4,709 research outputs found

    A human performance modelling approach to intelligent decision support systems

    Get PDF
    Manned space operations require that the many automated subsystems of a space platform be controllable by a limited number of personnel. To minimize the interaction required of these operators, artificial intelligence techniques may be applied to embed a human performance model within the automated, or semi-automated, systems, thereby allowing the derivation of operator intent. A similar application has previously been proposed in the domain of fighter piloting, where the demand for pilot intent derivation is primarily a function of limited time and high workload rather than limited operators. The derivation and propagation of pilot intent is presented as it might be applied to some programs

    Towards an Expert System for the Analysis of Computer Aided Human Performance

    Get PDF

    Ocular attention-sensing interface system

    Get PDF
    The purpose of the research was to develop an innovative human-computer interface based on eye movement and voice control. By eliminating a manual interface (keyboard, joystick, etc.), OASIS provides a control mechanism that is natural, efficient, accurate, and low in workload

    Human Performance Contributions to Safety in Commercial Aviation

    Get PDF
    In the commercial aviation domain, large volumes of data are collected and analyzed on the failures and errors that result in infrequent incidents and accidents, but in the absence of data on behaviors that contribute to routine successful outcomes, safety management and system design decisions are based on a small sample of non- representative safety data. Analysis of aviation accident data suggests that human error is implicated in up to 80% of accidents, which has been used to justify future visions for aviation in which the roles of human operators are greatly diminished or eliminated in the interest of creating a safer aviation system. However, failure to fully consider the human contributions to successful system performance in civil aviation represents a significant and largely unrecognized risk when making policy decisions about human roles and responsibilities. Opportunities exist to leverage the vast amount of data that has already been collected, or could be easily obtained, to increase our understanding of human contributions to things going right in commercial aviation. The principal focus of this assessment was to identify current gaps and explore methods for identifying human success data generated by the aviation system, from personnel and within the supporting infrastructure

    Dynamic task allocation: Issues for implementing adaptive intelligent automation

    Full text link

    Brain-wave measures of workload in advanced cockpits: The transition of technology from laboratory to cockpit simulator, phase 2

    Get PDF
    The present Phase 2 small business innovation research study was designed to address issues related to scalp-recorded event-related potential (ERP) indices of mental workload and to transition this technology from the laboratory to cockpit simulator environments for use as a systems engineering tool. The project involved five main tasks: (1) Two laboratory studies confirmed the generality of the ERP indices of workload obtained in the Phase 1 study and revealed two additional ERP components related to workload. (2) A task analysis' of flight scenarios and pilot tasks in the Advanced Concepts Flight Simulator (ACFS) defined cockpit events (i.e., displays, messages, alarms) that would be expected to elicit ERPs related to workload. (3) Software was developed to support ERP data analysis. An existing ARD-proprietary package of ERP data analysis routines was upgraded, new graphics routines were developed to enhance interactive data analysis, and routines were developed to compare alternative single-trial analysis techniques using simulated ERP data. (4) Working in conjunction with NASA Langley research scientists and simulator engineers, preparations were made for an ACFS validation study of ERP measures of workload. (5) A design specification was developed for a general purpose, computerized, workload assessment system that can function in simulators such as the ACFS

    Classification and reduction of pilot error

    Get PDF
    Human error is a primary or contributing factor in about two-thirds of commercial aviation accidents worldwide. With the ultimate goal of reducing pilot error accidents, this contract effort is aimed at understanding the factors underlying error events and reducing the probability of certain types of errors by modifying underlying factors such as flight deck design and procedures. A review of the literature relevant to error classification was conducted. Classification includes categorizing types of errors, the information processing mechanisms and factors underlying them, and identifying factor-mechanism-error relationships. The classification scheme developed by Jens Rasmussen was adopted because it provided a comprehensive yet basic error classification shell or structure that could easily accommodate addition of details on domain-specific factors. For these purposes, factors specific to the aviation environment were incorporated. Hypotheses concerning the relationship of a small number of underlying factors, information processing mechanisms, and error types types identified in the classification scheme were formulated. ASRS data were reviewed and a simulation experiment was performed to evaluate and quantify the hypotheses

    Technical Workshop: Advanced Helicopter Cockpit Design

    Get PDF
    Information processing demands on both civilian and military aircrews have increased enormously as rotorcraft have come to be used for adverse weather, day/night, and remote area missions. Applied psychology, engineering, or operational research for future helicopter cockpit design criteria were identified. Three areas were addressed: (1) operational requirements, (2) advanced avionics, and (3) man-system integration

    A situation-response model for intelligent pilot aiding

    Get PDF
    An intelligent pilot aiding system needs models of the pilot information processing to provide the computational basis for successful cooperation between the pilot and the aiding system. By combining artificial intelligence concepts with the human information processing model of Rasmussen, an abstraction hierarchy of states of knowledge, processing functions, and shortcuts are developed, which is useful for characterizing the information processing both of the pilot and of the aiding system. This approach is used in the conceptual design of a real time intelligent aiding system for flight crews of transport aircraft. One promising result was the tentative identification of a particular class of information processing shortcuts, from situation characterizations to appropriate responses, as the most important reliable pathway for dealing with complex time critical situations

    Application of an AIS to the problem of through life health management of remotely piloted aircraft

    Get PDF
    The operation of RPAS includes a cognitive problem for the operators(Pilots, maintainers, ,managers, and the wider organization) to effectively maintain their situational awareness of the aircraft and predict its health state. This has a large impact on their ability to successfully identify faults and manage systems during operations. To overcome these system deficiencies an asset health management system that integrates more cognitive abilities to aid situational awareness could prove beneficial. This paper outlines an artificial immune system (AIS) approach that could meet these challenges and an experimental method within which to evaluate it
    corecore