6 research outputs found

    Multiuser Parallel Transmission with 1-tap Time Domain Beamforming by Millimeter Wave Massive Antenna Arrays

    Get PDF
    This paper investigates the feasibility of multiuser parallel transmission by sub-array beamforming using millimeter wave bands in which the Line-of-Sight (LoS) dominant channel environment is expected. Focusing on high beamforming gain provided by the massive antenna array, each sub-array conducts first eigenmode transmission and thus one stream is allocated per user without null steering. This paper also proposes 1-tap time domain beamforming (TDBF) as the same weight is applied to all frequency components. It reduces computation complexity as well as suppressing the effect of additive noise on weight derivation. Computer simulation results show that increasing the subarray spacing stably improves signal-to-interference power ratio (SIR) performance and that the proposed 1-tap TDBF can match the performance of the frequency domain first eigenmode transmission as a rigorous solution

    Frequency Domain Backoff for Continuous Beamforming Space Division Multiple Access on Massive MIMO Wireless Backhaul Systems

    Get PDF
    This paper newly proposes a frequency domain backoff scheme dedicated to continuous beamforming space division multiple access (CB-SDMA) on massive antenna systems for wireless entrance (MAS-WE). The entrance base station (EBS) has individual base band signal processing units for respective relay stations (RSs) to be accommodated. EBS then continuously applies beamforming weight to transmission/reception signals. CB-SDMA yields virtual point-to-point backhaul link where radio resource control messages and complicated multiuser scheduling are not required. This simplified structure allows RSs to work in a distributed manner. However, one issue remains to be resolved; overloaded multiple access resulting in collision due to its random access nature. The frequency domain backoff mechanism is introduced instead of the time domain one. It can flexibly avoid co-channel interference caused by excessive spatial multiplexing. Computer simulation verifies its superiority in terms of system throughput and packet delay

    Behavior of a Multi-User MIMO System in Time-Varying Environments

    Get PDF
    We evaluated the behavior of a multi-user multiple-input multiple-output (MIMO) system in time-varying channels using measured data. A base station for downlink or broadcast transmission requires downlink channel state information (CSI), which is outdated in time-varying environments and we encounter degraded performance due to interference. One of the countermeasures against time-variant environments is predicting channels with an autoregressive (AR) model-based method. We modified the AR prediction for a time division duplex system. We conducted measurement campaigns in indoor environments to verify the performance of the scheme of channel prediction in an actual environment and measured channel data. We obtained the bit-error rate (BER) using these data. The AR-model-based technique of prediction assuming the Jakes' model was found to reduce BER. Also, the optimum AR-model order was investigated by using the channel data we measured

    Behavior of a Multi-User MIMO System in Time-Varying Environments

    No full text

    Behavior of a Multi-User MIMO System in Time-Varying Environments

    No full text
    corecore