46,957 research outputs found

    Smoothing and mean-covariance estimation of functional data with a Bayesian hierarchical model

    Get PDF
    Functional data, with basic observational units being functions (e.g., curves, surfaces) varying over a continuum, are frequently encountered in various applications. While many statistical tools have been developed for functional data analysis, the issue of smoothing all functional observations simultaneously is less studied. Existing methods often focus on smoothing each individual function separately, at the risk of removing important systematic patterns common across functions. We propose a nonparametric Bayesian approach to smooth all functional observations simultaneously and nonparametrically. In the proposed approach, we assume that the functional observations are independent Gaussian processes subject to a common level of measurement errors, enabling the borrowing of strength across all observations. Unlike most Gaussian process regression models that rely on pre-specified structures for the covariance kernel, we adopt a hierarchical framework by assuming a Gaussian process prior for the mean function and an Inverse-Wishart process prior for the covariance function. These prior assumptions induce an automatic mean-covariance estimation in the posterior inference in addition to the simultaneous smoothing of all observations. Such a hierarchical framework is flexible enough to incorporate functional data with different characteristics, including data measured on either common or uncommon grids, and data with either stationary or nonstationary covariance structures. Simulations and real data analysis demonstrate that, in comparison with alternative methods, the proposed Bayesian approach achieves better smoothing accuracy and comparable mean-covariance estimation results. Furthermore, it can successfully retain the systematic patterns in the functional observations that are usually neglected by the existing functional data analyses based on individual-curve smoothing.Comment: Submitted to Bayesian Analysi

    Semiparametric Bayesian inference in multiple equation models

    Get PDF
    This paper outlines an approach to Bayesian semiparametric regression in multiple equation models which can be used to carry out inference in seemingly unrelated regressions or simultaneous equations models with nonparametric components. The approach treats the points on each nonparametric regression line as unknown parameters and uses a prior on the degree of smoothness of each line to ensure valid posterior inference despite the fact that the number of parameters is greater than the number of observations. We develop an empirical Bayesian approach that allows us to estimate the prior smoothing hyperparameters from the data. An advantage of our semiparametric model is that it is written as a seemingly unrelated regressions model with independent normal-Wishart prior. Since this model is a common one, textbook results for posterior inference, model comparison, prediction and posterior computation are immediately available. We use this model in an application involving a two-equation structural model drawn from the labour and returns to schooling literatures

    Hyperparameter Estimation in Bayesian MAP Estimation: Parameterizations and Consistency

    Get PDF
    The Bayesian formulation of inverse problems is attractive for three primary reasons: it provides a clear modelling framework; means for uncertainty quantification; and it allows for principled learning of hyperparameters. The posterior distribution may be explored by sampling methods, but for many problems it is computationally infeasible to do so. In this situation maximum a posteriori (MAP) estimators are often sought. Whilst these are relatively cheap to compute, and have an attractive variational formulation, a key drawback is their lack of invariance under change of parameterization. This is a particularly significant issue when hierarchical priors are employed to learn hyperparameters. In this paper we study the effect of the choice of parameterization on MAP estimators when a conditionally Gaussian hierarchical prior distribution is employed. Specifically we consider the centred parameterization, the natural parameterization in which the unknown state is solved for directly, and the noncentred parameterization, which works with a whitened Gaussian as the unknown state variable, and arises when considering dimension-robust MCMC algorithms; MAP estimation is well-defined in the nonparametric setting only for the noncentred parameterization. However, we show that MAP estimates based on the noncentred parameterization are not consistent as estimators of hyperparameters; conversely, we show that limits of finite-dimensional centred MAP estimators are consistent as the dimension tends to infinity. We also consider empirical Bayesian hyperparameter estimation, show consistency of these estimates, and demonstrate that they are more robust with respect to noise than centred MAP estimates. An underpinning concept throughout is that hyperparameters may only be recovered up to measure equivalence, a well-known phenomenon in the context of the Ornstein-Uhlenbeck process.Comment: 36 pages, 8 figure

    Multimodal nested sampling: an efficient and robust alternative to MCMC methods for astronomical data analysis

    Full text link
    In performing a Bayesian analysis of astronomical data, two difficult problems often emerge. First, in estimating the parameters of some model for the data, the resulting posterior distribution may be multimodal or exhibit pronounced (curving) degeneracies, which can cause problems for traditional MCMC sampling methods. Second, in selecting between a set of competing models, calculation of the Bayesian evidence for each model is computationally expensive. The nested sampling method introduced by Skilling (2004), has greatly reduced the computational expense of calculating evidences and also produces posterior inferences as a by-product. This method has been applied successfully in cosmological applications by Mukherjee et al. (2006), but their implementation was efficient only for unimodal distributions without pronounced degeneracies. Shaw et al. (2007), recently introduced a clustered nested sampling method which is significantly more efficient in sampling from multimodal posteriors and also determines the expectation and variance of the final evidence from a single run of the algorithm, hence providing a further increase in efficiency. In this paper, we build on the work of Shaw et al. and present three new methods for sampling and evidence evaluation from distributions that may contain multiple modes and significant degeneracies; we also present an even more efficient technique for estimating the uncertainty on the evaluated evidence. These methods lead to a further substantial improvement in sampling efficiency and robustness, and are applied to toy problems to demonstrate the accuracy and economy of the evidence calculation and parameter estimation. Finally, we discuss the use of these methods in performing Bayesian object detection in astronomical datasets.Comment: 14 pages, 11 figures, submitted to MNRAS, some major additions to the previous version in response to the referee's comment
    corecore