43 research outputs found

    Bayesian Policy Reuse

    Get PDF
    A long-lived autonomous agent should be able to respond online to novel instances of tasks from a familiar domain. Acting online requires 'fast' responses, in terms of rapid convergence, especially when the task instance has a short duration, such as in applications involving interactions with humans. These requirements can be problematic for many established methods for learning to act. In domains where the agent knows that the task instance is drawn from a family of related tasks, albeit without access to the label of any given instance, it can choose to act through a process of policy reuse from a library, rather than policy learning from scratch. In policy reuse, the agent has prior knowledge of the class of tasks in the form of a library of policies that were learnt from sample task instances during an offline training phase. We formalise the problem of policy reuse, and present an algorithm for efficiently responding to a novel task instance by reusing a policy from the library of existing policies, where the choice is based on observed 'signals' which correlate to policy performance. We achieve this by posing the problem as a Bayesian choice problem with a corresponding notion of an optimal response, but the computation of that response is in many cases intractable. Therefore, to reduce the computation cost of the posterior, we follow a Bayesian optimisation approach and define a set of policy selection functions, which balance exploration in the policy library against exploitation of previously tried policies, together with a model of expected performance of the policy library on their corresponding task instances. We validate our method in several simulated domains of interactive, short-duration episodic tasks, showing rapid convergence in unknown task variations.Comment: 32 pages, submitted to the Machine Learning Journa

    Efficient Bayesian Policy Reuse with a Scalable Observation Model in Deep Reinforcement Learning

    Full text link
    Bayesian policy reuse (BPR) is a general policy transfer framework for selecting a source policy from an offline library by inferring the task belief based on some observation signals and a trained observation model. In this paper, we propose an improved BPR method to achieve more efficient policy transfer in deep reinforcement learning (DRL). First, most BPR algorithms use the episodic return as the observation signal that contains limited information and cannot be obtained until the end of an episode. Instead, we employ the state transition sample, which is informative and instantaneous, as the observation signal for faster and more accurate task inference. Second, BPR algorithms usually require numerous samples to estimate the probability distribution of the tabular-based observation model, which may be expensive and even infeasible to learn and maintain, especially when using the state transition sample as the signal. Hence, we propose a scalable observation model based on fitting state transition functions of source tasks from only a small number of samples, which can generalize to any signals observed in the target task. Moreover, we extend the offline-mode BPR to the continual learning setting by expanding the scalable observation model in a plug-and-play fashion, which can avoid negative transfer when faced with new unknown tasks. Experimental results show that our method can consistently facilitate faster and more efficient policy transfer.Comment: 16 pages, 6 figures, under revie

    An Optimal Online Method of Selecting Source Policies for Reinforcement Learning

    Full text link
    Transfer learning significantly accelerates the reinforcement learning process by exploiting relevant knowledge from previous experiences. The problem of optimally selecting source policies during the learning process is of great importance yet challenging. There has been little theoretical analysis of this problem. In this paper, we develop an optimal online method to select source policies for reinforcement learning. This method formulates online source policy selection as a multi-armed bandit problem and augments Q-learning with policy reuse. We provide theoretical guarantees of the optimal selection process and convergence to the optimal policy. In addition, we conduct experiments on a grid-based robot navigation domain to demonstrate its efficiency and robustness by comparing to the state-of-the-art transfer learning method

    Learning domain abstractions for long lived robots

    Get PDF
    Recent trends in robotics have seen more general purpose robots being deployed in unstructured environments for prolonged periods of time. Such robots are expected to adapt to different environmental conditions, and ultimately take on a broader range of responsibilities, the specifications of which may change online after the robot has been deployed. We propose that in order for a robot to be generally capable in an online sense when it encounters a range of unknown tasks, it must have the ability to continually learn from a lifetime of experience. Key to this is the ability to generalise from experiences and form representations which facilitate faster learning of new tasks, as well as the transfer of knowledge between different situations. However, experience cannot be managed na¨ıvely: one does not want constantly expanding tables of data, but instead continually refined abstractions of the data – much like humans seem to abstract and organise knowledge. If this agent is active in the same, or similar, classes of environments for a prolonged period of time, it is provided with the opportunity to build abstract representations in order to simplify the learning of future tasks. The domain is a common structure underlying large families of tasks, and exploiting this affords the agent the potential to not only minimise relearning from scratch, but over time to build better models of the environment. We propose to learn such regularities from the environment, and extract the commonalities between tasks. This thesis aims to address the major question: what are the domain invariances which should be learnt by a long lived agent which encounters a range of different tasks? This question can be decomposed into three dimensions for learning invariances, based on perception, action and interaction. We present novel algorithms for dealing with each of these three factors. Firstly, how does the agent learn to represent the structure of the world? We focus here on learning inter-object relationships from depth information as a concise representation of the structure of the domain. To this end we introduce contact point networks as a topological abstraction of a scene, and present an algorithm based on support vector machine decision boundaries for extracting these from three dimensional point clouds obtained from the agent’s experience of a domain. By reducing the specific geometry of an environment into general skeletons based on contact between different objects, we can autonomously learn predicates describing spatial relationships. Secondly, how does the agent learn to acquire general domain knowledge? While the agent attempts new tasks, it requires a mechanism to control exploration, particularly when it has many courses of action available to it. To this end we draw on the fact that many local behaviours are common to different tasks. Identifying these amounts to learning “common sense” behavioural invariances across multiple tasks. This principle leads to our concept of action priors, which are defined as Dirichlet distributions over the action set of the agent. These are learnt from previous behaviours, and expressed as the prior probability of selecting each action in a state, and are used to guide the learning of novel tasks as an exploration policy within a reinforcement learning framework. Finally, how can the agent react online with sparse information? There are times when an agent is required to respond fast to some interactive setting, when it may have encountered similar tasks previously. To address this problem, we introduce the notion of types, being a latent class variable describing related problem instances. The agent is required to learn, identify and respond to these different types in online interactive scenarios. We then introduce Bayesian policy reuse as an algorithm that involves maintaining beliefs over the current task instance, updating these from sparse signals, and selecting and instantiating an optimal response from a behaviour library. This thesis therefore makes the following contributions. We provide the first algorithm for autonomously learning spatial relationships between objects from point cloud data. We then provide an algorithm for extracting action priors from a set of policies, and show that considerable gains in speed can be achieved in learning subsequent tasks over learning from scratch, particularly in reducing the initial losses associated with unguided exploration. Additionally, we demonstrate how these action priors allow for safe exploration, feature selection, and a method for analysing and advising other agents’ movement through a domain. Finally, we introduce Bayesian policy reuse which allows an agent to quickly draw on a library of policies and instantiate the correct one, enabling rapid online responses to adversarial conditions
    corecore