11 research outputs found

    Bayesian Quantile Regression for Single-Index Models

    Full text link
    Using an asymmetric Laplace distribution, which provides a mechanism for Bayesian inference of quantile regression models, we develop a fully Bayesian approach to fitting single-index models in conditional quantile regression. In this work, we use a Gaussian process prior for the unknown nonparametric link function and a Laplace distribution on the index vector, with the latter motivated by the recent popularity of the Bayesian lasso idea. We design a Markov chain Monte Carlo algorithm for posterior inference. Careful consideration of the singularity of the kernel matrix, and tractability of some of the full conditional distributions leads to a partially collapsed approach where the nonparametric link function is integrated out in some of the sampling steps. Our simulations demonstrate the superior performance of the Bayesian method versus the frequentist approach. The method is further illustrated by an application to the hurricane data.Comment: 26 pages, 8 figures, 10 table

    Penalized single-index quantile regression

    Get PDF
    This article is made available through the Brunel Open Access Publishing Fund. Copyright for this article is retained by the author(s), with first publication rights granted to the journal. This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).The single-index (SI) regression and single-index quantile (SIQ) estimation methods product linear combinations of all the original predictors. However, it is possible that there are many unimportant predictors within the original predictors. Thus, the precision of parameter estimation as well as the accuracy of prediction will be effected by the existence of those unimportant predictors when the previous methods are used. In this article, an extension of the SIQ method of Wu et al. (2010) has been proposed, which considers Lasso and Adaptive Lasso for estimation and variable selection. Computational algorithms have been developed in order to calculate the penalized SIQ estimates. A simulation study and a real data application have been used to assess the performance of the methods under consideration

    Metropolis-Hastings within Partially Collapsed Gibbs Samplers

    Full text link
    The Partially Collapsed Gibbs (PCG) sampler offers a new strategy for improving the convergence of a Gibbs sampler. PCG achieves faster convergence by reducing the conditioning in some of the draws of its parent Gibbs sampler. Although this can significantly improve convergence, care must be taken to ensure that the stationary distribution is preserved. The conditional distributions sampled in a PCG sampler may be incompatible and permuting their order may upset the stationary distribution of the chain. Extra care must be taken when Metropolis-Hastings (MH) updates are used in some or all of the updates. Reducing the conditioning in an MH within Gibbs sampler can change the stationary distribution, even when the PCG sampler would work perfectly if MH were not used. In fact, a number of samplers of this sort that have been advocated in the literature do not actually have the target stationary distributions. In this article, we illustrate the challenges that may arise when using MH within a PCG sampler and develop a general strategy for using such updates while maintaining the desired stationary distribution. Theoretical arguments provide guidance when choosing between different MH within PCG sampling schemes. Finally we illustrate the MH within PCG sampler and its computational advantage using several examples from our applied work

    Posterior Inference in Bayesian Quantile Regression with Asymmetric Laplace Likelihood

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/135059/1/insr12114.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/135059/2/insr12114_am.pd

    Additive Multi-Index Gaussian process modeling, with application to multi-physics surrogate modeling of the quark-gluon plasma

    Full text link
    The Quark-Gluon Plasma (QGP) is a unique phase of nuclear matter, theorized to have filled the Universe shortly after the Big Bang. A critical challenge in studying the QGP is that, to reconcile experimental observables with theoretical parameters, one requires many simulation runs of a complex physics model over a high-dimensional parameter space. Each run is computationally very expensive, requiring thousands of CPU hours, thus limiting physicists to only several hundred runs. Given limited training data for high-dimensional prediction, existing surrogate models often yield poor predictions with high predictive uncertainties, leading to imprecise scientific findings. To address this, we propose a new Additive Multi-Index Gaussian process (AdMIn-GP) model, which leverages a flexible additive structure on low-dimensional embeddings of the parameter space. This is guided by prior scientific knowledge that the QGP is dominated by multiple distinct physical phenomena (i.e., multiphysics), each involving a small number of latent parameters. The AdMIn-GP models for such embedded structures within a flexible Bayesian nonparametric framework, which facilitates efficient model fitting via a carefully constructed variational inference approach with inducing points. We show the effectiveness of the AdMIn-GP via a suite of numerical experiments and our QGP application, where we demonstrate considerably improved surrogate modeling performance over existing models

    Some statistical methods for dimension reduction

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel UniversityThe aim of the work in this thesis is to carry out dimension reduction (DR) for high dimensional (HD) data by using statistical methods for variable selection, feature extraction and a combination of the two. In Chapter 2, the DR is carried out through robust feature extraction. Robust canonical correlation (RCCA) methods have been proposed. In the correlation matrix of canonical correlation analysis (CCA), we suggest that the Pearson correlation should be substituted by robust correlation measures in order to obtain robust correlation matrices. These matrices have been employed for producing RCCA. Moreover, the classical covariance matrix has been substituted by robust estimators for multivariate location and dispersion in order to get RCCA. In Chapter 3 and 4, the DR is carried out by combining the ideas of variable selection using regularisation methods with feature extraction, through the minimum average variance estimator (MAVE) and single index quantile regression (SIQ) methods, respectively. In particular, we extend the sparse MAVE (SMAVE) reported in (Wang and Yin, 2008) by combining the MAVE loss function with different regularisation penalties in Chapter 3. An extension of the SIQ of Wu et al. (2010) by considering different regularisation penalties is proposed in Chapter 4. In Chapter 5, the DR is done through variable selection under Bayesian framework. A flexible Bayesian framework for regularisation in quantile regression (QR) model has been proposed. This work is different from Bayesian Lasso quantile regression (BLQR), employing the asymmetric Laplace error distribution (ALD). The error distribution is assumed to be an infinite mixture of Gaussian (IMG) densities

    Modelling Tails for Collinear Data with Outliers in the English Longitudinal Study of Ageing: Quantile Profile Regression

    Get PDF
    National Institute for Health Research Method Grant (NIHRRMOFS-2013-03-09) and the National Natural Science Foundation of China (Grant No. 71490725, 11261048, 11371322)

    Data-Efficient Design and Analysis Methodologies for Computer and Physical Experiments

    Get PDF
    Data science for experimentation, including the rapidly growing area of the design and analysis of computer experiments, aims to use statistical approaches to collect and analyze (physical or virtual) experimental responses and facilitate decision-making. The cost for each run of an experiment can be expensive. This dissertation proposes novel data-efficient methodologies to tackle three different challenges in this field. The first two are regarding computer experiments, and the third one is regarding physical experiments. The first work aims to reconstruct the input-output relationship (surrogate model) given by the computer code via scattered evaluations with small sizes based on Gaussian process regression. Traditional isotropic Gaussian process models suffer from the curse of dimensionality when the input dimension is relatively high given limited data points. Gaussian process models with additive correlation functions are scalable to dimensionality, but they are more restrictive as they only work for additive functions. In the first work, we consider a projection pursuit model in which the nonparametric part is driven by an additive Gaussian process regression. We choose the dimension of the additive function higher than the original input dimension and call this strategy “dimension expansion”. We show that dimension expansion can help approximate more complex functions. A gradient descent algorithm is proposed for model training based on the maximum likelihood estimation. Simulation studies show that the proposed method outperforms the traditional Gaussian process models. The second work focuses on the designs of experiments (DoE) of multi-fidelity computer experiments with fixed budget. We consider the autoregressive Gaussian process model and the optimal nested design that maximizes the prediction accuracy subject to the budget constraint. An approximate solution is identified through the idea of multilevel approximation and recent error bounds of Gaussian process regression. The proposed (approximately) optimal designs admit a simple analytical form. We prove that, to achieve the same prediction accuracy, the proposed optimal multi-fidelity design requires much lower computational cost than any single-fidelity design in the asymptotic sense. The last work is proposed to model complex experiments when the distributions of training and testing input features are different (referred to as domain adaptation). In this work, we propose a novel transfer learning algorithm called Renewing Iterative Self-labeling Domain Adaptation (Re-ISDA) to tackle the domain adaptation problem. The learning problem is formulated as a dynamic programming model, and the latter is then solved by an efficient greedy algorithm by adding a renewing step to the original ISDA algorithm. This renewing step helps avoid a potential issue of the ISDA that the possible mis-labeled samples by a weak predictor in the initial stage of the iterative learning can cause serious harm to the subsequent learning process. Numerical studies show that the proposed method outperforms prevailing transfer learning methods. The proposed method also achieves high prediction accuracy for a cervical spine motion problem
    corecore