axis of the inlet where the
current is strongest and the direction of the current is well defined as )
indicated by the buoy Studies; (2) by the theory of wave-current inter-
actions discussed in Chapter 2, the waves along this path éhould turn suf-
ficiently so that the wave vec;q;,will'béugléést parallel to the current
on the axis of the inlet. If this happened, the flight path will be along
the wave vector at least for a short distance; (3) from this Run alome,
fivé 28-second segments were chosen, so that the data from this run were
the most dense and cbmplete. Spectra changes along this path are shown
in Figure 3.11. - The lowest curve represents the sea state farthest from
the inlet while the higheét represents that nearest to the inlet. A dif-
ferent way to present the spectra is shown in Figure 3.21. The energy
spectra indicate the change due to current conditions. The spectral form
. also roughly indicéted saturation in the higher frequency range as pre-

dicted by a previous report (Huang, et al. 1972) and Phillips (1966).

The probability density functions in Figure 3.16 show the same trend
as discussed in Section 2.3. It should be poiﬂted out that the maximum
‘readings of the probability demnsity function curves are considerably lower
than the theoretically predicted values under the giveﬁ wind and current
conditions. This is probably due to the sensitivity of the instrument
used. .The theoretical curves shown in Figures 2.9 through 2.12 were cal-
culated with a‘short wavelength cut off value of 1 ft., while the smallest

wave that the laser profilometer was capable of measuring was calculated

.
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Figure 3.21. Frequency spectra of Run No. 1 on log scale.
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in the previous section to be around 20 ft. in length; This difference

is substantial, but the discrepency was expected.

The trend of the events observed, however, is extremely encouraging.
The technique of the use of wave-current interaction as a means of making
current measurements has also received independent support from a study
by Parson (1974). 1In that study AGC samples from the SKYLAB S-193 alti-
meter were processed. Strong correlations between the signal strength and

the locations of the major current system were found.

Additional studies are needed to investigate and validate both these
methods and to establish the quantitative relationships needed for opera-

tional use of either.

4.0 CONCLUSIONS AND RECOMMENDATIONS

4.1 Conclusion

From this study, it has been established qqa%itatively that wave-
current interactions can be used_tq_detect‘éhiré;ts at the regions where
strong current gradients exist.w This method offers an alternative remote
sensing method of detecting ocean current, which differs from those used
previously in scatterometery, altimetry, laser wave profiling and air-borme
short-pulse radar, but which can be applied to data collected by one or all
of these. The experiments conducted during the period of this study
were not intensive enough to establish the required quantitative relation-
ships. Furthermore, only one of the above mentioned instruments was used.
Though the principle of using wave-current interactions has been established
. to a certain-extent in theory and in laboratory experiments, the technique
is still not fully developed and has not yet been completely proven. Con-
siderably more data are required to establish the quantitative relationships
needed to be able to use this method of current detection operationally.

The results from the present stud& offer a start in this direction, and

have proven to be invaluable as a precursor to improved future efforts.

4.2 Recommendation

A number of shortcomings became obvious during this study. The follow-

ing suggestions are made to help in avoiding some of them in future studies.
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Add time scale in data recordings. °

In the laser recording system, a time scale will have to be
build in so that the exact geogfaphic location of the data points
can be established. This is crucial especially in the strong
current gradient cases where a small error in locations can change
the associated current value substantially, The development of

quantitative relationships will require exact current values as

a crucial input.

Incorporate flight directions relative to wave vector other than
parallel in the laser data reduction program.

The present laser data reduction program-is written based
on the assumption that waves and wind are always propagating in
the same direction; i.e. the sea is assumed to be a one—&imensional
random surface. This assumption is obviously not true as discus-
sed by Phillips (1966). Even if the one-dimensional sea state
is accepted as an approximation, the fligpp angle relative to
thé wave vector still hayg toAbe'cbnéidefed in data reduction.
Also, the platform on which the laser profilometer is mounted
is moving. This motion should also be considered. Probably a
scanning laser surface contour profilometer should be used in-

stead of the present single axis profiler.

Additional calculations of the pfobability density function, with
cut off wave length compatible with that of the laser profilo-
meter.-.

The.present theoretical curves are generated by using a
short wavelength cutoff of 1 ft. in length, but the laser pro-
filometer can only measure waves longer than 20 ft. New curves
have to be generated, especially if a scanning laser profilo-
meter will be used. 1In the scanning mode, the laser spot will
move much faster and the'sensitiVity will decrease accordingly.
The discrepancy with the present theoretical results may thus

become even larger.
More field experiments.

The whole concept of using wave-current-interaction as a

Y aaieath Nt el )
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means of current detection is new. It needs considerably more
measurements for verification, with various instruments such as
scatterometer, radiometer, altimeter, air-borne laser profilo-
meter and nanosecond radar. Each of the instruments will measure
the same phenomenon with a different emphasis. With data from
all these, a complete picture can be constructed. Different
instruments will also offer a cross check of the results so

that a definitive quantitative relationship can be established
with confidence for operational use.
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Part I1 ~ Remote Sensing of Ocean Currents by Backscattering Cross Section

Measurements
1.0 INTRODUCTION

‘In Part I of this report, it was theoretically and experimentally dem-
onstrated that currents affect a change in the probability density function
of the height of the surface waves. This alteration arose because of a
change in the mean-square height of the waves. Since the probability den-
sity function of the wave elevation has a direct effect on the average
return waveform detected by a downward-looking short pulse radar, such an
instrument can be used to determine the presence and, conceivably, the mag-
nitude of currents. However, in order to evaluate the sensitivity of the wave-
form technique relative to ocean current sensing, it would be necessary to carry
out a very detailed study of the trade-offs between transmitted pulse width,
pulse repetition frequency, averaging time and surface roughness homogenity
similar to that conducted by Miller and Brown (1974). While such a study
is definitely essential to future work on Temote sensing of currents, it

was felt to be beyond the scope ofvthe'ﬁfésént effort.

Large scale ocean currents are, in addition, known to alter the local
geoidal height and also influence the backscattering cross section of the
ocean surface. Since the effects of currents on geoidal height are pre-
sently being studied elsewhere, it was decided to direct this study toward
quantizing the influence of currents on the surface backscattering cross
section or 0°. Of all the consequences of ocean currents previously men-
tioned, the measurement of 0° is probably the easiest to accomplish. However,
it is the purpose of this material to determine whether the influence of

currents on 0° is truly detectable or merely a second order effect.

The basis for this effort is formed by the work of Huang, et al. (1972)
in which the effects of ocean currents on the one-dimensional wave height
spectrum and the mean squared slope were determined. In this report, we
use these results to calculate the effect of currents on 0° for both large
angles of incidence and normal incidence and to determine the feasibility

of using such a measurement as a current sensor.

Before contihuing, however, it should be pointed out that the éheory
developed by Huang, et al. (1972) is applicable only to the so-called "gravity
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wave" range of the wave height spectrum. Furthermore, there is no justi-
fication for attempting to extend this theory into the capillary range of
the spectrum. This limitation will impose some rather severe restrictions
upon our analysis of the effects of currents on 0°; however, until the effects
of cﬁrrent on the capillary range are more completely known, these restrictions

must be understood and tolerated.

2.0 THE EFFECT OF CURRENTS UPON 0° FOR LARGE ANGLES OF INCIDENCE

For large angles of incidence (6 >45°), the backscattering cross sec-

tion is determined by those suxface waves which satisfy the Bragg condition,’
i.e..

Arf = — sin® , (2.1)

where Arf is the wavelength of the radar, 0 is thgl§ngle of‘i;cidence and
k is the wavenumber of the ocean wave. Because of antenna aperture limita-
tions and resolution requirements;'it is desirable to “"select" a value of
k which yields a minimum radar wavelength. Quite obviously from equation

(2.1) this can be accomplished if k is maximized.

If k is to be ﬁade large, then this implies that the radar wavelength
will be in resonance with a ocean wavenumber in the so-called equilibrium
range of the surface heighﬁ spectrum. Using Huang's results for the effect
of current on the spectrum in the equilibrium range, we find that the ratio

of 0° including current to 0° for no current is given by

-7

o°(U)  _ 207k } 2.2
o° (U=0) { o 1+ [1+4U&7g]1/2 '( )

where g=9.8 m/seéz.' In order to maximize the sensitivity of o°(U)/0°(U=0)
to changes in U, we note by inspection of equation (2.2) that this can be
done by "selecting" the maximum value of k. Hence, both the requirement

to migimize Arf and to maximize the sensitivity of o°(U)/O°(U=0) are satis-
fied by "selecting the largest possible value of k.



-60-~

Unfortunately, we are not at liberty to arbitrarily “'select" k since
thefe are two other conditions which must be satisfied. These conditions
are imposed by; (1) the spectral isotropy assumption implicit in equation
(212); and (2) the requirement that we not exceed the sﬁectral range for
which gravity waves are dominant (a condition imposed by the limitation of

Huang's analysis to the gravity wave region).

In equation (2.2), we have assumed that we are dealing with ocean
wavenumbers for which the waves spread isotropically. This assumption was
made for two reasons; the first of which is that our knowledge of the direc-
tional characteristics of the spectrum is rather poor and, thus, ;bat part
of the spectrum which is not isotropic should be avoided. A second reason
is that in order to sense ocean currents, a flight path perpendicular to
the current would be chosen so that as the craft crossed the current boun-
dary a rapid change in radar cross section would define the position of the
current interface., For this geometry, we would want to observe (with the
radar) those waves which can propagate at large angles from the wind direc-
tion; in other words we must res;rict-our”itiéntion to isotropic waves.
Based on an analysis of the results of.measurements by Longuet-Higgins,
et al. (1963), Miller, et al. (1972) have concluded that isotropic waves are

(conservatively) defined by the following:

0.03 wk > 1 (2.3)

where w is the wind speed in meters/sec and k is the wavenumber in l/meters.

Equation (2.3) defines the condition imposed by the isotropy assumptionm.

As noted previously, Huang's theory on current-wave interaction is only
valid in the gravity wave region of the spectrum. Based on Cox and Munk's
(1954a) measurements of oil slick damped waves, Huang, et al. (1972) have
concluded that a cutoff wavenumber equal to 20.9 m-l (Xc==0.3m) is a rea-

sonable upper bound on the validity of their énalysis. Thus, we must satisfy

k < 20.9 o+ (2.4)
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wWith 20.9 mfl as the maximum permissible value of k, we determine
that the results of this analysis are valiﬂ provided w>7.3 m/sec (equa-
tion (2.3)). Furthermore, we see from equation (2.1) that the radar wave-
length and angle of incidence are pair-wise uniquely determined; permissible
values of angle of incidence and radar operating frequency are given in
Table I.

TABLE I

Pairwise values of angle of incidence and frequency which satisfy the

Bragg condition for k = 20.9 m-l.

8 (degrees) ‘., o)
- | 706 |
- 651
p 609 7T
60 - o

Using k = 20.9 nrl in equation (2.2) will yield the maximum sensitiv-
ity of c°(U)/o°(U=0) to current since 20.9 m-l is the maximum permissible
value of k. A plot of the dependence of ¢°(U)/0°(U=0) upon current is shown
in Figure 2.1. When U is positive, the wind and current directions are .par-
allel; when U is negative, the wind and current'directions are anti-parallel.
For U<-0.2, the surface waves are evanescent and the analysis is no longer

valid since the waves do not propagate.

An inspection of Figure 2.1 clearly indicates that the large angle of
incidence backscattering cross—-section is a very sensitive function of cur-
rent speed and direction. Furthermore, we note that the relationship between
current and cross section is independent of wind speed (a consequence of the
equilibrium spectrum) and is strictly monotonic. Thus, a measurement of ¢°
should result in a : nonambiguous measure of the current. In theory, at least,
this analysis indicates that the Bragg scatter geometry is a very suitable

configuration for detecting current changes.
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o°(U)
o°(U=0)
(dB) _
- WIND SPEED > 7.3 m/sec
: (See Table I for permissible
4 - angles of incidence and radar
frequency)
0 4
- 4
- 8-
-12 4
-16
-20 =T T T T T T T T B =
-0.2 0 0.2 0.4 0.6 0.8 1.0

CURRENT SPEED (m/sec)

Figure 2.1. Dependence of wide angle of incidence backscattering

cross~section upon current.
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From a practical standpoint, there is some question as to the suitabil-
ity of the relatively low radar frequency to aircraft operation. Further-
more, the 18 dB decrease in 0° for a parallel 1 m/sec current would surely
require a very sensitive receiver since the resultant signal-to-noise

ratio may be less than 0 dB.

3.0 THE EFFECT OF CURRENTS UPON 06 AT NORMAL INCIDENCE

For normal incidence (8=0), the backscattering cross section of the
ocean surface is related to the wave height spatial autocorrelation func-

tion pn(r) through the following equation;

, -]
o en?(r |2 [ -16ni(n /A_)P(l-p_(0)]
g = ———;5——-
rf

rdr (3.1)

where Ro is the Fresnel reflectiog_coefficighéxat 8=0° and hi is the mean
squared height of_the waves. Under the assumption that pn(r) is analytic

~at r=0 and that the integrand decays very rapidly as r departs from zero,

we can expand pn(r) in a two-term power series about r=0, i.e.

2
' 3"p_(r)

~ 1_™m ° 2
pn(r) = pn(O) + 3 ar2 T .

r=0

(3.2)

Substituting (3.2) in (3.1) and noting that the mean squared slope is defined
by. '

(3.3)
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we find that the approximate value of o° for 8=0° is given as follows;

(3.4)

For ocean surface backscattering applications, there is an inherent problem
with equation (3.4). This problem is due to the fact that the mean squared
slope is dominated by the high wavenumber portion of the waveheight spectrum
(about which very little is known). In fact, if we assume that the spectrum
has ﬁhe Phillips behavior, i.e. w(k)-'k-a for k large, then the mean squared
slope becomes infinite as k-*®. For this reason, it is necessary to intro-
duce the concept of cutoff wavenumber beyond which the spectrum decays

much more rapidly than kfa. However, fof an asymptotic k_A spectral behav-~
ior, the mean squared slope is a veri sensitive function of the cutoff

wavenumber. . e T

In view of equétion (3.4), iEnwould appear thét if si is sensitive to
the cuttoff wavenumber (kc) then 0° is also semsitive to kc. However, such
reasoning is not correct because equation (3.4) is a mathematical simpli-~
fication of the more fundamental expression for ¢°, namely, equation (3.1).
In fact, Miller, et al. (1972) have found that for a Pierson-Moskowitz-—
Phillips spectral form, a determination of G° using (3.1) is insensitive to
kc for kc2‘100 m-l while values for o° obtained from (3.4) show an increased

sensitivity.

The primary reason for reviewing the dependence of G° at normal inci-

dence upoh si is to point out that this relationship is an approximation

which can lead to erroneous conclusions. Therefore, extreme care should be

exercised in relating ¢°, si and spectral. cutoff wavenumbers.

Because the theory developed by Huang for current-wave interaction is
limited to the gravity wave range only, we note that it is inadequate to
permit a determination of the effect of currents on 0° at normal incidence.
This observation is a consequence of the fact that we require the complete

spectrum in order to compute pn(r) as required in equation (3.1), or, for

N
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that matter, to compute si as required ian (3.4). As a result 6f this limi-
tation, we can only very crudely estimate the effgct of currents on the

normal incidence backscattering cross section. Only after the oceanographic
analysis is extended into the capillary range of the spectrum, can we accu-

rate ete ne e sensit v1ty (o] [o) at norma mc ence 0O currents.
ly determine th itivi f g° at 1 incid t } t

To estimate the effect of currents on 0°, we will use the results
derived by Huang fqr si in conjunction with equqtion (3.4). In order to
not violate the gravity wave assumptions implicit in Huang's analysis, we
will take the cutoff wavenumber to be 20.9 nf-l (kc==0.3 m). As noted above,
this value is felt to be somewhat conservative, i.e., actual values will
probably be larger. As will be shown below, as kc increases so does the
sensitivity of ¢°(U) to curremt changes; thus, the results presented here

. should be considered to be a lower bound estimate of the sensitivity of ¢°

to current changes.

. From equatien (3.4), the ratio of o°(U) to 0°(U=0) is given by

R
e T

2
. 6° (U) o Sm(U-O)
c° (U=0)

si(u) (3.5)

Huang, et al. (1972) have derived the following relationships for si(U=O)
2 o : : :
and sm(U),

si(U=O) =B log(kcwzlg) (3.6)

and



-66-—

2, v A 15(2 2)
U) =2B{ln |[———) + 6(X~-Y) - =—|X"-¥
s2(0) (mfgn:) 6D - 3

3 4

() ) o )

L 1({.6 6
_”E(X'Y) , (3.7)

where B 1s the equilibrium fange spectral constant (4.051:10-3) and

= U
x°

oYU
U+ /g?kc I -

A plot of 0°(U)/o°(U=0) is shown in Figure 3.1 as a function of current

and wind speed. The same directional convention for U and w as was used
for the Bragg scatter coﬁputation is used here. We note from Figure 3.1
that the normal incidence case is not as sensitive to current as the Bragg
scatter geometry. However; it should be noted that Figure 3.1 represents
the most pessimistic estimate of the sensitivity of o°(U)/o°(U=0) for nor-
mal incidence to durrent while the same curve for the Bragg scatter case is
optimistic. That is, actual cross—section measurements may show that the’
sensitivities of c°(U)/c°(U=0), for both normal and wide angles of incidence,
to changes in current are more comparable than is indicated in Figures 2.1
and 3.1.

Another point to note in Figure 3.1 1s the dependence of ¢°(U)/0°(U=0)
on wind speed. Thus, in order to relate changes in ¢°(U)/0°(U=0) to the
magnitude of current we would require some a priori knowledge about the wind
speed so that we know which of the curves we are to use in Figure 3.1. Such
a measure of wind speed may be obtainable from the waveform recorded by a

short pulse normal incidence radar so this is not a totally defeating objection.

-~
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From a practical standpoint, the near normal incidence measurement
would seem to be more feasible in terms of satellite senmsors since high
gain antennas can be used because the radar frequency may be made very high.
In addition, for parallel wind and current, the influence of current will
increase the signal-to-noise ratio over the no current condition. There~
fore, whereas the Bragg scatter result yields a greater sensitivity, the
variancerf the measurement may be large due to low signél-to-noise ratio.
For normal incidence measurements, the sensitivity may be somewhat smaller
but the variance of the measurement will aiso be small due to the high
signal-to-noise ratio. Thus, we conclude that the normal incidence measure-
ment may be‘as good a sensor of current as the Bragg scatter measurement

when practical considerations are properly accounted for.

The results of;the.analysis presented hereﬁdefinitely justify an ex-
perimental program to determine if curreﬁts can be detected through cross
(section measurements. Existing equipment such‘as the NRL four-frequency
radar and the NRL nanosecond radar could provide both-wide aﬂgle and nor-
mal incidence backscattering measurements: It is strongly recommended

that such an experimental program be initiated.
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