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Abstract

Recent trends in robotics have seen more general purpose robots being deployed in

unstructured environments for prolonged periods of time. Such robots are expected to

adapt to different environmental conditions, and ultimately take on a broader range of

responsibilities, the specifications of which may change online after the robot has been

deployed.

We propose that in order for a robot to be generally capable in an online sense

when it encounters a range of unknown tasks, it must have the ability to continually

learn from a lifetime of experience. Key to this is the ability to generalise from experi-

ences and form representations which facilitate faster learning of new tasks, as well as

the transfer of knowledge between different situations. However, experience cannot be

managed naı̈vely: one does not want constantly expanding tables of data, but instead

continually refined abstractions of the data – much like humans seem to abstract and

organise knowledge. If this agent is active in the same, or similar, classes of envi-

ronments for a prolonged period of time, it is provided with the opportunity to build

abstract representations in order to simplify the learning of future tasks. The domain

is a common structure underlying large families of tasks, and exploiting this affords

the agent the potential to not only minimise relearning from scratch, but over time to

build better models of the environment. We propose to learn such regularities from the

environment, and extract the commonalities between tasks.

This thesis aims to address the major question: what are the domain invariances

which should be learnt by a long lived agent which encounters a range of different

tasks? This question can be decomposed into three dimensions for learning invari-

ances, based on perception, action and interaction. We present novel algorithms for

dealing with each of these three factors.

Firstly, how does the agent learn to represent the structure of the world? We fo-

cus here on learning inter-object relationships from depth information as a concise

representation of the structure of the domain. To this end we introduce contact point

networks as a topological abstraction of a scene, and present an algorithm based on

support vector machine decision boundaries for extracting these from three dimen-

sional point clouds obtained from the agent’s experience of a domain. By reducing the

specific geometry of an environment into general skeletons based on contact between

different objects, we can autonomously learn predicates describing spatial relation-

ships.
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Secondly, how does the agent learn to acquire general domain knowledge? While

the agent attempts new tasks, it requires a mechanism to control exploration, particu-

larly when it has many courses of action available to it. To this end we draw on the fact

that many local behaviours are common to different tasks. Identifying these amounts

to learning “common sense” behavioural invariances across multiple tasks. This prin-

ciple leads to our concept of action priors, which are defined as Dirichlet distributions

over the action set of the agent. These are learnt from previous behaviours, and ex-

pressed as the prior probability of selecting each action in a state, and are used to guide

the learning of novel tasks as an exploration policy within a reinforcement learning

framework.

Finally, how can the agent react online with sparse information? There are times

when an agent is required to respond fast to some interactive setting, when it may have

encountered similar tasks previously. To address this problem, we introduce the notion

of types, being a latent class variable describing related problem instances. The agent

is required to learn, identify and respond to these different types in online interactive

scenarios. We then introduce Bayesian policy reuse as an algorithm that involves main-

taining beliefs over the current task instance, updating these from sparse signals, and

selecting and instantiating an optimal response from a behaviour library.

This thesis therefore makes the following contributions. We provide the first al-

gorithm for autonomously learning spatial relationships between objects from point

cloud data. We then provide an algorithm for extracting action priors from a set of

policies, and show that considerable gains in speed can be achieved in learning subse-

quent tasks over learning from scratch, particularly in reducing the initial losses associ-

ated with unguided exploration. Additionally, we demonstrate how these action priors

allow for safe exploration, feature selection, and a method for analysing and advis-

ing other agents’ movement through a domain. Finally, we introduce Bayesian policy

reuse which allows an agent to quickly draw on a library of policies and instantiate the

correct one, enabling rapid online responses to adversarial conditions.
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Lay Summary

Recent trends in robotics see more general purpose robots being deployed in non-

laboratory environments for prolonged periods of time. Such robots are expected to

adapt to different conditions, and ultimately take on a broader range of responsibilities,

the specifications of which may change after the robot has been deployed.

We propose, based on how we conjecture humans solve this problem, that in order

for a robot to have some chance of dealing with the possibility of unknown task re-

quirements, it must have the ability to continually learn from a lifetime of experience.

Key to this is the ability to generalise from experiences so as to facilitate faster learning

of new tasks, as well as the transfer of knowledge between different situations. If the

robot works within the same or similar environments, it is provided with the opportu-

nity to abstract its experiences in order to simplify the learning of future tasks. The

“domain” is the common environmental and behavioural structure underlying groups

of related tasks, and exploiting this provides the potential to not only minimise relearn-

ing from scratch, but also over time to build better models of the environment and how

it works. We propose to learn such regularities in the environment, and extract the

commonalities between tasks, in three related ways.

Firstly, how does the robot learn to represent the structure of visual scenes with

which it may interact? We focus here on learning inter-object relationships as a concise

representation of the structure of a scene. We present a method for reducing the specific

geometry of an environment into general skeletons based on contact between different

objects, and from this can autonomously extract the spatial relationships from scenes.

Secondly, how does the robot learn to extract recurrent patterns in behaviour?

While the robot attempts to learn new tasks, it requires a mechanism to control the way

it explores unknown parts of the environment, particularly when it has many courses

of action available to it. To this end we draw on the fact that many local behaviours are

common to different tasks, and provide a method for extracting this information from

a collection of behaviours. Identifying these amounts to learning “common sense” be-

havioural commonalities across multiple tasks, and allows for new tasks to be solved

faster.

Finally, how does the robot know how to react quickly to changing conditions,

when these are not always immediately observable? There are times when a robot

is required to respond fast to some interactive setting, when it may have encountered

similar tasks previously. To address this problem, we introduce the notion of “types”,
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as a classification describing related problem instances. The robot is required to learn,

identify and respond to these different types in interactive scenarios. We introduce

an algorithm that involves maintaining probabilities over the possible types of which

the current task is an instance, based on observations, and selecting a response for the

robot from a behaviour library.
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Chapter 1

Introduction

Humans, and indeed other animals, have many remarkable cognitive abilities. One of

the most fundamental of these is the ability to adapt to changing conditions, and so too

to perform well under completely new conditions. Key to this seems to be our ability

to form abstract mental models of different environments, and use a combination of

previous experiences and observations of how the current environment responds to

our prompts. We use these models to aid in tuning and selecting behaviours that are

appropriate to our current conditions.

Being able to generalise in this way is a very powerful ability. Learning from

scratch is necessarily a slower process than reusing knowledge, and being able to bias

which knowledge is reused based on environmental cues reduces the combinatorial

search that is required to formulate plans over some time horizon.

A core component of this ability lies in being able to understand general principles

underlying the structure and evolution of the world with which we interact. In a general

sense, the brain seems to possess intuitive principles of physics, biology and psychol-

ogy, which guides the way it selects behaviours, by being able to form predictions of

their outcomes (Friston et al., 2009). As an example, consider a hunter-gatherer who is

able to infer both the species of an animal and its behaviour from its tracks, and in so

doing be able to intercept it at a water hole, or alternatively throw rocks and spears at

intended targets, perhaps coated in poisons extracted from plants (Pinker, 1999). All

these behaviours require some understanding of the dynamics of many general sys-

tems, be it that animals need regular food and water, or an intuitive understanding of

the effects of gravity on an object leaving a hand at speed.

Basic principles and abstractions such as these enable humans with limited com-

putational abilities, i.e. bounded rationality (Simon, 1955), to employ fast responses

1
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to the infinite range of situations they may encounter, by transferring ideas between

similar situations. The speed of these responses comes with the drawback of a loss of

optimality, but being able to invoke such satisficing responses implies a great versatil-

ity for our species (Simon, 1956).

Drawing inspiration from these cognitive traits of humans, we are interested in

investigating how an autonomous artificial agent such as a robot can learn and act

in a similar way in an environment over a prolonged period of time. The longer the

robot works in the same or similar environments the more proficient it should become,

through having had to solve multiple tasks. We seek to address this idea by examining

the kinds of information which can be extracted and reused in an environment with

which the robot develops some familiarity.

1.1 Research Problem

As an example of the type of scenario we ultimately wish to address, consider an as-

sistive robot in a hospital environment, as caricatured in Figure 1.1. In this setting,

the robot interacts with a stream of patients, each with different symptoms, require-

ments and preferences, many of which cannot easily be pin-pointed through a simple

discussion or diagnostic procedure. Similarly, the hospital staff which the robot as-

sists each have different mannerisms, lists of tasks with which the robot should help,

and particular ways in which they would like these tasks to be done. Furthermore, in

order to complete the prescribed tasks, the robot needs to use tools and manipulate

objects, some of which are in particular places such as hospital equipment, and others

are patient specific, such as personal belongings. As a result, the robot must be able to

identify and find required objects. The overall effect is that the robot is presented with

a series of partially specified but related tasks, and as it gains experience over time, it

should learn to perform these faster and more efficiently.

The primary over-arching question we address in this dissertation is thus what

should be learnt by a lifelong learning agent in a large world with many options,

and how can this knowledge be reused?

Building the autonomous assistive robot of Figure 1.1 would be a major undertak-

ing, beyond the scope of this thesis. However, this illustration raises many problems

to be solved, and in this thesis we focus on the core issue of generalising and reusing

knowledge. To that end, we address three particular instances of knowledge acquisition

and reuse:
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Figure 1.1: An assistive robot in a hospital ward is required to provide regular and fast

interaction with patients, nurses, doctors, and numerous objects of different varieties.

1. The assistive robot may often be required to carry and use a range of medical

equipment and personal effects, be it retrieving scalpels lying on trays or blankets

folded inside bags. A property which is common to many different physical

manipulation tasks is the relative positioning of different objects. This is critical

in planning, where a bed should only be moved once the patient is on it, but not

when any other furniture is adjacent to it. As a result, we study the learning of

spatial relationships between objects (discussed in Chapter 2).

2. Every action taken by the assistive robot is likely to be affected by situation spe-

cific constraints. With general navigation it must avoid collisions with objects,

when moving between rooms it should be wary of the directions in which doors

open, and its speed should always be modulated by the environment through

which it is moving. When interacting with different objects, each object has a

particular way in which it should be handled, and further, many behaviours are

not appropriate in most situations. For example, surgery procedures should only

be invoked in an operating theatre. The diversity and quantity of these constraints
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means that not all can be explicitly pre-programmed, yet they are consistent be-

tween different tasks, and knowledge thereof greatly accelerates the planning

and decision-making procedure. We address this and related concepts through

the learning of action priors (discussed in Chapter 3).

3. For many particularly interactive tasks, the assistive robot may have a number

of different behaviours or configurations which may be relevant. Examples of

this include different personalities for dealing with patients, different instruction

sets for interpreting patient gestures and commands, or even different ways of

cleaning up a threatre after an operation. The choice of behaviour here depends

on the patient, doctor, or other factors around the robot, and often the use of

the wrong one at the wrong time may result in the task being poorly completed.

The implication is that the robot should maintain models and estimates of which

behaviours are the best to use in certain situations, and we deal with this in our

presentation of types and Bayesian policy reuse (in Chapter 4).

What we ultimately desire is robots that are able to exist for some long duration

in a certain environment which may change over time, and be able to perform many

different tasks therein. This template of robot behaviour is needed for any general

purpose robot, which could be useful in applications such as healthcare, where a carer

robot may be required to assist people with a wide variety of tasks, the requirements

of which may differ between individuals.

The acquisition of behaviours and skills is well-studied within the robotics and

agents literature, particularly in the scope of optimal control theory and reinforcement

learning. Some notable examples include different reinforcement learning approaches

(Peters et al., 2003; Kober and Peters, 2011), learning motion primitives (Schaal et al.,

2004), hierarchical reinforcement learning in discrete (Barto and Mahadevan, 2003)

and continuous systems (Konidaris, 2011), and imitation learning and learning from

demonstration (Argall et al., 2009). These take into consideration a number of different

goals, settings and conditions for learning.

However, skill acquisition is only one side of the problem. Once a number of

skills have been learnt, naı̈ve temporal planning with those skills easily becomes an

exponential search problem through a high-dimensional space. The challenge then is

how to structure, manage, and use these skills efficiently.

In order to do this, we seek to learn the structure and invariants of domains in which

agents are required to solve large families of tasks quickly, and in an ongoing manner.
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The goal is thus to learn about the general manifolds governing large classes of tasks

and behaviours. This provides additional information which can be used to prioritise

and select between different behaviours when confronted with new tasks drawn from

the same family, and so control the size of the behaviour space being searched.

We are motivated by the principles of bootstrap and developmental learning (Pierce

and Kuipers, 1997; Kuipers et al., 2006), through autonomously discovering different

forms of statistical regularity in the experiences of the agent, and using this as the ba-

sis of abstractions and knowledge representation. Additionally, we draw inspiration

from the methods of transfer learning (Taylor and Stone, 2009), as we wish to accel-

erate learning through the application of knowledge acquired in a set of previous tasks

(Thrun, 1996a). This general paradigm is often referred to as lifelong learning (Thrun,

1996b).

Our ultimate goal is to be able to build capability models (Rosman and Ramamoor-

thy, 2012a) while acting online, which involves learning an association of behaviours

to observational elements of the environment. In this way, we aim to use environment

signals as a behaviour guide, inspired by the ideas of reactive control (Brooks, 1986;

Braitenberg, 1986), but using these signals to prioritise behaviours. This allows an

agent to act with a coarse optimal behaviour in situations with extended uncertainty

(Bookstaber and Langsam, 1985). The core theme unifying these ideas is abstraction,

as appropriate abstractions enable knowledge and behaviours to be learnt in a gener-

alised manner, and thus reused in new situations.

1.2 Abstraction in Artificial Intelligence

The idea of abstraction has a long history, and is a commonly recurring theme through-

out artificial intelligence (AI). Since the early days of AI, abstraction has been advo-

cated as a useful tool in building intelligent systems (Minsky, 1961). Many modern

machine learning and decision theoretic models rely on abstractions of some decision

space. For example, simple decision trees classify data or make decisions based on

partitioning an input space (Bishop, 2006). On the other hand, more sophisticated

machine learning tools, such as deep belief networks (Bengio et al., 2009) and hierar-

chical probabilistic generative models (Tenenbaum et al., 2011), decompose difficult

classification problems by learning hierarchies of abstractions so as to factorise a large

space of concepts, which overlap in features at some level of abstraction.

Abstraction is a broad term, generally taken to be a “mapping between formalisms
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that reduces the computational complexity of the task at stake” (Zucker, 2003), and

in practical senses usually refers to either simplifying or removing unnecessary details

from a problem so as to speed up its solution (Holte and Choueiry, 2003). For exam-

ple, focusing on the important parts of a process, such as the points at which some

qualitative change occurs, allows one to reason about a continuous system rather as a

finite set of qualitatively meaningful states (Kuipers, 1994). This approach can be used

to reason elegantly about complicated dynamical processes (Ramamoorthy, 2007).

In this thesis, we employ the idea of abstraction as a grouping or aggregation of

similar situations in which an autonomous agent may find itself, such that behaviours

which are useful in one of those situations can be successfully applied to any of the

others, and in doing so accelerate the decision making and learning processes. In this

way, we identify general concepts true to multiple instantiations of a problem domain,

and thus take a step towards “common sense” knowledge of that problem.

Generalising from sparse data is critical to the way in which humans learn and

acquire knowledge, as seen for example in the way concepts are formed in language

(Tenenbaum et al., 2011). Humans also seem to do planning in abstract spaces, and

often difficult problems can be solved by focusing on reformulations of the original

problems, and thinking about them in different ways (Pólya, 1945).

In the case of learning and planning agents such as robots, abstractions typically

appear in one of two primary forms: state abstractions, and action or behavioural ab-

stractions.

State abstractions involve redescribing the state space of the agent. There are a

number of reasons for doing this. One common reason is for discretising continuous

state spaces, for example in reinforcement learning, so that policies can be learnt and

described as mappings from states to actions. Another reason is to reduce the size of

problems, typically by aggregating states (Horvitz and Klein, 1993; Li et al., 2006),

to either generalise experience (e.g. (Leffler et al., 2007)), or to increase the speed of

learning (e.g. (Jong and Stone, 2005)), possibly by having to explore fewer possibil-

ities (Hester and Stone, 2009). All these cases are useful for transfer, as the effective

representation of the domain of the agent has been simplified, and as a result, each state

configuration in the simpler representation is more likely to be encountered in future

tasks than a state of a larger (higher dimensional, or continuous) representation.

Alternatively, action abstractions are often based around the ideas of combining

primitive actions. An example of this is the options framework in reinforcement learn-

ing (Precup et al., 1998), where options are defined as composite behaviours (usually
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composed of primitive actions), with their own start and termination conditions. These

can be executed by an agent to accomplish something that would otherwise have re-

quired an exact sequencing of several primitive actions, and in doing so the agent can

reuse knowledge to speed up learning. This idea of defining more abstract actions

dates back to early work, such as macro actions (or “macrops”) in the STRIPS plan-

ner (Fikes et al., 1972). Actions can also be abstracted by redefining them to apply

to more general contexts, such as ABSTRIPS which defined abstraction hierarchies

through different levels of details in the preconditions of actions (Sacerdoti, 1974), or

deictic references which identify objects relative to the agent (Pasula et al., 2007).

1.3 Thesis Overview

In order to learn and plan, an agent is required to have some understanding of the struc-

ture of the domain within which it acts. Given the identity of objects in an arbitrary

environment, arguably the most important feature of that environment for formulating

plans is the set of relationships between those various entities within that domain. Typ-

ically these are hand-crafted and provided to the agent, but in order to achieve greater

flexibility and autonomy, an agent should be able to learn important relationships au-

tonomously.

Chapter 2 presents a study of learning such spatial relationships between objects

in a three-dimensional scene. We present an algorithm which, by examining many

pairs of objects, can learn these relationships as well as the topological structure of

objects as they are used in the scene, by considering their points of contact with other

objects. This provides a functional abstraction of the scene, and an important step

towards scene understanding in robot vision.

The method presented in this chapter is based on learning geometric separators

between objects, and this is done through support vector machines. The graph structure

between the support vectors of a single object defines a topological abstraction of that

object, and that between the support vectors of different objects describes their spatial

relationships.

One of the core challenges of lifelong learning is being able to use past experiences

to guide solutions to novel problems. Chapter 3 introduces action priors as a mecha-

nism for biasing online action selection towards behaviours that were more useful in

the past in similar situations. Through repeatedly solving different problems in the

same general environment, we show that the agent is able to learn a model of “com-
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mon sense” behaviour in that environment, and consequently greatly increase solution

speed of new tasks.

We focus on reinforcement learning domains in this chapter, and posit the learning

of context specific distributions over action space from multiple tasks as an effective

strategy for locally pruning the action space (and thus the branching factor in temporal

planning), as well as action prioritisation.

Action priors are accumulated as state-based Dirichlet distributions over the ac-

tion space, from multiple optimal policies, to provide a multi-task notion of utility

maximisation. We additionally present an extended notion of these priors which are

instead conditioned on observable variables, and show that this formulation is useful

for observation feature selection.

In many kinds of interactions, an agent may have a number of solution policies

which all seem viable, owing to the fact that some aspect of the problem is unknown to

the agent. If the agent is expected to have multiple interactions under the same condi-

tions, it should be able to infer those latent aspects of the problem to some extent, and

use this information to better its own performance. To this end, Chapter 4 introduces

Bayesian policy reuse as a paradigm for selecting between behavioural choices in an

efficient manner, so as to both gain information about the current task, and improve

performance therein.

This decision making method is posed in a multi-armed bandit setting, where the

policies are a number of options from which to choose. However, by learning a cor-

relation between the performance expected from the different options, which occurs

as a result of properties of the space of tasks faced by the agent, we draw on ideas

from Bayesian optimisation to allow for a family of fast, sample efficient Bayesian

algorithms.

1.4 Experimental Domains

Aspects of the general problem considered in this thesis, being abstractions and reuse

in lifelong learning, have implications for a range of other problems. We now briefly

discuss the experimental domains used throughout this thesis, and relate them to the

overall picture.

In Chapter 2, when evaluating our algorithm for learning spatial relationships be-

tween objects, we use stereo-image pairs, which provide depth information for dif-

ferent configurations of physical objects. This is in line with how these relationships
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would be learnt on a lifelong robot.

Action priors are presented in Chapter 3, where they are discussed as being useful

in situations where an agent is required to solve a number of tasks in sequence within

the same, or similar, environments. We note that one particular example of this re-

quirement is seen in navigation tasks within a single building. We thus illustrate and

evaluate action priors on several grid-world domains, as are typically used within the

reinforcement learning literature. To add richness to the tasks, we allow the agent to

execute simple ‘manipulation’ actions in some of the tasks, to demonstrate the effect

of larger action spaces and show that our principles apply more generally.

Finally, Chapter 4 presents Bayesian policy reuse as applying to problems where

the agent has the opportunity for thorough offline training under a number of different

conditions, but online is required to make rapid decisions about new scenarios, and

perform well with only a few available trials. These specifications are common in in-

teractive tasks (such as computer-human or robot-human interaction) and surveillance,

tracking and monitoring tasks. For this reason, our two primary experiments in this

chapter involve an interactive caller system, and a wildlife monitoring system. Some

smaller examples in video game scenarios are also presented for illustrative purposes.

1.5 Major Contributions

This thesis presents an advancement to the learning of abstractions for long-lived

agents to successfully solve tasks in their environments better over time, along three

major dimensions. We present five primary contributions: three of which directly ad-

dress to the issues discussed above, as well as two additional contributions based on

applications of our core algorithms.

1. Learning spatial relationships. We present a novel algorithm for learning both

the spatial relationships of a scene represented as a three-dimensional point-

cloud, and a topological description of the scene structure. This has direct appli-

cations in robot vision and planning.

2. Action priors. We introduce this novel concept for boosting the learning speed

of new tasks, given previous experiences. Additionally, we provide algorithms

for learning and using the action priors, and show that they provide a transfer

approach to domain reduction. This is a major contribution to multi-task and

lifelong learning decision making.
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3. Advice giving. In a novel application of action priors, we show how an agent

studying the movement and behaviour of multiple other agents in a particular

environment such as a building, can use that experience to advise new agents

who may be lost, providing large speed-ups in their task solution times.

4. Bayesian policy reuse. We introduce Bayesian policy reuse as a general algo-

rithm for selecting and instantiating pre-learnt policies from a policy library,

quickly in an online manner, so as to maintain low regret and sample complex-

ity in new instances of tasks drawn from a family with which the agent has

prior experience. This contributes a novel family of decision making algorithms

for constrained time (in sample complexity) problems, where offline training is

available.

5. Online interface adaptation. A specific case of Bayesian policy reuse, the BEAT

algorithm, is introduced for solving the important problem of online adaptation

of interfaces to different users.



Chapter 2

Spatial Relationships

The work presented in this chapter also appears in: Rosman and Ramamoorthy (2011).

2.1 Introduction

As robots become more capable of performing a wide range of tasks, and move from

carefully engineered to open and unknown environments, the need for a concise rep-

resentation of a widely varying world is becoming more pertinent. These robots must

deal with immense variability in the structure of the world, for example a manipulation

robot may find objects in a wide variety of configurations. In order for a robot to be

able to manipulate these objects, it needs to understand the qualitative structure of the

relationships between them independent of other quantitative variation.

Furthermore, with the move into more natural environments, robots are more likely

to encounter objects with which they have had minimal, if any, previous experience.

An increase in the number of these poorly known objects in the vicinity of an ac-

tive robot suggests that new strategies for exploring and interacting with these objects

would be required. It is infeasible to enumeratively represent all aspects of some real-

world scene if we want an agent to use that information subsequently in real-time de-

cision making. Another situation where enumeration is difficult is when manipulating

articulated and flexible objects: complicated objects yielding seemingly disorganised

point clouds, but with much qualitative structure.

As a result, we are particularly interested in the way in which different objects can

be represented, in terms of their own structure as well as the way in which they relate

to each other spatially in a scene. This would provide a redescription of the scene

using a layered representation, including a qualitative level which provides interesting

11
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topological features of objects that could be used for disambiguating actions, such

as that holes are candidate contexts for the action of inserting a finger to pick up an

object, or that points of contact between two objects constrain the relative motion of

those objects.

In this chapter we thus address the issue of how to redescribe a scene in terms of

abstractions, given a three-dimensional point cloud representation of that scene con-

taining several objects. We use a layered abstraction, consisting of a skeletonised

description of the objects themselves, as well as a symbolic description of the spatial

relationships between these objects. These relationships are important in manipulation

and decision making, allowing for a simplification of task specifications, as well as

vagueness and robustness in planning.

In this work we are less concerned with detailed object identification, but rather

are interested in separating a scene into potential objects that can be manipulated, and

examining the way in which these objects are used as structural components of the

environment. In this way, a wooden box and an intricate overturned vase could be con-

sidered to be topologically equivalent, in that they are both single connected compo-

nent structures on which other objects can be placed. This view of what constitutes an

object is inspired by emerging notions regarding topological invariance and qualitative

structure in a wide variety of data sets, as in work by Carlsson (2009), and illustrates

the level of description we are aiming towards with our representation scheme.

In order for a robot to efficiently manipulate objects in some environment, it needs

to know something about how these objects relate to each other, e.g., how an object is

supported by other objects and constrained in motion by yet other objects – a class of

qualitative relationships defined by specific features such as contact points. We seek

to redescribe a scene in terms of these types of relationships. The most important of

these are arguably on(·, ·) and adjacent(·, ·), and while these are clearly a subset of

the wide variety of qualitative relationships possible, we restrict our attention to them.

By learning and identifying these relationships in the surrounding environment, a robot

can use these concepts in the context of motion synthesis, particularly for performing

tasks which require the use of several objects.

We choose to work with point clouds here as they are gaining prominence as a

representation of the world in a number of new mobile manipulation platforms. This

is further driven by the move towards unified and generalised operating systems for

robotic platforms, such as the open-source ROS1, which comes complete with a Point

1Robot Operating System – www.ros.org
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Cloud Library (PCL). Point clouds provide a representation for the three-dimensional

information that a robotic platform may extract from the world around it, in a number

of ways ranging from the registration of stereoscopic cameras, to reconstructions from

laser range scanners. As such, building a point cloud is a convenient2 method for

representing raw depth information about the world around a robot.

This chapter describes our proposal for a layered description of a scene, derived

by a novel algorithm for extracting the structure of objects and then classifying the

spatial relationships between the point clouds of these pre-segmented objects. Our

method creates a contact point network for each object as an abstraction of the object

into a graph-like skeleton which identifies points where the object either touches other

objects, or comes close to touching them. This structure is a potentially useful abstrac-

tion for manipulation, as it identifies regions where the object has an interface with

the external world. These may be useful candidate points for functional components

and surfaces of the objects, and the edges between these points indicate constraints

on the objects that could be factored into motion synthesis and planning. More con-

cretely, these edges provide seeding regions, around which the search for grasp points

can begin. In a sense, these skeletons can be considered as being loosely related to the

concept of affordances (Gibson, 1986), to the extent that contact points and intra/inter-

object holes indicate constraints and possibilities for manipulation motion synthesis.

These constraints thus allow for the disambiguation between families of motion strate-

gies at a global level for a particular environment, and an agent may make use of this

knowledge to provide a viable first pass at synthesising behaviours.

2.1.1 Contributions

This chapter presents a supervised method (and outlines an unsupervised method) for

learning spatial relationships between objects, from point cloud data. The approach

is based on using support vector machines to skeletonise the representations of the

objects, so as to allow for their mutual topological structure to be classified. The effect

of this is the acquisition of operators, in particular defining the concepts of “on” and

“adjacent”, which can subsequently be used for planning.

By finding a topological abstraction of inter-object relationships, we provide a con-

text for policy transfer between similar situations, which may arise between geometri-

cally different object configurations. Furthermore, we show that some structures con-

2Point clouds can now be easily constructed by low-cost sensors such as Microsoft’s Kinect for the
Xbox 360.
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tain simpler elements as substructures, which can also be used to seed plan or policy

instantiation.

2.1.2 Chapter Structure

This chapter is organised as follows. First we present related work in Section 2.2. Our

algorithm to extract structure from a scene and learn spatial relationships from point

cloud data is described in Section 2.3, with experimental results in Section 2.4. A

discussion of these results appears in Section 2.5, and a summary of the conclusions,

contributions and future work is in Section 2.6.

2.2 Related Work

The question of how to learn the spatial relationships between different objects has

received relatively little attention in the literature. This is an important question, as

what is often difficult about motion planning is disambiguating between the global

structure of candidate plans, and so finding good initial guesses at the appropriate

course of action for some new scenario. Many researchers have examined the problem

of identifying objects in a scene (Jain and Dorai, 2000; Leibe and Schiele, 2004; Desai

et al., 2009; Alexe et al., 2010), but instead of focusing on object identification, we wish

to extract coarser types of functional information which may aid a robot manipulating

in that environment, by describing the structure and constraints of the scene.

A notable body of work on learning spatial relationships appears in the thesis of

Sjöö (2011). This presents two lines of attack towards the problem of learning spatial

relationships.

The first of these is a model for two spatial relationships: on and in. In this work on

is defined as a predicate describing one object providing geometric support to another

against gravity. The model of on defines three criteria, based on the separation between

the objects, the horizontal distance between the centre of mass and contact point, and

the inclination of the normal force between the objects. These criteria are evaluated

and combined, to give a score describing how well the predicate on is encapsulated

by the scene. Similarly, in is described as containment, and this is measured by a

combination of the extent to which one object falls within the convex hull of the other

as well as a penalty on the apparent object interpenetration.

By choosing appropriate parameters for these criteria, accurate descriptions of
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physical scenes can be generated in terms of the inter-object relationships. The prob-

lem with this method is that it requires that each relationship be modelled in detail, to

the level of forces and parameters, by a human designer.

This is not a requirement of our algorithm, which determines the relationships

autonomously from labelled data. The second approach employed by Sjöö (2011)

achieves this as well. This approach defines some functionally distinctive relation-

ships between objects: support, location control, protection and constraint. For each of

these relationships, different probing actions are designed to test for the corresponding

condition. These tests are run multiple times in simulated environments with randomly

generated scenes, and a sparse regression algorithm determines which of 93 features

are needed to predict these relationships. Human intervention is still required to de-

sign these tests, and for general relationships the use of a physics simulator may not

adequately model real-world object interactions.

Galleguillos et al. (2008) examine the relative spatial arrangements of patches in

two-dimensional images, and use this to disambiguate object labels. These relative

spatial arrangements are defined in terms of bounding boxes around patches, as well

as their relative centroid locations. This provides an abstraction of a complex scene, in

a similar manner to what we desire in determining abstractions which capture the rela-

tionships between irregularly-shaped point clouds corresponding to regions of objects

in a three-dimensional environment. We seek a version for extracting manipulation

specific information from a scene. A similar approach, based on bounding boxes, is

successfully used by Dee et al. (2009) to learn relationships between parts of frames in

videos which correspond to regions experiencing similar motion. The relative spatial

relationships between regions of an image are often used to improve interpretation and

recognition in the scene (Galleguillos and Belongie, 2010), working on the assump-

tion that certain objects are more likely to be found in the context of, or in particular

positions relative to, certain other objects.

An alternative approach to learning relationships is to learn them from scenes com-

bined with natural language utterances of people, in an attempt to identify correlating

visual and auditory regularities. This is the approach taken by Oates (2001) who devel-

oped a system capable of, amongst other things, identifying relationships such as on

and above between objects. Identifying these relationships required the use of specific

features, and were identified based on sensors measuring the angle of the line segment

between the two objects where they are closest, the length of that segment, and the

angle of the line segment between their centres of mass.
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An intermediate step between logical plans and low-level control is the reasoning

about large-scale structure of motion plans such as in work by Hauser and Latombe

(2010). These approaches require the ability to appropriately seed, at the level of

topology, the search process through strategy space.

Relational predicates are also an important component of first-order logic, which

allows for reasoning about entities and the relationships between them. As a result,

first-order logic is the language of choice for many planning problem descriptions and

algorithms (Ghallab et al., 2004), as the goal of planning is the discovery of plans of

action which can cause certain relationships between various objects in the domain of

the problem to become true, remain true, or cease to be true.

For instance, the relationships between different regions in space can be defined

and reasoned about using an interval logic known as region connection calculus (RCC),

similarly to the way in which temporal logics reason about time and events (Randell

et al., 1992). This provides an axiomatised description of the ways in which two re-

gions can relate, such as ‘overlaps’, ‘contains’ and ‘equals’. This theory provides no

mechanisms for extracting these relationships from visual data, but provides a language

for reasoning about them at a higher level.

Spatial relationships between objects in the physical (or a simulated) world are thus

useful elements for agents in reasoning about planning tasks in worlds with multiple

objects, for example stacking blocks to build towers (Pasula et al., 2007). The focus of

such work is typically on methods for making inferences about the relationships that

hold in the world, rather than deducing these relationships themselves. As a result, a

hard-coded approach is often taken, where rules for recognising relationships can be

designed by the system developers. An example of the usefulness of the relationships

between parts of a domain in solving a problem can be seen for example in the robotic

towel folding of Maitin-Shepard et al. (2010). By finding the key structural features

of towels, namely the corners and edges, as well as the relationships between them

(hand-coded by the designers), a robot was able to successfully fold a towel. We are

interested in extracting this type of structure and relationship in more general scenes.

A more general example of how such rules could be hard-coded would be: “if

there are points in object A above points in object B, with a vertical displacement

below some ε, then A is on B”. These rules are specific to each particular problem, and

rely on the fact that these systems often use simple geometric objects such as blocks.

As a result, these rules easily break down for the kinds of general objects which one

would expect a personal robot operating in a home environment to encounter. There is
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thus a need for more flexible methods for detecting relationships between objects.

Relationships between pairs of tracked vehicles moving on a road have been con-

sidered previously by Galata et al. (2002). The relationships captured between vehi-

cles are similar to the types of relationships we seek, but we focus somewhat more on

achieving a robotic manipulation centric representation. Additionally a crucial com-

ponent of our layered representation is that we abstract some notion of the internal

structure of the objects which may not be relevant in the application considered in

Galata et al. (2002).

One notable approach to addressing the related problem, of relationships between

regions and elements of a scene, is that of Waltz (1975). This work examines the

broad problem of reconstructing a three-dimensional description of a scene, given a

line drawing of that scene. A scene in this case is restricted to a set of planar-faced

objects, described by the edges of each plane, and shaded areas to indicate shadows.

The crux of this method is in labelling the line segments which are object edges. The

edge labels indicate whether the edge describes features such as the edge of a shadow, a

concave bend or a convex bend. The labels are assigned based on the types of junctions

at either end of the line segments, as well as local information such as shadows and

region orientation. Knowledge of the types of edges between two different objects in a

scene allows the system to deduce when one object is in front of, behind or supporting

another. This work was limited in the strong requirements placed on the input data:

that it be line drawings of planar-faced objects. We instead seek an approach which

can handle point cloud data, of any objects.

Planar faces can be easily described by line drawings, but more complicated objects

require a richer representation. The idea of representing an object as a graph, being

some skeletal abstraction of the object, has found interesting uses in describing the

topology and other symbolic properties of individual objects (Pinz et al., 2008). This

is a sparse representation of what may be otherwise complicated objects. An example

of this by Katz and Brock (2008) provides a method for discovering articulation points

in objects, based on which parts of the object maintain a constant separation while a

robot is moving that object. In this way, nodes of the graph correspond to distinctive

features of the object, and edges exist between two features if the distance between

those features has never exceeded some threshold.

We propose to build up from low-level point cloud data as acquired by sensing

devices, into a layered representation for redescribing the scene to aid in reasoning

and planning through the use of graph-like abstractions of objects. Instead of basing
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these graphs on features of an individual object, they arise from the way in which the

object structurally forms part of a scene or environment. Much previous work has

been dedicated to detecting affordances of objects of various sorts, such as Saxena

et al. (2008) showing how good grasp points can be identified on an object, Rusu

et al. (2009) describing curvature and other geometric properties, and Barck-Holst

et al. (2009) showing how such grasp affordances can be learned from an ontological

reasoning system. Works such as these often focus on statistically finding useful local

features. The next level up would be to look at how the scene is composed of these local

features. To this end, we consider the relationship patterns between sets of objects,

with the aim of learning high-level concepts relating to the topological structure of an

entire scene. This provides a platform from which inter-object spatial relationships are

inferred, giving a high-level representation which may be useful for motion synthesis

by reducing the dimensionality of the search space.

We comment here that this work, first published as Rosman and Ramamoorthy

(2011), has subsequently been studied by other authors. These include Dearden and

Burbridge (2013), who learn probabilistic models of the relationships between objects

from a number of geometric features, and Fichtl et al. (2013), who classify relation-

ships by building 2D histograms of the distances between all subregions of the two

objects.

2.3 Algorithm

2.3.1 Overview

Our algorithm builds a layered representation of a scene, by extracting spatial relation-

ships which exist between objects, as well as a topological description of those objects,

in order to redescribe that scene in terms of its structural properties. This description

is based on easily observed features of the scene, such as object candidates and con-

tact points between the objects. The assumptions made by the algorithm are described

in Section 2.3.2. The object candidates used by the algorithm are derived from seg-

mented point cloud data of the scene, and a discussion of a simple method for object

segmentation is provided in Section 2.3.3.

Contact points are another visual feature used for extracting the structural represen-

tation of the scene. To define these, the algorithm relies on the concept of geometric

separability between two different objects, and in particular identifies regions where
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the margin of separation between the two objects is small. These regions are most

likely candidates for points of contact between the objects. The reason that geometric

separability is important, rather than say the relative positions of the centres of mass

of the objects, can be seen in Figure 2.1. In this case, the centres of mass of the two

objects are far apart, both horizontally and vertically, and based on this property a

relationship such as on(·, ·) could not be easily established.

To define this geometric separability, we identify the maximum margin hyperplane

separating the pair of objects. This is the separating surface which has the maximum

possible distance from points belonging to both objects, and as such runs through the

centre of the regions where they are closest, being the regions of interaction between

them. Finding this separator is efficiently solved as a quadratic programming prob-

lem, and is the same approach used by classification algorithms such as support vector

machines (SVMs).

SVMs can compute this geometric separator efficiently, and so we use them as a

tool in this sense, although we note that other randomised maximum margin algorithms

could be used to perform the same task. The SVM is thus trained to identify elements

in the point cloud which are critical for defining the object separation. These regions

are known as contact points, and can be connected in a graph to give a contact point

network. The details of extracting these networks are discussed in Section 2.3.4.

Relationships between objects are then identified by examining the displacements

between the contact points of two different objects. This is elaborated in Section 2.3.5.

Although this algorithm operates on only pairs of objects at a time, the extension to

sets of objects is given in Section 2.3.6.

An illustrative example of the process is shown in Figure 2.1, with sample input

and output of the algorithm.

2.3.2 Assumptions

A point cloud PM = {pi}= {(xi,yi,zi,ri,gi,bi)}⊂R6, i= 1 . . .M, consists of M points,

where each point i has three dimensions of spatial information (xi,yi,zi), as well as

three dimensions of colour information (ri,gi,bi). We assume this point cloud has been

captured by some device, such as stereo imaging or range scanning, but are indifferent

to the hardware used for this purpose. What is required is that the pose of the imaging

system is known. This work assumes the camera uses the same orientation as the

scene, providing a known direction of “up”. If this orientation is not known, a separate
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Figure 2.1: The relationship learning process. (a) The image captured by the left cam-

era in a stereo camera pair. (b) The full point cloud, segmented into the two objects,

after background subtraction. (c) The support vectors with the contact point networks

of the two objects. The CPN of the ball is a single node, and the CPN for the L-shaped

block is a three-node network. Note: in our experiments we used a user-defined thresh-

old to discard contact points with less than 7 support vectors. This was not used in this

image, to illustrate the concept of the network, but if it had, only the topmost contact

point in the block would have remained. (d) The inferred relationship. A and B are

arbitrary symbolic labels given to the two point clouds corresponding to the two objects.

routine may be required to estimate this.

We assume that the background has already been segmented from the data, leaving

a point cloud PN ⊆ PM, with N ≤ M. PN is thus the subset of PM, where every point

belongs to one of the objects in the scene.

Finally, we require that the various objects in the scene be segmented. This is the

process of assigning a single class identity ci to each point in the cloud, depending on

the object to which that point belongs. This has been the subject of much previous

work, using a number of different techniques based on various properties of the point

clouds (e.g. Jiang et al. (2000)), and so will not be discussed here in depth. However,

as it is an important part of the preprocessing of our algorithm, one simple procedure is

given in Section 2.3.3. This procedure determines class identity as a function of point

colour: ci = f (ri,gi,bi), and is sufficient for our purposes, although it is somewhat

unsophisticated.

A potential difficulty would arise if the objects are incorrectly segmented. How-

ever, as we discuss further in Section 2.5, it may be reasonable for segmentation to fail

in this way, as object identities in a static image may not even be correctly determined

by a human, without the ability to perturb the scene. Nevertheless, the algorithm re-

turns a potential interpretation of the scene that could actually be useful, for example

to seed a motion plan.

The colour information is not required by our algorithm, and so is discarded. Hence
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the input to our algorithm is the combination of spatial information and object identities

of each point in the cloud: P̃N = {(xi,yi,zi,ci)}, for i = 1 . . .N. The final assumption

we make is that this scene contains only two objects, i.e. ∀i,ci ∈ {0,1}. This simplifies

the demonstrations in this chapter, but is not a strong assumption. This assumption is

relaxed in Section 2.3.6, by considering objects in the scene in a pairwise manner.

2.3.3 Object Segmentation

We present one simple method for object segmentation, based on colour information

in the point cloud. This is possible if the objects in the scene are of different colours.

This strong assumption could be weakened by using a different segmentation method,

relying on factors such as discontinuities in the curvature of surfaces fit to the point

clouds, or assumptions based on the connectivity of regions of an object.

We normalise the RGB values of each point to reduce the effects of specularities,

discretise the RGB space using a three-dimensional colour histogram, and then cluster

the bins using the k-means algorithm. Setting k = 3 will generate three clusters, where

the largest two clusters correspond to the two objects being segmented, and the third

cluster absorbs remaining pixels from the background and shadows which may not

have been correctly segmented out by the background subtraction process. Note that a

larger value of k could be used if the number of objects was unknown, and any clusters

of size below some threshold could be discarded as noise. Misclassified points are

cleaned up by means of the k-nearest neighbours algorithm.

This process assigns each pixel pi in PN an identity ci = {0,1}, as belonging to

one of the two clusters each corresponding to an object, resulting in the segmented and

labelled point cloud P̃N .

2.3.4 Extracting a Contact Point Network

The abstracted representation of the objects in a scene is useful as a concise description

of the scene, and for reasoning about the structure of the environment. Furthermore,

this representation also aids in classifying the relationships between the objects, as

shown in Section 2.3.5. This representation is known as a contact point network for

each object. We now describe the process for constructing these networks.

Given the labelled point cloud P̃N = {pi} = {(xi,yi,zi,ci)}, divide this into two

distinct point clouds representing the two objects depending on the class identities ci,

such that object O j = {pi|ci = j} with j = {0,1}, giving that P̃N = O0∪O1. We do not
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require a completely clean segmentation of the point clouds into the two objects, and

the boundary may be noisy and slightly misaligned from the actual object boundaries,

provided the noise does not qualitatively change the relationship between the objects.

The first step is to identify the contact regions between the two objects. This is done

by training a support vector machine (SVM) to classify the two (already separated)

objects, by defining a decision boundary between the classes which maximises the

margin, being the smallest distance between any of the training points and the decision

boundary (Bishop, 2006).

A conventional use of an SVM as a classifier might use features of the scene to

classify whether or not a given test scene represents a particular predicate. Instead, we

are using the property that an SVM also efficiently computes the geometric separator

between two point sets, by classifying points as belonging to one of these two sets,

which in this case are objects. The support vectors are thus in our case the features

which are extracted from the data by the SVM, giving the contact points as markers of

the geometric separators.

The training data provided is the combined dataset O0∪O1, which is labelled by

object identities. As the data to be classified is in the form of two objects, it can

be assumed that they are likely to form two regions (although each object may actu-

ally consist of multiple disconnected regions if it is obscured), with some unknown

relationship between them. For this reason, we assume the objects are non-linearly

separable, and so use a radial basis function (RBF) as the kernel in the SVM. An RBF

is used as it is a nonlinear kernel with a localised response, and so is well suited to real-

world objects, where the bulk of their mass is situated in closed regions with nonlinear

boundaries.

The support vectors define the boundaries of the two objects. Let the support vec-

tors for object O i be vi. They are dense at any points where the two objects touch

(or come near to touching) as these are regions where the boundary definition requires

a high level of precision. Support vectors are also sparsely scattered around the sil-

houette of the object, as the contours of the decision boundary are defined with low

precision in these regions. This is particularly true when the objects have a highly

nonlinear boundary between them. As a result, regions of the object with a high con-

centration of support vectors are regions of the object at which the object is potentially

in contact with another object. Furthermore, if the objects are far away from each other

in some direction (relative to their sizes), very few if any support vectors are identified.

Clustering the support vectors vi within an object provides a cluster at each (poten-
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tial) point of contact between O i and another object, with additional clusters of outlier

points from the boundary of O i. The centroids of these clusters are known as the set

of contact points {χi
k}, k = 1 . . .K of the object. In practice, clusters are discarded if

the number of support vectors in the cluster is below some user-defined threshold (a

threshold of 7 was used in our experiments, but this parameter is somewhat dependent

on the resolution of the data used).

The contact point network of an object O i is defined as a graph CPNi, where the

nodes are the K contact points {χi
k}, k = 1 . . .K, and the edges e(χi

m,χ
i
n), m 6= n are

the edges of the minimum weighted spanning tree (MWST) covering {χi
k}, with the

weights given by the Euclidean distances between the nodes.

An object’s contact point network provides an abstracted representation of the ob-

ject as a skeletal structure, based on the regions of the object where it comes into

contact with another object in the scene. Although the contact points themselves con-

vey information on the relative positioning of objects in a scene, the edges of the graph

are useful firstly for identifying regions of an object which could be searched for grasp

points, and secondly provide more structure to the representation. These graphs are

useful for maintaining coherency of an individual object, as well as for determining

when one composition of objects is a substructure of another. This is discussed further

in Section 2.5. As a result, any of a number of algorithms could be used to construct

these graphs, provided they are consistent across scenes.

2.3.5 Learning Relationships

Having extracted a contact point network from a pair of objects, we next establish the

spatial relationship between these two objects. This relationship describes, in symbolic

terms, the physical positioning of the one object relative to the other in the scene. We

may wish to infer that “A is on B”, or that “C is under as well as adjacent to D”.

Given the contact point networks for two objects, CPNi and CPN j, consider all

pairs of contact points (χi
m,χ

j
n). Let the displacement between these contact points be

dmn = χi
m− χ

j
n. This gives the oriented displacements of the two regions of the ob-

jects corresponding to those contact points. By definition, if the objects touch along

some interface, then both objects must have a representative contact point for that re-

gion. Those contact points will then have a small separation displacement dmn, with

the distance and orientation defining the spatial relationship between the objects. The

problem of classifying this spatial relationship has then been reduced to the problem
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of classifying dmn ∈R3. Although these displacement vectors may not be sufficient to

capture every spatial relationship that exists in an environment as a result of, for ex-

ample, large occlusions, the use of these contact points and the displacements between

them provides us with a useful representation for abstracting a scene.

Taking a supervised learning approach to this classification requires a set of training

data, that is, a set of point cloud images of pairs of objects, where the relationships be-

tween the objects have been provided. This input data is thus a set of triples, consisting

of object pairs and relations, {(O i,O j,ri j)}, where ri j is a symbolic label for a relation-

ship that exists between the two objects. By the same procedure described above, the

separation displacements can be extracted from the training images, and then labelled

by the provided relationships. Call this set of labelled displacement vectors from the

training data {(di j,ri j)}= D .

To then classify the new separation displacement dquery a method such as k-nearest

neighbours can be used to assign a label to dquery based on the most commonly occur-

ring labels of the closest training points to dquery from D . These labels are selected

as the result of a voting scheme from the labels of the nearest neighbours. The vari-

ance of the labels provided by the nearest neighbours can then be used as a measure

of confidence: the system is more confident of a solution if every neighbour proposes

the same particular label, than if only 50% of them proposed that label. This acts as a

quality measure of the output of the system in the form of predicted relationships.

Consider a training image with a pair of objects, O0 and O1, where CPN0 has M0

contact points and CPN1 has M1 contact points. There will be a total of M0M1 sep-

aration displacements for the object pair, {dmn}, m = 1 . . .M0, n = 1 . . .M1. Each of

these will receive the same relationship label r01, as this label is provided at the level

of objects, rather than regions. There is however probably only a single separation

displacement which conveys this information accurately describing the spatial rela-

tionship. As a result, M0M1−1 spurious separation displacements will also carry the

label r01, even though they do not describe that particular relationship. These could

enable the erroneous classification of a new object pair through dquery.

To overcome this issue, consider a threshold ω ∈R. A labelled separation distance

dmn extracted from the training data would only be added to D if |dmn| ≤ ω. This

prevents the incorporation of displacements which are far from each other in the scene,

although this threshold is dependent on the data. An alternative method for overcoming

this problem is to weight the contributions of the k-nearest neighbours in classifying a

label for dquery, by the inverse of the distance from dquery. This separation threshold is



Chapter 2. Spatial Relationships 25

a context dependent, and therefore tunable, parameter.

A concise description of the entire spatial relationships and abstraction extraction

algorithm is given in Algorithm 1.

Algorithm 1 The spatial relationships and topology extraction algorithm
Require: A 3D point cloud with pre-segmented background P, and the labelled train-

ing data D
1: [O0,O1]←− segment-objects(P)

2: svm←− train-svm(O0,O1)

3: [v0,v1]←− extract-support-vectors(svm)

4: for each object k do
5: χk←− cluster(vk)

6: ek←− minimum-weighted-spanning-tree(χk)

7: CPNk←− (χk,ek)

8: end for
9: rel←− /0

10: for (χi,χ j), χi ∈ CPN0, χ j ∈ CPN1 do
11: di j←− χi−χ j

12: d←− nearest-neighbours(di j,D)

13: r←− voted-common-labels(d)
14: rel←− rel∪ r

15: end for
16: return a contact point network for both objects in P, CPN0 and CPN1, as well as

the symbolic relationship rel between the objects

As an alternative to taking a supervised approach to classifying the relationships,

they could instead be learned in an unsupervised manner. A similar approach of the

unsupervised learning of relationships from data is seen in work such as that of Galata

et al. (2002). Under this approach, labels are not provided for the training data. Instead,

a set of separation displacements D are clustered, using an algorithm such as x-means

(Pelleg and Moore, 2000) to determine the number of clusters as well as the cluster

locations. This approach does not suffer from the problem of spurious labelled data

points. Each cluster is then interpreted as a unique binary relationship between two

objects. These relationships can be assigned arbitrary names, as relk, k = 1 . . .K for K

relations, such that relk : O×O→{T,F}.
The primary advantage of an unsupervised approach, apart from removing the need
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to generate training labels, is that the system would acquire those relationships present

in the data, meaning that different relationships could be discovered to those expected

by people (with their own prior knowledge of space). On the other hand, the system

may not as easily be able to disambiguate between similar, yet different, configurations

(consider that “on” and “adjacent” could appear very similar if one object rests against

another at an angle).

2.3.6 Extensions to Multiple Objects

The procedure outlined in the previous section describes ways in which objects can

be abstracted into their contact point network skeletons, and further that the spatial

relationships between the objects can be determined from these networks. This was

all done by considering only a pair of objects at a time. Considering larger groups of

objects is a straightforward extension.

For a set of objects in a scene, the algorithm is extended to generate contact point

networks by considering all pairs of objects in the scene. The question is then how

to merge the networks generated for a particular object when considered together with

other objects. The solution is to collect the set of all contact points from every different

network representation of a single object, and then build a new network from these

points.

Let CPNi| j denote a contact point network of object O i extracted by the algorithm

when considered together with object O j. Now CPNi| j 6= CPNi|k, for O j 6= Ok. This

is because the two other objects cannot interface with O i in the exact same way, and

hence give rise to different skeleton representations of O i.

Merge CPNi| j and CPNi|k to give CPNi|( j∪k) by combining the two sets of con-

tact points. Formally, let CPNi| j have Mi| j contact points {χi| j
m }, m = 1 . . .Mi| j and

CPNi|k have Mi|k contact points {χi|k
n }, n = 1 . . .Mi|k. When merged, CPNi|( j∪k) then

has Mi|( j∪k) = Mi| j +Mi|k contact points {χi|( j∪k)
p }, p = 1 . . .Mi|( j∪k). The edges of

this merged contact point network are created by constructing a minimum weighted

spanning tree over the combined set of nodes, with the weights of the edges in the tree

determined by Euclidean distances between the nodes.

A simple illustrative example of combining two contact point networks for a sin-

gle object is shown in Figure 2.2. This demonstrates how a scene consisting of three

objects will be processed by the algorithm. The scene is described as: a ball A rests

on a block B, which in turn rests on the ground G. Processing objects A and B gives
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Figure 2.2: A simple illustrative example of combining contact point networks. Filled

circles represent contact points. Solid lines are parts of the skeleton of an object, and

dashed lines show relationships between two objects. (a) The base configuration of

the scene. (b) Processing of objects A and B. (c) Processing of objects B and G. (d)

Combining the information extracted from these two steps.

one contact point in each object, which is enough to infer on(A,B). Similarly, process-

ing objects B and G gives one contact point in each object, which is enough to infer

on(B,G). Combining the information extracted from these two steps, gives a symbolic

description of the scene as {on(A,B),on(B,G)}, as well as a two-node topological de-

scription of B. This represents how the object B is used in this particular scene, rather

than describing any distinctive properties of B itself.

2.4 Experiments

2.4.1 Classifying Relationships

In order to validate our algorithm, we present the following demonstration: the al-

gorithm is run on the segmented point clouds generated from a set of stereo images

captured in our lab. Firstly, we show that given a set of training data, the relation-

ships between two new objects can be correctly classified by our algorithm. Secondly,

we show that the contact point networks extracted from the objects convey interesting

topological structure, which may aid manipulation. Finally, we demonstrate the effect

of merging contact point networks, as described in Section 2.3.6.

For our experiments we used the following hardware configuration to acquire our

images: a stereo capture rig was constructed of two 8.0 MPixel Canon EOS 350D

cameras, calibrated and using the maximum level of magnification supported by the

standard EF-S lens (0.28m closest focus distance). Dense registered range and colour

data was collected using a Dimensional Imaging system. Intensity images have a spa-
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tial resolution of 3456× 2304 pixels, inter-pixel spacing is 25pixel/mm. RMS depth

error is around 0.03mm. Although the resolution used in these images was high, the

results appeared fairly robust when randomly discarding up to 70% of data points.

For the first experiment, we gathered a set of 128 stereo images, each consisting

of a pair of objects. The objects varied greatly in shape, colour and texture, with the

selected objects including a golf ball, blocks of various dimensions, a stone, a cloth,

a piece of aluminium foil, and several plastic and furry childrens’ toys. The range of

objects used demonstrate that the algorithm is not particular to planar surfaces or con-

vex volumes. In each case a blue material backdrop and table cover was used. This

allowed for automated mask generation for background segmentation by the Dimen-

sional Imaging software, as a part of the process of registering the stereo image pair

from the two cameras and converting the output into a three-dimensional point cloud.

A selection of the images which were photographed and used is shown in Figure 2.3.

This experiment aimed at examining two core example relations: adjacent(·, ·)
and on(·, ·). The adjacent relation is considered in this case to mean that two objects are

visually next to each other in the static scene, i.e. an object A is either to the left or the

right of another object B, and so adjacent(A,B) = left-of(A,B)∪right-of(A,B).
For each image I j with objects O j0 and O j1, a label r j ∈ {0,1}2 was prepared, where:

• r j(0) = 1 if (O j0 on O j1)

• r j(0) = 0 if (O j0 not on O j1)

• r j(1) = 1 if (O j0 adjacent to O j1)

• r j(1) = 0 if (O j0 not adjacent to O j1)

Representing the relations as a vector of labels allows for cases where one object

is both on and adjacent to the other object (possibly at different places). Using this

label representation scheme, there are thus four ways in which one object can relate to

another: on, adjacent, on and adjacent, none. In practice, all of the images we used in

our experiments had one of these four relationships existing between the two objects.

Note that for any image where the distance between the two objects is great, there

would be no contact points in either object, and as a result no displacement vectors

would be generated.

The implementation of the algorithm was in MATLAB, using the external SVM-

light implementation of Joachims (1999). In practice, this implementation was suffi-

cient to process an entire image in well under a second on a dualcore desktop computer.
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Figure 2.3: A subset of 12 of the object configurations used. A total of 128 such images

were used in our experiments. In all cases the images shown are those which were

photographed by the left camera of the stereo system. Some of the images are darker

with less contrast as these photographs were taken in a second session with different

lighting conditions.

Each image in the dataset was run through the algorithm, and the separation dis-

placements dmn were extracted. A plot of these displacements is shown in Figure 2.4.

These carry the labels assigned to the spatial relationships between the objects in the

images. Several features are clearly visible in this data. Firstly, there is a defined clus-

ter describing the on(·, ·) relationship, centered at (0,−0.5). Secondly, there is a broad

band of points above y =−0.1 which corresponds to the adjacent(·, ·) relation. Note

that this incorporates both left-of(·, ·) and right-of(·, ·), represented respectively

by those displacements with a negative or a positive horizontal component. Object

pairs which exhibit both on and adjacent at different points should contribute dis-

placement vectors to both classes.



Chapter 2. Spatial Relationships 30

Figure 2.4: A plot of the x-y projection of the 3D separation displacements dmn for the

128 images of object configurations used as training data. Each point corresponds

to a vector starting at the origin and ending at that point, and is labelled according to

the relationship exhibited in the corresponding image, being on(·, ·), adjacent(·, ·) or

on-and-adjacent(·, ·).

We tested the classification ability of this method by using each image of the train-

ing set as a testing image, in a leave-one-out cross-validation test. The procedure used

was as follows: for each image I j, we removed that image from the dataset. Using the

remaining training data, we classified the relationships between the objects in I j by

considering the nearest neighbours (the number of neighbours considered in our ex-

periments was 4, but this parameter could be changed) to the separation displacements

from that image. For the cases where there are two relationships between the objects in

the image, indicated by the presence of multiple separation displacements, we consid-

ered the union of the predicted values. So if one separation displacement was classified

as on and another as adjacent, the description of the relationship between the objects

was (on and adjacent). Note that the label r j ∈ {0,1}2 in each case. As each test

image was selected from the set of training images, we compared the predicted results

to the true results. This is shown in Figure 2.5.

As may be expected, the method suffered most at the interface between the two
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Figure 2.5: A comparison of the true and predicted object relationships

clusters. This is indicative of the fact that humans often struggle to cleanly differentiate

between these relations. For example, two objects leaning against each other could be

described as either on or adjacent. The confusion matrix of the predicted and true

labels is:

Actual

on adjacent both none

on 64 6 13 0

Predicted adjacent 2 20 5 0

both 4 5 12 0

none 0 1 0 0

As can be seen, the cases with which the algorithm had the most difficulties were

those when both relationships were present. These were often misclassified as being

on. We can explain this problem by considering two cases for when one object may

be both on and adjacent to another. The first is if these two relationships occur at

disjoint regions in the object. This will give rise to a pair of separation displacements,

one at the interface described as on and the other at the adjacent regions. On the

other hand, one region in an object may be both on and adjacent to the same region

in another object. In this case, the separation displacement would not be classified as
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either relationship, but rather an intermediate one.

The input data set of 128 images was then randomly divided into a training set of 95

training images, and 33 testing images, corresponding to 116 training relationships and

49 testing relationships respectively, as each object pair may contact multiple contact

points. Again using k-nearest neighbours, with k = 4, it was found that 40 of the

49 test relationships had their on component correctly determined, and 39 of the 49

test relationships had their adjacent component predicted correctly. Using the naı̈ve

confidence measure of the percentage of the nearest neighbours with labels agreeing

with the predicted values, 28 and 18 of the respective predicted relationships agreed

with 75% of their nearest neighbours from the training set.

2.4.2 Contact Point Networks

In addition to classifying the relationships between objects, the algorithm abstracts the

pair of objects into two contact point networks. The advantage of this is that these

networks are representations of the objects in terms of how they interact with other

objects in the scene. These skeletons allow an agent interacting with the objects to

uncover the topological structure present in the individual objects, as well as the entire

scene, which could then be used by the agent to guide further interaction.

As an example of this principle, consider the two scenes in Figure 2.6. Both

scenes consist of an object resting on an L-shaped wooden block, but these objects

(two wooden blocks connected by a rotary joint, and a plastic toy goat) are very differ-

ent. However, in both scenes a hole is formed as a result of the interaction between the

two objects. This is clearly visible in the contact point networks of the objects in the

scene. In both cases, the algorithm has discovered a topological hole in the environ-

ment. This suggests that if, for example, an agent has a motion strategy to pick up the

top object from underneath for the first scene, it could use a similar motion strategy as

a candidate for performing this action in the second scene.

This demonstrates the ability of the algorithm to abstract complicated objects and

shapes down into the fundamental topological structure which arises from the way in

which these objects are used in this particular scene. Having extracted these structures,

there is a large body of literature which addresses the topologies of graphs (see for ex-

ample Cook and Holder (2007) and Carlsson (2009)), for operations such as detecting

commonly occurring sub-structure.
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Figure 2.6: Using contact point networks to discover topological structure in two scenes.

The algorithmic output is shown below each scene, where the points are the support

vectors for each object, and the open circles are the contact points. The common

topological feature – the hole – is emphasised.

2.4.3 Multiple Objects

Section 2.3.6 describes a method for extending the algorithm to cases where there are

more than two objects in the scene, which is to be expected from any real environment.

This extension involves examining the objects in a pairwise manner, and then joining

the contact point networks of the same object, provided by its interfaces to various

other objects in the scene.

Two examples of scenes with multiple objects are shown in Figure 2.7. The first

instance shows three objects stacked above each other, with the result that instead of

each skeleton being a single point, these two points are merged into one skeleton of

two nodes for the central object. The second instance actually represents a failed seg-

mentation, where two objects are incorrectly segmented into three. The same skeleton

structure is observed in these two instances, showing that each object in the first scene
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Figure 2.7: Examples of processing more than two objects in a scene. The point clouds

are shown, with the skeletons of the objects.

has an equivalent object in the second scene, in terms of the structural use of that object

in the scene. Note that even with the failed segmentation, a viable interpretation of the

structure of the scene is extracted.

Clearly, in cases such as those in Figure 2.7, the objects as well as the contact points

that are detected by the algorithm are only candidates, and may not actually correctly

reflect the scene’s structure. These could perhaps be disambiguated by motions, such

as moving components of the scene and observing which objects move consistently

together. Nonetheless, the structural abstraction in both cases mirrors the essence of

the scene.

2.5 Discussion

The algorithm presented in Section 2.3 generates two different representations of a

scene. Firstly, the spatial relationships between the different objects in the scene are

extracted as symbolic predicates, and secondly the topological structure of the objects

in the scene is constructed, as determined by these inter-object interactions.

The symbolic relationships between objects define the structure of an environment,
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and as a result, learning these relationships and being able to identify them in a static

scene has important ramifications for planning and learning the effects of actions, as

done in the work of Pasula et al. (2007). All of this builds towards a better understand-

ing of the overall structure and behaviour of the components of an environment, as

these relationships provide a means for describing changes in the relative positioning

of objects.

Similarly, these contact point networks are important for understanding the capabil-

ities of an individual object, or set of objects, and provide insight into the topological

structure of the environment. This enables reasoning and policy reuse at a coarser,

more abstract level, which is important in practice. This is in contrast to the approach

of first identifying an object from a database of known objects, as an agent may not

need to know exactly what an object is in order to use it.

This algorithm generates a layered representation of a scene, shown in Figure 2.8.

At the lowest level is the point cloud, which consists of the most information, and is

the direct output of the perception system of the robot acting in that environment. This

level is useful for predicting collisions between the robot and object, and other low

level control functions.

Figure 2.8: An illustration of the layered scene representation

The next level is the contact point network, which provides a manipulation robot

with a set of candidate points and edges for interacting with the objects, as well as

knowledge of similarities in structure of different parts of the scene. Finally, the rela-

tional predicates provide the robot with symbolic knowledge of the inter-object rela-

tionships, which can be easily used in plan formulation.

There are many useful mechanisms for reasoning about the relationships between

objects and parts of objects, such as the spatial calculus of Randell et al. (1992). Logics

such as this do not describe how the elementary concepts would arise from data, and

our work attempts to bridge that divide by providing a semantic interpretation of a

scene in symbolic terms. Our algorithm provides a mechanism for identifying some
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of these relationships in a scene, and thus serves to ground this spatial logic calculus,

thereby allowing the calculus to be utilised by a robot.

Reasoning can also be done at the level of the topological structures observed in

the contact point networks in a scene. An example of this can be seen in the work

of Calabar and Santos (2011). Our algorithm again bridges the gap, and would allow

for the real-world versions of the spatial puzzles solved in this work, by identifying

holes and other structures in the topology of the puzzles. We are not only interested in

determining valid grasp points (Saxena et al., 2008), but are interested in the structure

of a scene as a whole.

In addition to each layer providing an agent with different means for reasoning

about a scene, another advantage to this layered representation is an increased robust-

ness to segmentation failures. The most likely cause of failure of this algorithm is a

result of its dependence on a relatively clean segmentation of the objects in the scene.

The method is robust to small noise-related errors in the segmentation, but is prone to

difficulties if, say, two parts of the same object are classified as being different objects,

or conversely if two separate objects are classified as being the same object. However,

as shown in Section 2.4.3, a plausible explanation for the structure of the scene will

still be generated. In fact, given that any objects may be fixed together in any scene by

glue or some other medium, only the incorporation of actions to perturb the scene such

as poking and prodding would lead to a guaranteed correct object segmentation.

For the first of these cases, the segmentation of one object into multiple parts, the

algorithm will still return the correct relationship between those parts, even if they do

not correspond to whole objects. For a static scene, this is still a plausible description

of the scene, even if not the most likely. A simple example of this is shown in Figure

2.9, where even though an object is incorrectly segmented, the relationships between

these regions are still correctly identified. Using a similar methodology to the inter-

active perception proposed by Katz and Brock (2008), a robot manipulating in that

environment may discover that even when subjected to various forces, the relation-

ships between these parts remain constant. Using this observation, the parts could be

conceptually merged into a single object. This remains the subject of future work.

Similarly, if two objects have not been separated and are instead considered as a

single object, this is also a possible description of a single scene. When these objects

are acted on, the relationship between them is likely to change, and thus the second

object could be detected. In fact, it often happens that two objects only become dis-

tinguishable to a human under action, such as two adjacent papers on a desk, or a
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Figure 2.9: Relationships between incorrectly segmented objects. The object on the

left was incorrectly subdivided into two different objects.

stick-insect in a tree.

This algorithm is somewhat related to the idea of bootstrap learning, as expounded

by Kuipers et al. (2006). This paradigm aims at developing a set of methods whereby

agents can learn common sense knowledge of the world, from its own observations and

interactions with that world. There has already been much success in agents learning

reliable primitive actions and sensor interpretations, as well as recognising places and

objects. Our algorithm provides that same agent with a mechanism for learning about

the different spatial relationships between those objects.

As an example of this, consider Figure 2.10. This shows two different scenes, each

consisting of three objects stacked on each other. While stacking in the first scene

involves each object having only one point of contact with the object below it, the

second scene has two contact points between the topmost object and the one below it.

The abstract skeletal structure of the first scene in the form of its contact point network

can be seen here to be a subgraph of the skeleton of the second scene.

As a result of the first scene being a subgraph of the second, an agent operating in

the space of these scenes can seed its behaviour in the case of the second scene with

the behaviours it used in the first scene, e.g. grasp points. Furthermore, the additional

components of this new structure over the previous one afford the agent new regions
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Figure 2.10: Example of one structure as a substructure contained in another. Without

the inclusion of the objects under the dotted ellipse, the structure of the second image

is topologically equivalent to that of the first. The skeleton of the first image is thus a

subgraph of the second.

on the pile of objects to manipulate through exploratory actions.

2.6 Conclusion

In order for a robot to be able to manipulate objects in a meaningful way within an

environment containing spatially interacting objects, it must possess knowledge of how

the different objects in that environment are used in that environment, as well as how

they relate to one another. The set of spatial relationships between objects is the glue

which holds a scene together, and allows for differentiation between a set of items, and

a structured environment.

We propose an algorithm for learning a layered representation of an environment,

including a structural abstraction as well as these spatial relationships, and being able

to classify them in either a supervised or an unsupervised manner. The algorithm finds

regions of contact between pairs of objects, known as contact points, by locating areas

where there is a small margin of geometric separability between the objects. Con-

structing a graph from these contact points results in a contact point network which

is a topological description of the role of that object in the current scene. These con-

tact point networks provide the agent with the ability to abstract objects into simpler

topological structures. Inter-object relationships are classified based on the separation

between contact points from the skeletons of two different objects.

The networks and the relationships provide a layered representation of a scene con-

sisting of multiple objects. This representation facilitates reasoning about the objects
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at different levels, through the use of planning mechanisms, as well as searching for

common structure in different environments to seed behaviours and thus significantly

reduce the search space for motion synthesis. This could enable a robot to perform

comprehensive tasks in a manipulation environment.



Chapter 3

Action Priors for Domain Reduction

Parts of the work presented in this chapter also appear in: Rosman and Ramamoorthy

(2012a), Rosman and Ramamoorthy (2012b), and Rosman and Ramamoorthy (2014).

3.1 Introduction

Consider some learning agent, such as a robot, operating in a building for a prolonged

period of time. This robot is required to perform multiple tasks in this domain, for

example couriering different items to different people around the building, monitoring

access to certain areas, etc. The difficulty with this setting is that not only are these

tasks varied, but their specifications are also not completely known a priori, e.g. goal

states may differ between tasks.

It is clear that this robot would need to learn to perform a number of different

tasks. However, we wish to accelerate this learning via transferring knowledge. When

approaching a new task, the robot should be able to reuse knowledge from having

experienced other tasks. The challenge here is how to organise this experience so as

not just to store vast numbers of behaviours which are tailor-learnt to specific tasks.

Instead, we desire some mechanism for generalisation.

Although the agent may be learning different tasks, the fact that they exist within

the same environment means there is some underlying structure common to all of them.

It is this structure we wish to exploit to facilitate faster learning through forming better

abstractions of the domain. Hence, we are interested in building agents capable of

learning domain invariances. Invariances in this sense act as a form of common sense

knowledge of the domain: these are elements which are generally common to a large

class of behaviours. This form of knowledge can provide insights into learning what

40
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not to do in particular situations, e.g. learning to avoid behaviours in a simulator which

may not be realisable on a real system (Koos et al., 2013). In this way, we are interested

in a form of model learning, where the model consists of the commonalities between a

set of tasks, rather than the reward structure for any individual task.

Learning new behaviours necessarily requires extensive exploration of the space of

possibilities. This is particularly the case when the specification of the task (given by

the exact reward structure) is difficult to obtain, such as in the case of delayed reward

reinforcement learning. We want to address this problem through the observation that

different behaviours have commonalities at a local level. Our goal is thus to be able

to inject weak knowledge into the problem, which is a prior of sensible behaviours

in the domain, and can be learnt autonomously from previous tasks. To this end we

introduce the notion of action priors, which are local distributions over the action sets

of a learning agent, that can be used to bias learning of new behaviours.

Learning action priors equates to finding invariances in the domain, across poli-

cies. The invariances in which we are interested are the aspects of the domain that

the agent treats in the same way, regardless of the task. For instance, when one is

driving a car the “rules of the road”, techniques for driving the car, and interaction pro-

tocols with other vehicles remain unchanged regardless of the destination. Learning

these domain invariances is useful in a lifelong sense, as it factors out those elements

which remain unchanged across task specifications. We thus regard this as a form of

multitask learning (Thrun, 1996a; Caruana, 1997) where the agent is required to learn

to generalise knowledge gained from solving some tasks, in discovering their built-in

commonalities, to apply to others.

The key assumption we are leveraging in this work is that there is certain struc-

ture in a domain in which an agent is required to perform multiple tasks over a long

period of time. This is in the form of many local situations in which, regardless of

the task, certain actions may be commonly selected, while others should always be

avoided as they are either detrimental, or at best do not contribute towards completing

any task. This induces a form of local sparsity in the action selection process. By

learning this structure throughout a domain, when posed with a new task an agent can

focus exploratory behaviour away from actions which are seldom useful in the current

situation, and so boost performance in expectation. We note that extracting this struc-

ture gives us weak constraints in the same way as manifold learning (Havoutis and

Ramamoorthy, 2013).

Action priors allow a decision making agent to bias exploratory behaviour based



Chapter 3. Action Priors for Domain Reduction 42

on actions that have been useful in the past in similar situations, but different tasks.

This formalism additionally provides a platform which can be used to inject external

information into the agent, in the form of teaching.

We pose this framework within a reinforcement learning context, but note that it is

applicable to other decision making paradigms. Indeed, we argue in Section 3.5 that

this mechanism resembles techniques which humans are believed to invoke in order to

facilitate decision making under large sets of options (Simon and Chase, 1973).

3.1.1 Contributions

The main problem we address in this chapter is that an agent learning to perform a

wide range of tasks in the same domain is essentially relearning everything about the

domain for every new task, and so learning is slow. We thus seek a middle ground

between model-based and model-free learning, where a model of the regularities in

behaviours within a domain can be acquired.

Our approach to tackling this problem is to extract invariances from the set of tasks

that the agent has already solved in the domain. The specific invariances we use are

termed action priors, and they provide the agent with a form of prior knowledge which

can be injected into the learning process for new tasks.

Additionally, we show

• that this approach corresponds to minimising, and thus simplifying, the domain,

• an alternative, but weaker, version of the action priors which is suitable for

changing domains and partial observability,

• a method for selecting domain features so as to maximise the effect of these

priors,

• that action priors are based on mechanisms which are cognitively plausible in

humans,

• a different application of action priors, where they are used to provide advice to

other agents.

3.1.2 Chapter Structure

This chapter is structured as follows. We introduce our core innovation, action priors,

in Section 3.2. We then discuss how action priors can be used in scenarios where the
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structure of the domain changes, and use this reformulation to perform feature selection

in Section 3.3. We demonstrate our methods in experiments in Section 3.4, discuss the

relation of our approach to psychological findings in human behaviour in Section 3.5,

and present additional related work in Section 3.6. Finally, in Section 3.7 we provide

an application of action priors being used to advise other agents navigating around a

common environment.

3.2 Action Priors

3.2.1 Preliminaries

In keeping with the standard formalism of reinforcement learning, we assume that an

environment is specified by a Markov Decision Process (MDP). An MDP is defined as

a tuple (S,A,T,R,γ), where S is a finite set of states, A is a finite set of actions which

can be taken by the agent, T : S×A×S→ [0,1] is the state transition function where

T (s,a,s′) gives the probability of transitioning from state s to state s′ after taking action

a, R : S×A×S→R is the reward function, where R(s,a) is the reward received by the

agent when transitioning from state s with action a, and γ ∈ [0,1) is a discount factor.

As T is a probability function, ∑s′∈S T (s,a,s′) = 1,∀a ∈ A,∀s ∈ S.

A Markovian policy π : S×A→ [0,1] for an MDP is a mapping from states to ac-

tions. The return, generated from an episode of running the policy π is the accumulated

discounted reward R̄π = ∑k γkrk, for rk being the reward received at step k. The goal

of a reinforcement learning agent is to learn an optimal policy π∗ = argmaxπ R̄π which

maximises the total expected return of an MDP, where typically T and R are unknown.

Many approaches to learning an optimal policy involve learning the value function

Qπ(s,a), giving the expected return from selecting action a in state s and thereafter

following the policy π (Sutton and Barto, 1998). Q is typically learnt by iteratively

updating values using the rewards obtained by simulating trajectories through the state

space, e.g. Q-learning (Watkins and Dayan, 1992). A greedy policy can be obtained

from a value function defined over S×A, by selecting the action with the highest value

for the given state.

3.2.2 State Based Action Priors

We define a domain by the tuple D = (S,A,T,γ), and a task as the MDP τ = (D,R,S0).

In this way we factorise the environment such that the state set, action set and transition
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functions are fixed for the whole domain, and each task varies only in the reward

function, and the set of initial states S0 ⊆ S. Given an arbitrary set of tasks T = {τ}
and their corresponding optimal policies Π= {π∗τ}, we wish to learn for each state s∈ S

a distribution θs(A) over the action set, representing the probability of each action in

A being used in an optimal policy in the state s, aggregated over tasks. This is then, in

subsequent tasks, used to prioritise the actions in each state.

Basing these preference distributions on state information equates to a fully ob-

servable problem, wherein the action prior depends on the complete state description.

We relax this and discuss the more general setting of conditioning the action priors on

some subset of observational features in Section 3.3.

The idea here is that by considering a set of policies, each of which selects actions

in the same state s according to different distributions, one can gain insights into prop-

erties of s. These insights are in terms of the “usefulness” of different actions in that

state. For example, if one action is favoured by all policies when in s, then that action

could be considered as very useful in s, and should be favoured during exploration.

Conversely, if an action is not selected by any policy in s, then that action is likely to

have negative consequences, and should be avoided. This notion thus informs weak

constraints on the policy at s, in that an action not selected by previous policies should

not be prioritised in solving future tasks.

To provide further intuition into how this distribution represents action “useful-

ness”, we say that an action a1 is preferable to an action a2 in a state s, if a1 is used

in s by a larger number of optimal policies than a2. The setting in which we study

the phenomenon of accelerated learning in a lifelong sense is that the tasks seen so

far are sampled from a distribution of all possible tasks, and are representative of that

task space. By studying the optimal policies that arise from multiple tasks in the same

domain, we aim to learn about the structure of the underlying domain, in terms of

identifying local behaviours which are invariant across tasks.

3.2.2.1 Combining Policies to Learn Priors

Consider the setting in which the agent has prolonged experience in the domain D.

This means the agent has had to solve a set of tasks in D, and we use the resulting set

of optimal policies to extract the action priors as a form of structural information about

the domain.

For each state s ∈ S in the domain, we model the action priors θs(a), ∀a ∈ A as a

distribution over the action set A, describing the usefulness of each action in optimally
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solving the tasks in T using the policies Π. To do so, we first define the utility of an

action a in a state s under a policy π as

Uπ
s (a) = δ(π(s,a),max

a′∈A
π(s,a′)), (3.1)

where δ(·, ·) is the Kronecker delta function: δ(a,b) = 1 if a = b, and δ(a,b) = 0

otherwise. As a result Uπ
s (a) = 1 if and only if a is the best (or tied best) action

in s under π. The reason that we use this formulation of a utility function rather than

Q(s,a), is that the values stored in Q(s,a) relate to the rewards allocated for the task for

which π is a solution. These values are thus relative, unlike those of Uπ
s which provide

a point-estimate of the value of an action in a state, and as such are comparable across

policies for very different tasks with different reward scales.

Now consider the utility UΠ
s (a) of an action a in a state s under a policy randomly

drawn from a policy library Π. This value is a weighted sum, given as

UΠ
s (a) = ∑

π∈Π

w(π)Uπ
s (a), (3.2)

where w(π)∈R is a weight over the policy π. We can use this weight either to measure

our confidence in the optimality of the policy π when the policies are provided by dif-

ferent agents, or can indicate a prior probability over the policies if they are not drawn

uniformly. The inclusion of this weight factor allows us to include suboptimal policies

in the formulation, by giving them lower weights. These weights could be normalised

to reflect probabilities, but they need not be, as the process for converting these utilities

to action priors accounts for normalisation of these terms (see discussion below). In

our experiments we do not assume to have knowledge about this distribution, and so

uniformly set w(π) = 1, ∀π ∈Π.

The fact that θs(a) is constructed from the policies solving a set of tasks T opens up

the possibility that T is not actually representative of the complete set of possible tasks

in D. We counteract this by forming an augmented policy set Π̂, defined as Π̂=Π∪π0,

where π0 is the uniform policy: π0(s,a) = 1
‖A‖ , ∀s ∈ S,a ∈ A. The utility of this policy

is then Uπ0
s (a) = 1, ∀s ∈ S,a ∈ A. In this case, the weight w(π0) is representative of

the likelihood of encountering a new task.

Given a state s, for each action a the utility of that action U Π̂
s (a) provides an esti-

mate of the value of the state-action pair (s,a) in D under the augmented policy set. We

thus choose actions according to these values. To select an action, we sample from a

probability distribution θs(A) = f (U Π̂
s (A)), such that a∼ θs(A). There are many ways

in which f may be defined, e.g.
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1. as a proportion: f (U Π̂
s (A)) = fp =

U Π̂
s (a)

∑a′∈A U Π̂
s (a′)

,

2. as a Boltzmann softmax distribution: f (U Π̂
s (A)) = fs =

exp{U Π̂
s (a)}

∑a′∈A exp{U Π̂
s (a′)}

,

3. as a draw from a Dirichlet distribution: f (U Π̂
s (A)) = fd ∼ Dir(U Π̂

s (a)).

Throughout the remainder of this chapter, we choose to model f as a Dirichlet

distribution, although these all remain valid choices. We base this choice on the fact

that the mean of the Dirichlet distribution is its normalised parameters which, as we

show in Section 3.2.2.2, is exactly the proportion fp.

We prefer both fp and fd to the softmax fs as we hypothesise that in situations

where a large number of prior policies have been encountered, small discrepancies in

action counts could explode under the exponential term, and as a result some viable

options would be explored considerably less than the prior advocates. Additionally,

any ‘max’ function is unlikely to provide the same exploration convergence guarantees.

We provide empirical validation for this choice in Figure 3.15 in Section 3.4.7.

3.2.2.2 Action Priors as a Dirichlet Distribution

For each state s∈ S, we choose to draw the action priors θs(a), ∀a∈ A from a Dirichlet

distribution conditioned on s. The Dirichlet distribution is parametrised by concen-

tration parameters (α(a1),α(a2), . . . ,α(a‖A‖))T and so for each state s, we maintain a

count αs(a) for each action a∈ A. The initial values of αs(a) = α0
s (a) are known as the

pseudocounts, and can be initialised to any value by the system designer to reflect prior

knowledge. If these counts are the same for each action in a state, i.e. αs(a)= k, ∀a∈A

this returns a uniform prior, which results in each action being equally favourable in

the absence of further information.

The pseudocounts α0
s (a) are a hyperprior which models prior knowledge of the

tasks being performed by the agent. If the variance in the tasks is expected to be small,

or alternatively a large number of training tasks are provided, then this hyperprior is

set to a smaller value. However, if there is great diversity in the tasks, and the agent

will not be expected to sample them thoroughly, then a larger hyperprior will prevent

the action priors from over-generalising from too little data.

We wish these counts to describe the number of times an action a was considered
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optimal in a state s, across a set of policies Π. We thus set

αs(a) = U Π̂
s (a) = ∑

π∈Π̂

w(π)Uπ
s (a) (3.3)

= ∑
π∈Π

w(π)Uπ
s (a)+α

0
s (a). (3.4)

This provides a natural intuition for the counts as the weighted utility of Π, and the

hyperprior is then α0
s (a) = w(π0).

Typically, one would not want to maintain a full library of policies. As a result, the

α counts can alternatively be learnt by the agent in an online manner as it learns the

solutions to new tasks. In this way, when the agent solves some task τt+1, the counts

for each state-action pair can be updated by the values in πt+1. This provides an online

version of Equation (3.3) as

α
t+1
s (a) ←−

αt
s(a)+w(πt+1) if πt+1(s,a) = maxa′∈A πt+1(s,a′)

αt
s(a) otherwise.

(3.5)

To obtain the action priors θs(a), sample from the Dirichlet distribution: θs(a) ∼
Dir(αs). Note that θs(a) is sampled as a probability distribution over A, and so ∑a θs(a)=

1, ∀s ∈ S.

This process could be viewed as a form of averaging the policies. However, naı̈ve

averaging is known to be problematic, and often gives detrimental results. Reward

functions may, in principle, differ by orders of magnitude, and an averaged policy may

not even be feasible. For example, given a state s in front of an obstacle, policy π1

may suggest moving around the obstacle to the left, while policy π2 indicates move-

ment to the right. Averaging suggests moving forward, straight into the obstacle. We

instead infer that both moving left and moving right are feasible choices to be later ex-

plored, whereas moving forward is never the correct choice. The action priors should

consequently place more weight on ‘left’ and ‘right’ than on ‘forward’, reflecting the

preferences elicited from π1 and π2. This knowledge is accumulated from the experi-

ence of different tasks.

Note that in Equation (3.5) we increment the α counts by w(πt+1), rather than the

probability stored in πt+1(s,a). This is because we are aiming to enumerate the actions

used by the different policies, rather than simply averaging the individual policies. This

form of averaging could result in the agent being drawn towards a local optimum in

state space, by one policy dominating others, and subsequently being unable to escape

from it.
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Figure 3.1: Example action priors learned for 7× 7 maze worlds, from 50 random op-

timal Q-functions. The indicated directions in each cell are those with a non-negligible

probability mass, but in every cell the agent has the choice of executing any of four

directional movements. Grey cells are obstacles, and white cells are free space.

Instead we weight each action by the number of independent tasks which require

the selection of that particular action, which is then used as a prior probability of that

action choice in that state over all tasks in the domain.

To illustrate instances of action priors learned from optimal policies, Figure 3.1

demonstrates the result of using our method on 7× 7 maze worlds, extracted from

policies which were the optimal solutions to 50 random navigation tasks. An arrow in

a cell is drawn in a direction only if any mass was allocated to that direction by any

policy. Note that this results in the “useful” actions of the domain, being the actions

that do not cause collisions with obstacles. The use of action priors effectively reduces

the set of actions from four in each cell to the subset which were useful in the training

tasks (55.26% and 63.16% of the full action sets respectively in the examples shown

in Figure 3.1).

3.2.2.3 Using the Action Priors

An action prior provides the agent with knowledge about which actions are sensible in

situations in which the agent has several choices to explore. As a result, they are useful

for seeding search in a policy learning process. We demonstrate this modified explo-

ration process with an adaptation of traditional Q-learning (Sutton and Barto, 1998),

called ε-greedy Q-learning with State-based Action Priors (ε-QSAP, first introduced

by Rosman and Ramamoorthy (2012b)), which is shown in Algorithm 2. Note, in this

algorithm, αQ ∈ [0,1] denotes the learning rate, and should not be confused with the
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Dirichlet distribution counts αs(a). The parameter ε ∈ [0,1] controls the trade-off be-

tween exploration and exploitation. Both αQ and ε are typically annealed after each

episode.

Algorithm 2 ε-greedy Q-learning with State-based Action Priors (ε-QSAP)
Require: action prior θs(a)

1: Initialise Q(s,a) arbitrarily

2: for every episode k = 1 . . .K do
3: Choose initial state s

4: repeat

5: a←−

argmaxa Q(s,a), w.p. 1− ε

a ∈ A , w.p. εθs(a)
6: Take action a, observe r, s′

7: Q(s,a)←− Q(s,a)+αQ[r+ γmaxa′Q(s′,a′)−Q(s,a)]

8: s←− s′

9: until s is terminal

10: end for
11: return Q(s,a)

The difference between this and standard ε-greedy Q-learning can be seen on line

5. This is the action selection step, consisting of two cases. The first case deals with

exploiting the current policy stored in Q(s,a) with probability 1− ε, and the second

case with exploring other actions a ∈ A with probability ε. The exploration case is

typically handled by choosing the action uniformly from A, but instead we choose

with probability based on the prior θs(a) to shape the action selection based on what

were sensible choices in the past.

The effect is that the agent exploits the current estimate of the optimal policy with

high probability, but also explores, and does so with each action proportional to the

number of times that action was favoured in previous tasks. This highlights the as-

sumption that there is inherent structure in the domain which can be identified across

multiple tasks.

Exploration thus occurs by randomly sampling actions according to the probabil-

ities that they are optimal, given the previously encountered tasks. Choosing actions

randomly in this way is an established action selection mechanism (Wyatt, 1997; Dim-

itrakakis, 2006) known as Thompson sampling (Thompson, 1933) which, rather than

being a heuristic, has been shown to be a principled approach to dealing with uncer-
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tainty (Ortega and Braun, 2013). As these probabilities relate to the domain, rather

than the current task, this is still traded off against exploiting the current Q-function.

3.2.3 Action Priors as Domain Reduction

We now show that extracting action priors from a set of tasks is equivalent to reducing

the transition system of the domain. To do this, we first define futile states and actions

in an MDP, as being the undesirable states and actions which do not further progress

towards any goal.

Definition 3.2.1 (Task Futile Action). For a domain D=(S,A,T,γ), a task τi =(D,R,S0)

and the corresponding optimal policy πi, let the task futile actions ABi ⊂ S× A be

the set of state-action pairs which are not selected as optimal under πi. Therefore,

ABi = {(s,a)|πi(s,a) 6= maxa′∈A πi(s,a′)}.

Definition 3.2.2 (Task Futile State). For a domain D= (S,A,T,γ), a task τi = (D,R,S0)

and the corresponding optimal policy πi, let the task futile states SBi ⊂ S be the set of

states which, under πi, appear on no paths starting in S0. These states are computed

as SBi = S \ SRi , where SRi are the states reachable in the domain under policy πi, as

computed in Algorithm 3.

Algorithm 3 Computing reachable states
Require: domain D = (S,A,T,γ), a task τi = (D,R,S0) and a policy πi

1: SRi ←− S0

2: repeat
3: Sold←− SRi

4: SRi ←− SRi ∪{ŝ ∈ S|T (SRi,πi(SRi), ŝ)> 0}
5: until Sold = SRi

6: return SRi

The concept of a futile state encompasses all states which are harmful to the agent

(e.g. trap states), as well as any states which are otherwise non-progressive towards the

goal of the agent, or are completely unreachable. Similarly, a futile action is one which

an optimal policy for that task would avoid taking, possibly owing to not being optimal

for that task. We now define the futile actions (states) of a domain as the intersection

of those for all tasks in the domain.
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Definition 3.2.3 (Domain Futile Action). For a domain D = (S,A,T,γ), and a set of

tasks T = {τi} with corresponding task futile actions ABi ⊂ S×A, let the domain futile

actions be AB =
⋂

i ABi .

Definition 3.2.4 (Domain Futile State). For a domain D= (S,A,T,γ), and a set of tasks

T = {τi} with corresponding task futile states SBi ⊂ S, let the domain futile states be

SB =
⋂

i SBi .

Given a domain D and a set of tasks T , the domain futile states SB and domain

futile actions AB are those which are consistently avoided by all optimal policies which

complete the tasks in T . We can then use these to define a task-set minimised domain.

Definition 3.2.5 (Task-Set Minimised Domain). For a domain D = (S,A,T,γ), a set

of tasks T = {τi} with corresponding domain futile states SB and domain futile ac-

tions AB , the task-set minimised domain under task set T is given by DT = (Ŝ =

S\SB ,A, T̂ ,γ), with

T̂ (s,a,s′) ←−

η(s,a)T (s,a,s′) if s ∈ Ŝ,(s,a) ∈ Â,s′ ∈ Ŝ

0 otherwise,

where Â = (S,A)\AB , and η(s,a) = 1
∑s′∈S T (s,a,s′) , ∀s ∈ Ŝ,∀a ∈ Â indicates normalisa-

tion of T , such that ∑s′∈S T̂ (s,a,s′) = 1, ∀s ∈ Ŝ,∀a ∈ Â.

The task-set minimised domain contains all states and actions from the original

domain which are non-futile. As a result, values in the state transition function tran-

sitioning from a futile state s, or using a futile action a are excluded. Additionally,

transitions from a non-futile state s with a non-futile action a into a futile state s′, are

not permitted by the definition of futile states.

Theorem 3.2.6 (Properties of a Task-Set Minimised Domain). If a set of tasks T in

the domain D are used to construct DT , then the following properties of DT hold:

1. The optimal reward achievable for each task in T can still be obtained in DT .

2. Each optimal policy πi used to achieve a task τi ∈ T in the domain D is optimal

for that same task τi in DT .

Proof. 1. The goals G ⊆ S of task τi, are the states which by the definition of τi

must be visited by the optimal policy πi in order for it to be optimal. Therefore,

G ⊆ SRi by definition, and so G does not contain task futile states, and so is in

the reduced MDP DT by construction.



Chapter 3. Action Priors for Domain Reduction 52

2. A policy πi has a zero probability of invoking a futile action, making these ac-

tions unnecessary, by construction. All states and actions reachable by this pol-

icy must, by construction, be included in DT . As optimal policy πi transitions

only through reachable states by definition, and all those states are contained in

DT , so must πi be valid in DT .

Proposition 3.2.7. Exploration will be safer in DT than in D, as DT contains fewer

trap states and dead ends than D.

Proof. Futile actions and states which are common to all tasks are excluded from the

reduced MDP DT by construction. This implies that fewer trap states will be accessed

during exploration, and those that remain are all reachable states, and thus on the path

to a goal state, for at least one task. Any states that remain must lie on an optimal

path.

Proposition 3.2.8. For an unknown task drawn from T , a learning agent will be ex-

pected to learn that task no slower in DT than in D, and possibly faster.

Proof. The number of state action pairs in the reduced MDP |(S,A)| ≥ |Â|, which

implies there are no more, but possibly fewer, possible states and actions to be explored

by the learning agent. With the resulting decrease in the size of the search space,

learning is necessarily faster.

These properties hold if every task encountered at test time was experienced during

training time, and so was incorporated into DT . In practice, this may not be the case,

and we compensate for this through the addition of the pseudo-counts α0. Assume

there is a complete set of tasks T , such that a subset Ts ∼ T have been sampled by the

agent during training. Assume also that for some new task, there is a goal state which

is futile given the tasks in Ts. In the worst case, there is a single action in a single state

which will transition into this new goal state. Thus, transitions from a state in ŝ ∈ Ŝ

with a single action leading to a state in SB will be made with probability

P(Ŝ−→ SB) =
α0

(|A|−1)(|Ts|+α0)+α0 (3.6)

in this worst case.

The effect of the probability in Equation (3.6) is that when no prior tasks have been

sampled (i.e. |Ts| = 0), this transition from ŝ will be explored with probability 1/|A|,
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as expected. As the number of tasks experienced for which SB is futile increases,

the probability of this transition decreases proportionally to 1/|Ts|. As a result, we

consider that there is a distribution over all tasks, which has been sampled to give the

current action prior. α0 must therefore reflect this sampling, and is chosen based on

the variability and diversity in tasks in the domain.

As a result, exploring using action priors is a form of safe exploration, which is

achieved in task N +1 by biasing exploration towards behaviours which have success-

fully been used in N related tasks in the same domain. The key assumption here is that

interaction with unsafe states and actions is consistent across all tasks, such that states

which are unsafe given one set of tasks cannot constitute goal states for others. Unsafe

states are the subset of SB and unsafe actions the subset of AB which cause a large neg-

ative reward, or even damage to the agent. This effect of safe exploration is evident in

the results presented in Section 3.4, through the higher initial rewards indicating both

an interaction with fewer negative reward states, and fewer failed episodes.

3.3 Priors from Observations

In Section 3.2.2, action priors were defined as distributions over actions, conditioned

on the current state. In this section we extend these definitions such that the action

priors are instead conditioned on observations.

There are several reasons for this representation change. The most obvious reason

for this is that the transition function T or even the state space S may not be task

independent, and may instead differ between task instances. This may be the case, for

example, when an agent is tasked with exploring buildings with different layouts. It

is not sensible to condition action priors on states, if the connectivity of those states

changes between task instances. Instead, the agent should condition action priors on

observable features of the states – features which would persist across tasks, even if

state identities do not. This representation change allows the action priors to generalise

to tasks in related environments.

Another justification for using observation based priors is that one may not al-

ways have full observability of s, meaning that different states cannot be uniquely

distinguished. This is the case in partially observable reinforcement learning problems

(Kaelbling et al., 1998) which typically require the solution of partially observable

Markov decision processes (POMDPs). State information, such as exact world coor-

dinates of some mobile robot, is not always accessible. Similarly, there may be states
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in S which have not been explored during training time, and so no action prior would

be available for these states, which could then be required at test time. In both these

scenarios, it is again sensible to instead base the action priors on whatever features of

the state are observed. The observation based action priors thus provide the ability to

transfer to unseen state and action combinations.

Basing these priors on observations rather than states involves changing the depen-

dence of θ from s ∈ S to φ : S −→ O, where φ is the mapping from state space S to

the observation (or perception) space O. The observed features of s are thus described

by φ(s). The state based priors can now be considered as a special case of observation

based priors, with φ(s) = s.

Note that we are not solving a partially observable problem, but are instead inform-

ing exploration based on some partial information signals. Using observations rather

than exact state descriptions allows for more general priors, as the priors are appli-

cable to different states emitting the same observations. This also enables pooling of

the experience collected from different states with similar observations, to learn more

accurate action priors. There is, however, a trade-off between this generality, and the

usefulness of the priors.

This trade-off is a function of the observation features, and the amount of action

information captured by these features. These, in turn, depend on properties of the

tasks and environments with which the agent is interacting. The more general the

observation features over which the action priors are defined, the less informative the

action priors will be. On the other hand, the more specific these features are (up to

exact state identification), the less portable they are to new states.

Both state and observation based action priors have their uses. For example, maze-

like environments stand to benefit from a state based approach, where entire wings of

the maze could be pruned as dead-ends, which is not possible based on observations

alone. Alternatively, in a rich environment with repeated structure, it is less likely

that the training policies will have sufficiently explored the entire space, and so it is

reasonable to pool together priors from different states with the same observations.

3.3.1 Using the Observation Based Priors

Changing the variables on which the action priors are conditioned from states to ob-

servations involves replacing s with φ(s) in Algorithm 2. When learning the action

priors, Equations (3.5) and (3.3) are also still valid, by again replacing s with φ(s).
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For convenience, we refer to this variant of Algorithm 2 as ε-greedy Q-learning with

Perception-based Action Priors (ε-QPAP), given in Algorithm 4.

Algorithm 4 ε-greedy Q-learning with Perception-based Action Priors (ε-QPAP)
Require: action prior θφ(s)(A)

1: Initialise Q(s,a) arbitrarily

2: for every episode k = 1 . . .K do
3: Choose initial state s

4: repeat
5: φ(s)←− observations(s)

6: a←−

argmaxa Q(s,a), w.p. 1− ε

a ∈ A, w.p. εθφ(s)(a)
7: Take action a, observe r, s′

8: Q(s,a)←− Q(s,a)+αQ[r+ γmaxa′Q(s′,a′)−Q(s,a)]

9: s←− s′

10: until s is terminal

11: end for
12: return Q(s,a)

Similarly to Equation (3.5), the α counts are learnt by the agent online from the

previous optimal policies, and updated for each (φ(s),a) pair whenever a new policy

πt+1 is available:

α
t+1
φ(s)(a) ←−

αt
φ(s)(a)+w(πt+1) if πt+1(s,a) = maxa′∈A πt+1(s,a′)

αt
φ(s)(a) otherwise.

(3.7)

The interpretation is that αφ(s)(a) reflects the number of times a was considered a

good choice of action in any state s with observations φ(s) in any policy, added to the

pseudocount priors α0
φ(s)(a).

The corresponding closed form of Equation (3.7) given a set of policies Π is then:

αφ(s)(a) = ∑
s∈[s]φ

∑
π∈Π

w(π)Uπ

φ(s)(a)+α
0
φ(s)(a), (3.8)

where Uπ

φ(s)(a) = δ(π(φ(s),a),maxa′∈A π(φ(s),a′)), and [s]φ = {s′ ∈ S|φ(s) = φ(s′)}
represents the equivalence class of all states with the same observation features as

state s. This additional summation occurs because in the general case, the priors from

multiple states will map to the same observation based action priors.
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To obtain the action priors θφ(s)(a), again sample from the Dirichlet distribution:

θφ(s)(a)∼ Dir(αφ(s)).

3.3.2 Feature Selection

The choice of the set of observational features is an open question, depending on the

capabilities of the agent. Indeed, feature learning in general is an open and difficult

question, which has been considered in many contexts, e.g. (Jong and Stone, 2005;

Lang and Toussaint, 2009). The possible features include the state label (as discussed

previously), as well as any sensory information the agent may receive from the envi-

ronment. Furthermore, these features can include aspects of the task description, or

recent rewards received from the environment.

As a result, in many domains, there could be a large set of observational features.

The size of Φ, the space of possible mappings, is exponential in the number of fea-

tures. We are interested in identifying the optimal feature set φ∗ ∈ Φ, which provides

abstraction and dimensionality reduction, with a minimal loss of information in the

action prior. Finding such a φ∗ allows for the decomposition of the domain into a set

of capabilities (Rosman and Ramamoorthy, 2012a), being recognisable and repeated

observational contexts, with minimal uncertainty in the optimal behavioural responses,

over the full set of tasks.

Let a feature fi be a mapping from the current state of the agent in a particular task,

to a set of values f 1
i · · · f

Ki
i . We can now set φ to be a set of these features. We abuse

notation slightly and for a particular feature set φi we enumerate the possible settings

of all its constituent features, such that φi = φ
j
i means that the features in φi are set to

configuration j, where these configurations are uniquely ordered such that j ∈ [1,Kφi],

where Kφi =∏q Kq, q is an index into the features of φi, and Kq is the number of settings

for feature q.

We wish to find a feature set which can prescribe actions with the most certainty.

To this end, we now define the average entropy of an action a for a particular feature

set φ as

H̄φ(a) =
Kφ

∑
i=1

P(φi)H[P(a|φi)], (3.9)

where P(a|φi) = θφi(a) is the value of the action prior for a particular set of feature

values, P(φi) is the prior probability of that set of feature values, estimated empirically

from the data as
∑a α

φi(a)

∑i ∑a α
φi(a)

, and H[p] = −p log2 p is the standard entropy. The prior
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P(φi) serves to weight each component distribution by the probability of that feature

combination arising in the data.

By summing the average entropy for each action, we define the entropy of the

action set A for a feature set φ as

Hφ = ∑
a∈A

H̄φ(a) (3.10)

= −∑
a∈A

Kφ

∑
i=1

∑a′∈A αφi(a′)

∑
Kφ

j=1 ∑a′∈A αφ j(a′)
θφi(a) log2 θφi(a). (3.11)

The optimal feature set is that which minimises the action set entropy. In this

way, what we seek is analogous to the information invariance which is present in the

observations of the agent (Donald, 1995). There is however a caveat with this simple

minimisation. The more features are included in the feature set, the sparser the number

of examples for each configuration of feature values. We therefore regularise the min-

imisation, by optimising for smaller feature sets through the application of a penalty

based on the number of included features. Finding the optimal feature set φ∗ is thus

posed as solving the optimisation problem

φ
∗ = argmin

φ∈Φ
[Hφ + c‖φ‖] (3.12)

where ‖φ‖ is the number of features in φ, and c is a parameter which controls for the

weight of the regularisation term.

The major problem with this computation is that the number of possible feature

sets is exponential in the number of features. We therefore present an approximate

method for selecting the best set of features. This is shown in Algorithm 5, which

returns the approximate minimal feature mapping φ̃∗ ' φ∗. The key assumption is that

each feature f affects the entropy of θφ(a) independently. For each feature f from the

full feature set φ f ull , we marginalise over that feature and compute the entropy of the

remaining feature set. Each of these ‖φ f ull‖ individual entropy values is compared to

the entropy of the full set Hφ f ull . The greater the increase in entropy resulting from

the removal of feature f , the more important f is as a distinguishing feature in the

action prior, as the addition of that feature reduces the overall entropy of the action

prior distribution. The feature set chosen is thus the set of all features which result in

an entropy increase greater than some threshold ω.

The increased generality from the use of observations invokes a connection to ac-

tive perception (e.g. Kenney et al. (2009)): certain behaviours only make sense in
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Algorithm 5 Independent Feature Selection
Require: feature set φ f ull , entropy increase threshold ω

1: Compute Hφ f ull by Equation (3.11)

2: for every feature f in φ f ull do
3: φ− f ←− φ f ull \ f

4: Compute Hφ− f by Equation (3.11)

5: ∆ f ←− Hφ− f −Hφ f ull

6: end for
7: φ̃∗←− { f ∈ φ f ull|∆ f ≥ ω}
8: return φ̃∗

the context of particular sensory features. If there is a high entropy in which actions

should be taken in the context of a particular observation, then there are two possible

reasons for this: 1) it may be the case that different tasks use this context differently,

and so without conditioning action selection on the current task, there is no clear bias

on which action to select, or 2) it may be that this observation is not informative enough

to make the decision, providing scope for feature learning. This distinction can only be

made in comparison to using the maximal feature set, as the most informative set of ob-

servation features. Without ground truth state information, this can only be ascertained

through learning. If the observations are not informative enough, then this suggests

that additional features would be useful. This provides the agent with the opportunity

for trying to acquire new features, in a manner reminiscent of intrinsic motivation (see,

e.g. Oudeyer et al. (2007)).

3.3.3 Online Feature Selection

Algorithm 6 describes the complete process for performing feature selection on an

online agent. The agent is repeatedly presented with a new task, solves that task, and

uses the new policy to refine its feature set.

Given a new task, the algorithm executes four steps. First, a policy is learnt using

the current action prior and Algorithm 4. This new policy is then used to update the

full prior. From the full prior, select features using Algorithm 5. Finally, extract the

action prior using the selected features by means of marginalising over the excluded

features.

As the feature selection is done using Algorithm 5, this requires a choice of ω. This

parameter is domain specific, but in our experiments we automate its selection as the
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Algorithm 6 Online Feature Selection
1: Let φ f ull be the full feature set

2: Initialise full action prior θ0
f ull

3: θ0←− θ0
f ull

4: for every new task t = 1,2, . . . do
5: Learn policy πt using prior θt−1 and Algorithm 4

6: Update θt
f ull using θ

t−1
f ull and πt with Eq. (3.5)

7: Select features φt from θt
f ull using Algorithm 5

8: Extract θt from θt
f ull , marginalising over f ∈ φ f ull \φt

9: end for

mean of the set of ∆ f values, as computed in Algorithm 5.

3.4 Experiments

3.4.1 Maze Navigation

Spatial navigation is one setting in which we believe an agent stands to make significant

gains by using action priors. Our first state-based experiment therefore takes place in

a 23× 23 cell maze where every second row and column is passable space, and the

remaining cells are obstacles, creating a lattice. This domain is shown in Figure 3.2.

Each task involves a random goal location which has to be reached by the agent, and

each episode of a task initialises the agent in a random location in free space. The set

of actions available to the agent is to move one cell North, South, East or West. The

state available to the agent is the unique number of the cell the agent is occupying.

Reaching the goal provides a reward of 100, and walking into a wall a reward of -10.

Rewards are discounted with γ = 0.95.

The nature of this maze world is such that in most cells, only two or three of the

available actions are beneficial (do not result in colliding with a wall). Typically, every

action is tried with equal probability during learning. However, any optimal policy

has already learned to avoid collisions, and it is this knowledge we transfer to a new

learning instance.

An example of the perception-based action priors learned from optimal Q-functions

is shown in Figure 3.1 in Section 3.2.2.2, although this figure demonstrates the result of

using our methods on 7×7 maze worlds (smaller than our actual 23×23 experimental
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Figure 3.2: The lattice domain

worlds for ease of visualisation), extracted from Q-functions which were the optimal

solutions to 50 random tasks.

The experimental procedure is as follows. We generate a set of tasks in the domain,

and allow the agent to learn the corresponding optimal Q-functions. We then extract

the action priors θs(a) from these, using the method described in Section 3.2.2, and

finally provide the agent with a new set of tasks which use the priors for exploration as

discussed in Section 3.2.2.3.

Figure 3.3 shows the improvement in convergence speed obtained through the ad-

dition of action priors. These results were averaged over learning of 10 different tasks,

and this speed-up was achieved using the policies obtained from 10 training task op-

timal policies. One important observation is that the ε-QSAP algorithm immediately

receives positive return, unlike Q-learning, as it has learnt to avoid harmful actions.

The results do not include the training times for ε-QSAP, which can be considered a

once-off overhead which need not be repeated for any future task. Alternatively, if the

priors are updated with each new task instance then ε-QSAP starts with no advantage,

but after 10 tasks achieves the performance benefits shown.

Note that the Q-learning baseline is equivalent to ε-QSAP with a uniform action

prior. Additionally, the fact that we are modelling the action prior as a Dirichlet dis-

tribution means that none of the action probabilities ever decrease to zero (assuming

they started with a uniform prior and α0
s (a) > 0,∀s,a). As a result, an action is never

wholly excluded from the action set, and so all convergence guarantees are retained.

The second experiment demonstrates the advantages of ε-QPAP in tasks with dif-
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Figure 3.3: Comparing the learning rates of Q-Learning with State-based Action Priors

(ε-QSAP) to Q-learning, in the 23×23 maze domain (shown in Figure 3.2). The results

are averaged over 10 different random tasks. The bars below the plot indicate episodes

taken for each method to reach 80% of optimal return. The shaded region indicates

one standard deviation, and the dotted magenta line is the average optimal return.

ferent state spaces and transition functions. The domain here was a similar 23× 23

gridworld, but instead of the lattice configuration, a random percentage of the cells

are obstacles, while preserving the connectivity of the free space. Example mazes are

shown in Figure 3.4.

In this domain, ε-QSAP is at a disadvantage, as the structure of the world differs

greatly between trials, and in particular the connectivity of each free cell may be very

different (if that cell indeed remains free between different trials). However, the per-

ceptual contexts of the agent remain the same across trials, and so any priors learned

for these percepts can be transferred between trials. We consider here simple percep-

tion of the occupancy of the 8 cells surrounding the current location of the agent. This

simulates a scaled down sonar, and results in a smaller observation space than the full

state space. The results are shown in Figure 3.5.
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Figure 3.4: Example world instances for the second experiment, with marked start and

goal locations.

As can be seen, the perception-based action priors (ε-QPAP) outperforms both

other priors (state-based as well as the uniform priors of Q-learning), with a signifi-

cant improvement in both initial performance and time to convergence. In this case,

uniform priors actually outperform the state-based priors which are clearly wrong for

this domain owing to the differences in Figures 3.2 and 3.4: they provide misleading

advice in the states that were free space in the original domain, and uniform priors for

the others.

3.4.2 The Factory Domain

The factory domain is an extended navigation domain that involves a mobile manipula-

tor robot placed on a factory floor. The layout of the factory consists of an arrangement

of walls through which the robot cannot move, with some procurement and assembly

points placed around the factory. Additionally there are express routes demarcated on

the ground, which represent preferred paths of travel, corresponding to regions where

collisions with other factory processes may be less likely. The domain used in these

experiments is shown in Figure 3.6.

The robot has an action set consisting of four movement actions (North, South, East
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Figure 3.5: Comparing the learning rates of Q-Learning with Perception-based Action

Priors (ε-QPAP), Q-Learning with State-based Action Priors (ε-QSAP) and Q-learning,

in the 23× 23 noise domain, with 50%-80% noise (shown in Figure 3.4). The results

are averaged over 10 different random tasks. The shaded region indicates one standard

deviation, and the dotted magenta line is the average optimal return.

and West), each of which will move the robot in the desired direction, provided there is

no wall in the destination position, a Procure action, and an Assemble action. Procure,

when used at procurement point i, provides the robot with the materials required to

build component i. Assemble, when used at assembly point i, constructs component i,

provided the robot already possesses the materials required for component i.

A task is defined as a list of components which must be assembled by the robot.

The domain has 9 components, and so this list can range in length from 1 to 9, giving

a total of 29−1 different tasks.

The task rewards are defined as follows. All movement actions give a reward of

−2, unless that movement results in the robot being on an express route, for a reward

of −1. Collisions are damaging to the robots and so have a reward of −100. Procure

at a procurement point corresponding to an item in the task definition which has not

yet been procured gives a reward of 10. Procure executed anywhere else in the domain

yields −10. Assemble at an assembly point for an item in the list which has already
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Figure 3.6: Factory domain used in the experiments. Grey cells are obstacles, white

cells are free space, green cells are procurement points, red cells are assembly points,

and cyan cells are express routes. This figure is best viewed in colour.

been procured but not assembled gives 10, and any other use of the Assemble action

gives −10. Successful completion of the task gives 100 and the episode is terminated.

This domain provides a number of invariances which could be acquired by the

robot. On a local level, these include avoiding collisions with walls, prefering express

routes over standard free cells, and not invoking a Procure or Assemble action unless

at a corresponding location. As all tasks are defined as procuring and assembling a

list of components, this additionally provides scope for learning that regardless of the

components required, the robot should first move towards and within the region of

procurement points until all components have been procured, after which it should

proceed to the region of assembly points.

3.4.3 Results with State Action Priors

The results in Figure 3.7, which compares the performance per episode of a learning

agent using a set of different priors, demonstrates that using action priors reduces the

cost of the initial phase of learning, which is largely concerned with coarse scale ex-
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ploration. In this case, the loss incurred in the early episodes of learning is dominated

by the fact that the agent explores in the wrong directions, rather than performs invalid

or ill-placed actions. This figure also shows comparative performance of Q-learning

with uniform priors (i.e. “standard” Q-learning), as well as with two different hand

specified priors; an “expert” prior and an “incorrect” prior.

Figure 3.7: Comparative performance between Q-learning with uniform priors, Q-

learning with state based action priors learned from 35 random tasks, and Q-learning

with two different pre-specified priors (see text for details). These curves show learn-

ing curves averaged over 15 runs, where each task was to assemble 4 components,

selected uniformly at random. The shaded region represents one standard deviation.

The “expert” prior is a prior defined over the state space, to guide the agent towards

the procurement area of the factory if the agent has any unprocured items, and to the

assembly area otherwise. This prior was constructed by a person, who was required

to specify the best direction for each state in the domain. We note that this prior is

tedious to specify by hand, as it involves an expert specifying preferred directions of

motion for the entire state space of the agent (number of states in the factory× number

of different item configurations). Note that, although the performance is very similar,

this prior does not perform as well as the learnt prior, likely due to a perceptual bias on

behalf of the expert’s estimation of optimal routing.
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We also compare to an “incorrect” prior. This is the same as the expert prior, but

we simulate a critical mistake in the understanding of the task: when the agent has

unprocured items, it moves to the assembly area, and otherwise to the procurement

area. This prior still provides the agent with an improvement in the initial episodes of

uniform priors, as it contains some “common sense” knowledge including not moving

into walls, moving away from the start location, etc. Q-learning is still able to recover

from this error, and ultimately learn the correct solution.

Figure 3.8 shows the speed up advantage in learning a set of N = 40 tasks, starting

from scratch and then slowly accumulating the prior from each task, against learning

each task from scratch. This case is for a simple version of the task, which involved

procuring and assembling a single item. As a result, all task variants are likely to have

been encountered by the time the agent is solving the final tasks.

On the other hand, Figure 3.9 shows that a similar effect can be observed for the

case of a more complicated task, requiring the assembly of 4 randomly selected items.

In this case, even by the time the learning agent has accumulated a prior composed

from 40 tasks, it has only experienced a small fraction of the possible tasks in this

domain. Despite this, the agent experiences very similar benefits to the single item

case.

3.4.4 Results with Observation Action Priors

In order to demonstrate the effect of using the observation action priors, we present

a modification of the factory domain. Recall that, as state action priors define distri-

butions over each state of the domain, they cannot be robustly ported between similar

domains. On the other hand, as observation action priors are based on local features

rather than global state information, this information is more portable, albeit possibly

less informative. The modified factory domain provides a test-bed to demonstrate this

point.

The modified domain stipulates that the factory floor layout changes for each dif-

ferent task. This corresponds to either the learning agent moving between different

factories, or the fact that the obstacles, procurement and assembly points may be mo-

bile and change with some regularity (e.g. whenever a new delivery is made). The

factory floor consists of a 3× 3 lattice of zones, each of which is 6× 6 cells. There

is an outer wall, and walls in between every two zones, with random gaps in some

(but not all) of these walls, such that the entire space is connected. Additionally, each
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Figure 3.8: Comparative performance between Q-learning with uniform priors, and Q-

learning with state based action priors, showing the effect of accumulating the action

priors from an increasing number of tasks. The number of prior tasks range from 0

to 40. These curves show the average reward per learning episode averaged over 10

runs, where the task was to assemble 1 random component. There are only 9 possible

tasks in this environment, and so this curve shows the effect of the action priors when all

tasks have eventually been seen before. The shaded region represents one standard

deviation. The “optimal” line refers to average performance of an optimal policy, which

will necessarily be higher than the per episode reward of a learning algorithm.

zone contains randomly placed internal walls, again with the connectivity of the fac-

tory floor maintained. Two zones are randomly chosen as procurement zones, and two

zones as assembly zones. Each of these chosen zones has either four or five of the

appropriate work points placed at random. Examples of this modified factory domain

are shown in Figure 3.10.
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Figure 3.9: Comparative performance between Q-learning with uniform priors, and Q-

learning with state based action priors, showing the effect of accumulating the action

priors from an increasing number of tasks. The number of prior tasks range from 0

to 40. These curves show the average reward per learning episode averaged over

10 runs, where the task was to assemble 4 random components. The shaded region

represents one standard deviation. The “optimal” line refers to average performance

of an optimal policy, which will necessarily be higher than the per episode reward of a

learning algorithm.

3.4.5 Feature Selection

This modified domain has a different layout for every task. As a result, every task

instance has a different transition function T . This is in contrast to the original factory

domain, where each task differed only in reward function R. State based action priors

can therefore not be expected to be as useful as before. We thus use observation priors

and discuss four particular feature sets.

Figure 3.11 demonstrates the improvement obtained by using observation priors

over state priors in this modified domain. Note here that the state priors still provide

some benefit, as many of the corridor and wall placings are consistent between task
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Figure 3.10: Two instances of the modified factory domain used in the experiments.

Grey cells are obstacles, white cells are free space, green cells are procurement points,

and red cells are assembly points. The procurement and assembly points count as

traversable terrain. This figure is best viewed in colour.

and factory instances. Figure 3.11 shows the effect of four different observation priors:

• φ1: This feature set consists of two elements, being the type of terrain occupied

by the agent (in { f ree,wall, procure-station,assembly-station}), and a ternary

flag indicating whether any items need to be procured or assembled.

• φ2: This feature set consists of four elements, being the types of terrain of the

cells adjacent to the cell occupied by the agent.

• φ3: This feature set consists of six elements, being the types of terrain of the

cell occupied the agent as well as the cells adjacent to that, and a ternary flag

indicating whether any items need to be procured or assembled. Note that the

features in φ3 are the union of those in φ1 and φ2.

• φ4: This feature set consists of ten elements, being the types of terrain of the 3×3

grid of cells around the agent’s current position, and a ternary flag indicating

whether any items need to be procured or assembled.

As can be seen, these four observation priors all contain information relevant to the

domain, as they all provide an improvement over the baselines. There is however a

significant performance difference between the four feature sets. This difference gives

rise to the idea of using the priors for feature selection, as discussed in Section 3.3.2.

Surprisingly, Figure 3.11 shows that the most beneficial feature set is φ3, with φ2

performing almost as well. The fact that the richest feature set, φ4, did not outperform
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Figure 3.11: Comparative performance in the modified factory domain between Q-

learning with uniform priors, Q-learning with state based action priors, and Q-learning

with four different observation based action priors: φ1, φ2, φ3 and φ4. These curves

show the average reward per episode averaged over 10 runs, where the task was to

assemble 4 random components. In each case the prior was obtained from 80 training

policies. The shaded region represents one standard deviation.

the others seems counterintuitive. The reason for this is that using these ten features

results in a space of 49× 3 observations, rather than the 45× 3 of φ3. This factor of

256 increase in the observation space means that for the amount of data provided, there

were too few samples to provide accurate distributions over the actions in many of the

observational settings.

We attempt to identify the set of the most useful features using Algorithm 5. These

results are shown in Figure 3.12.

In this approach, we iteratively remove the features which contribute the least to

reducing the entropy of the action priors. Recall that when posed as an optimisation

problem in Equation (3.12), we use the term c‖φ‖ as a regulariser to control for the

effect of having too large a feature set: the effect seen in the case of φ4 in Figure 3.11.

The results in Figure 3.12 show that the relative importance for the ten features



Chapter 3. Action Priors for Domain Reduction 71

Figure 3.12: Feature importance of each feature in the four different observation based

action priors: φ1, φ2, φ3 and φ4. The spatial features are labelled PosY X , with Y ∈
{(U)p,(M)iddle,(D)own} and X ∈ {(L)e f t,(M)iddle,(R)ight}. The feature Items is

a flag, indicating if the agent still needs to assemble or procure any items.

(all of which are present in φ4) are consistent across the four feature sets. As may be

expected, the φ4 results indicate that the values of the cells diagonally adjacent to the

current cell occupied by the agent are not important, as they are at best two steps away

from the agent.

What is surprising at first glance is that neither the value of the cell occupied by

the agent, nor the current state of the assembly carried by the agent are considered

relevant. Consider the current state of assembly: this is actually already a very coarse

variable, which only tells the agent that either a procurement or an assembly is required

next. This is very local information, and directly affects only a small handful of the

actions taken by the agent. Now consider the cell currently occupied by the agent.

This indicates whether the agent is situated above an assembly or procurement point.

Again, this is only useful in a small number of scenarios. Note that these features are

still useful, as shown by the performance of φ1 relative to state based priors or uniform

priors.
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What turns out to be the most useful information is the contents of the cells to the

North, South, East and West of the current location of the agent. These provide two

critical pieces of information to the agent. Firstly, they mitigate the negative effects

that would be incurred by moving into a location occupied by a wall. Secondly, they

encourage movement towards procurement and assembly points. These then constitute

the most valuable features considered in our feature sets. This observation is confirmed

by the fact that φ2 performs very similarly to φ3.

3.4.6 Online Feature Selection

We now demonstrate the performance of the adaptive priors generated through the use

of online feature selection in Algorithm 6. This is shown in Figure 3.13. Note that

in the first episode of learning, the performance of the agent with feature selection

is actually slightly better than that of the agent with the full prior, again showing the

cost incurred through the use of an overly rich feature set. The performance of both is

considerably better than not using a prior. However, at convergence, all three methods

achieve the same performance (shown by the three lines at the top of the figure).

Figure 3.13: Performance of learning agent during first (start) and 30th (end) episodes,

over thirty tasks. Results compare the use of uniform priors, using the full set of 10

features, and using the adaptive prior of online feature selection. Results are averaged

over 10 runs, and the shaded region represents one standard deviation.

Figure 3.14 shows the features selected by the algorithm as a function of the num-

ber of tasks experienced. The result is also a considerable reduction in feature space
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descriptions. The algorithm is seen to converge to the four features used in φ2.

Figure 3.14: Features selected during online feature selection over 30 tasks, aver-

aged over 10 runs. The brightness of each square indicates the percentage of runs

for which that feature was selected. The spatial features are labelled PosY X , with

Y ∈ {(U)p,(M)iddle,(D)own} and X ∈ {(L)e f t,(M)iddle,(R)ight}. The feature

Items is a flag, indicating if the agent still needs to assemble or procure any items.

The effect of this is that a reduced set of four features is shown to be preferable

to the initial full set of ten which were proposed for this domain in φ4. The benefit

is that the number of possible feature configurations has thus been reduced from 49×
3 down to 256: a reduction of 99.71%. Learning behaviours for these observation

configurations is then far simpler, and provides the agent with a conveniently small

repertoire of useful local behavioural capabilities.

3.4.7 Action Priors as Dirichlet Distributions

We now validate the choice of using Dirichlet distributions to model the action pri-

ors. Figure 3.15 illustrates the differences between the functions discussed in Section

3.2.2.1, being modelling the priors as proportions, Dirichlet distributions, or softmax

distributions.

Proportions and the Dirichlet distributions perform comparably, which is to be ex-

pected as the proportions are the normalised Dirichlet parameters, and thus the mean

of the Dirichlet. These distributions both outperform the softmax, again as expected.

In particular, the softmax solution performs poorly during the initial episodes, with a

high variance in performance across tasks. This is because the softmax function tends

to bias probabilities towards either 0 or 1 through the exponential term, resulting in

more peaked distributions. The effect is that these priors would be much better suited

to some tasks than others, as indicated by the high variance.
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Figure 3.15: Effects of the three different probability function choices proposed in Sec-

tion 3.2.2.1 in the modified factory domain: using proportions of the utility functions,

Dirichlet distributions, or a softmax. These curves show the average reward per episode

averaged over 20 runs, where the task was to assemble 4 random components. In each

case the prior was obtained from 80 training policies. The shaded region represents one

standard deviation.

3.4.8 Human Elicited Priors

A benefit of action priors is that they need not all be learnt from policies executed by

the same agent. In this way, the priors can be accumulated from a number of different

agents operating in the same space. Furthermore, trajectories can be demonstrated to

the learning agent, perhaps by a human teacher, as a means of training.

Figure 3.16 illustrates how human elicited action priors can be used to improve

learning performance on a new task. In this case, solution trajectories were provided

by a human for 40 randomly selected assembly tasks in the modified factory domain.

It can be seen that the learning agent performs comparably to having full prior policies,

even though only trajectories were provided.

The human supplied trajectories were not assumed to be optimal in behaviour, but

the human was assumed to be familiar enough with the task and the environment such

that the loss incurred when compared to an optimal solution should be smaller than

some bound. This demonstrates that our action prior approach works even when the
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Figure 3.16: Comparative performance in the modified factory domain between Q-

learning with uniform priors, Q-learning with human elicited observation based action

priors, and Q-learning with self trained observation based action priors. These curves

show the average reward per episode averaged over 20 runs, where the task was to

assemble 4 random components. In each case the prior was obtained from 40 training

policies. The shaded region represents one standard deviation.

training data is sub-optimal. We also note here that our method can be easily applied

to a case where a number of human demonstrators could supply trajectories. Any

trajectories which are estimated to be poorer in quality could be weighted by a smaller

value of w(π), in Equation 3.3. Practically, a weight could be computed for each human

providing training trajectories which indicates the competence level of that human at

that task, and all trajectories supplied by that human would be weighted accordingly.

These results suggest that action priors can feasibly be obtained by human demon-

stration, and used to model human preferences in such a way as to guide the learning

of an autonomous agent on a similar task.
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3.5 Priors in Humans

As was shown in Section 3.4, action priors can provide substantial benefits to learning

and decision making, through their ability to prune and prioritise action choices in a

context dependent manner. This works by guiding the search process towards solutions

that are more likely to be useful, and have been in the past.

Making good decisions requires evaluating the effects of decisions into the future,

so as to estimate the value of each choice. However, this is an expensive search process,

as the number of possible futures is exponential in the number of choices to be made,

with a branching factor given by the number of actions which can be taken at each

point in time.

This is a problem shared by humans. When a person is faced with any planning

problem, or any decision, this cannot be solved by evaluating all possible sequences

of actions, for the aforementioned reason. It is thus assumed that some automatic

pruning of human decision trees occur, and negative rewards (or punishments) seem to

be particularly effective at inhibiting behaviours (Huys et al., 2012). There is evidence

to suggest that this pruning is Pavlovian in nature, particularly when exposed to a

large negative feedback, and that this pruning is task independent. There is also much

evidence to suggest that humans rely heavily on prior knowledge for decision making,

although that process is not always conscious (Strevens, 2013).

When making decisions which require a search through large and rich problem

spaces, humans thus seem to select a subset of the valid choices for further consid-

eration. This is supported by long-standing results in psychology. Simon and Chase

(1973), for example, used the game of chess as a vehicle for exploring the theory of

chunking. A chunk refers to a recognisable set of features, which in this context is a

local pattern on the chess board. Various experiments were run on players of differing

skill levels, testing their ability to recall and reconstruct sequences of briefly observed

board positions, which were either drawn from real games or random. These results

supported the conclusion that the more skilled a player, the larger the repertoire of such

patterns they have stored in memory (estimated to be of the order of well over 50,000

for expert players). Having additional information associated with these chunks would

account for the ability of an expert to notice advantageous moves “at a glance” – es-

sentially pruning away poor action choices. As a result, recognising chunks reduces

the need for look-ahead search.

In this way, perceptual cues are easily recognised, and in turn they trigger actions,
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which could be thought of as an intuition of the current situation (Simon, 1992). Un-

conscious early perceptual processes learn the relationships between the visual ele-

ments of a scene under inspection. These are invoked fast and in parallel, and act as a

pre-processing step for later stages of cognition (Harre et al., 2012).

Later work on template theory (Gobet and Simon, 1996) extends this idea, by in-

corporating the idea of templates, which allow for open parameters to be present in

recognisable patterns. Templates provide further semantic information which may be

helpful in making action selection, again pruning and biasing the search process. It

has thus been conjectured in multiple studies that “experts use the rapid recognition of

complex patterns, mediated by perceptual templates, in order to efficiently constrain

and guide their search for good moves” (Harre et al., 2012).

This interpretation corresponds to the semantics of our action priors, which allow

a search process to prioritise its exploration based on the recommended actions for

any given context. Our action prior approach also hypothesises and demonstrates how

these priors may be gathered from past experience.

The overall effect is that if one does not know what action to take, given uncertainty

in the task, it could be chosen according to the action prior, which represents common

sense and intuition in the domain. This bias can be used in instantaneous action selec-

tion to cause no immediate harm in the absence of more task specific knowledge.

3.6 Related Work

Recent research on learning policy priors (Wingate et al., 2011) (and the earlier work

by Doshi-Velez et al. (2010)) has similar aspirations to our own. They propose a policy

search algorithm, based on MCMC search, which learns priors over the problem do-

main. The method requires the specification of a hyperprior (abstract prior knowledge)

over the prior, with the effect that the method learns priors which it is able to share

among states. For example, the method can discover the dominant direction in a navi-

gation domain, or that there are sequences of motor primitives which are effective and

should always be prioritised during search. They perform inference on (π,θ), where

π is the policy, and θ the parameters by casting this search problem as approximate

inference, over which they can specify or learn the priors. Our work does not assume

a known model, or kernel, over policy space. This means we cannot sample from a

generative model as is typical in the Bayesian reinforcement learning setting.

An alternative method for transferring information from previous tasks to act as pri-
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ors for a new task is through model-based approaches, such as those taken by Sunmola

(2013). This embraces the Bayesian reinforcement learning paradigm of maintaining

a distribution over all possible transition models which could describe the current task

and environment, and updating this distribution (belief) every time an action is taken.

Transfer here is achieved by using the experience of state transitions in previous tasks

to update beliefs when it first encounters each state in the new task, before anything is

known about the transition probabilities from that state. Local feature models are also

used to facilitate generalisation.

The strength of transferring action probabilities, rather than model probabilities is

three-fold. Firstly, the information present in action priors is very general, with the only

requirement being local usefulness of actions. As such, agents learning with action pri-

ors can easily be put through learning curricula, and then deployed to vastly different

environments. Secondly, transferring knowledge through action models is an idea ap-

plicable to a wide range of different decision making paradigms, including model-free

and model-based reinforcement learning, planning and online learning. Finally, an ac-

tion prior has an intuitive interpretation as an understanding of the “common sense”

behaviours of some local space.

Work by Sherstov and Stone (2005) also has similar aspirations to those of our

own methods. In problems with large action sets (|A| ∼ 100, often from parametrised

actions), they also try to either cut down the action set, or bias exploration in learning.

The difference in this work is that the reduced action set, based on what they call the

relevance of an action, is determined from the training data of optimal policies for the

entire domain, rather than for each state or observation. This has the effect of pruning

away actions that are always harmful throughout the domain, but the pruning is not

context-specific.

Our interpretation of action priors as distilling domain specific knowledge from a

set of task instance specific behaviours is similar to the idea of dividing a problem (or

set thereof) into an agent space and a problem space (Konidaris and Barto, 2006). The

agent space refers to commonalities between the problems, whereas the problem space

is specific to each task. This formulation involves learning a reward predictor which,

in a sense, can be used to guide action selection.

Where our approach reduces computation by biasing and restricting the search over

action space, similar benefits have been found by only searching over limited aspects

of the state space, particularly in relational planning problems. Notable examples in-

clude reasoning only in terms of the subset of objects that are relevant for current plan-
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ning purposes (relevance grounding) (Lang and Toussaint, 2009), or using variables to

stand in for the objects relevant to the current actions (deictic references) (Pasula et al.,

2007). This is similar to the way in which pruning is used in search, but we prune

based on the expected utility of the action which is estimated from the utility of that

action over the optimal policies for a set of previous tasks.

Options (Precup et al., 1998) are a popular formalism of hierarchical reinforcement

learning, and are defined as temporally extended actions with initiation sets where they

can be invoked, and termination conditions. There are many approaches to learning

these, see e.g. Pickett and Barto (2002). Although there are similarities between learn-

ing the initiation sets of options and action priors, they are distinct, in that an initiation

set defines where the option can physically be instantiated, whereas an action prior

describes regions where the option is useful. This is the same distinction as must be

drawn between learning action priors and the preconditions for planning operators (e.g.

Mourão et al. (2012)). For example, while pushing hard against a door may always be

physically possible, this level of force would be damaging to a glass door, but that

choice would not be ruled out by options or planning preconditions. Consequently,

action priors not only augment preconditions, but are beneficial when using large sets

of options or operators, in that they mitigate the negative impact of exploration with a

large action set.

One approach to reusing experience is to decompose an environment or task into

a set of subcomponents, learn optimal policies for these common elements, and then

piece them together (Foster and Dayan, 2002), possibly applying transforms to make

the subcomponents more general (Ravindran and Barto, 2003). This is the philosophy

largely taken by the options framework. Our method differs by discovering a subset

of reasonable behaviours in each perceptual state, rather than one optimal policy. Our

priors can thus be used for a variety of different tasks in the same domain, although

the policy must still be learned. As a result, our method is also complementary to this

decomposition approach.

The idea of using a single policy from a similar problem to guide exploration is

a common one. For example, policy reuse (Fernandez and Veloso, 2006) involves

maintaining a library of policies and using these to seed a new learning policy. The

key assumption in this work is that the task for one of the policies in the library is

similar to the new task. While we acknowledge that this is a very sensible approach if

the policies are indeed related, we are instead interested in extracting a more abstract

level of information about the domain which is task independent, and thereby hopefully
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useful for any new task.

Other authors have explored incorporating a heuristic function into the action selec-

tion process to accelerate reinforcement learning (Bianchi et al., 2007), but this work

does not address the acquisition of these prior behaviours. This approach is also sen-

sitive to the choice of values in the heuristic function, and requires setting additional

parameters.

Action priors are related to the idea of learning affordances (Gibson, 1986), being

action possibilities provided by some environment. These are commonly modelled

as properties of objects, and these can be learnt from experience (see e.g. Sun et al.

(2010)). The ambitions of action priors are however slightly different to that of affor-

dances. As an example, learning affordances may equate to learning that a certain class

of objects is “liftable” or “graspable” by a particular robot. We are instead interested

in knowing how likely it is that lifting or grasping said object will be useful for the

tasks this robot has been learning. Ideally, action priors should be applied over action

sets which arise as the result of affordance learning.

Another related concept is that of optimising the ordering of behaviours in a policy

library (Dey et al., 2012a,b). The idea is to use a set of classifiers or experts to select

a sequence of behaviours which should be tried by an agent in its current setting,

thereby providing an ordered list of fallback plans. The difficulty in our reinforcement

learning setting is not only that the state or observation context is important, but our

setting considers different tasks, each of which would require different local actions.

Additionally, in the reinforcement learning context, it can be difficult to evaluate how

good a choice a particular action is, which is important for updating the weights over

the experts. This approach would also not necessarily guarantee that every action is

chosen infinitely often in the limit of infinite trials, which is a requirement for the

convergence of Q-learning.

3.7 Using Action Priors to Give Advice to Agents with

Hidden Goals

As described in Section 3.2, action priors build a model of the general knowledge,

or “common sense” behaviour, of a domain through the combination of the common

elements of policies used to solve a variety of different tasks in the same domain. The

effect is that by observing one or more agents carry out tasks in a domain, one obtains
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a good estimate of the best actions to invoke in each situation. In previous sections

we used this methodology to address the idea of accelerating the learning of new tasks

in the same agent. The same approach can however be used in a multi-agent setting,

where one agent provides advice to another, based on action priors it has learnt from

the behaviour of numerous other agents.

Consider one agent, the explorer, moving about a large hospital, with the intended

destination of a particular ward, but no idea of where to find that ward. Now con-

sider that a second agent, an autonomous advisor installed throughout the “intelligent

building”, was watching the progress of the explorer, and noticed that it seemed to be

lost. In this case, it would be desirable to provide some advice on likely directions in

which to move. Without knowing the intended target of the explorer, but from observ-

ing its behaviour, the advisor should make suggestions based on the most commonly

used paths through the hospital – the “common sense” knowledge of the building. This

could guide the explorer towards major wards and waiting areas, and away from ser-

vice regions. This section examines this question of how and when to provide advice

to an agent with unknown goals.

Furthermore, the advisor does not know how much advice is actually needed by the

explorer. If the explorer truly has no idea of what it is doing, then more information

should be provided. On the other hand, especially if the advice is given via a mobile

robot component, this is a costly resource that could be moved around to be shared be-

tween people – so, constant advice really is something to be minimised. Additionally,

we assume that the advisor does not know if the agent is human or artificial, nor if it

is acting randomly, with purpose, or learning. This situation is caricatured in Figure

3.17.

This is an important problem for both fixed-policy and learning agents. With the

help of advice, a fixed-policy agent can complete a task sufficiently faster than it would

have otherwise. Similarly, advice can be a boost to a learning agent in terms of both

speed and safety, in that exploration can be guided away from dangerous or useless

regions of the domain.

We propose to address this problem by learning a model of “common sense” be-

haviour over the entire domain, and marginalising over the different tasks. Offline, we

learn a model of typical users in this domain in the form of action priors, from expert

agents carrying out different tasks in the same domain. Online, a new user enters the

domain. Both the behavioural policy and the goal of this user are unknown a priori.

The advisor continually estimates the performance of the user by comparing behaviour
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Figure 3.17: The envisaged scene: an agent (the human) is exploring some environ-

ment. Its path is monitored by an autonomous advisor, which can then deploy some

resource (a robot) to offer advice to the agent.

to the action prior model, and then based on this, provides advice in states where it is

estimated to be needed.

Basing advice on the behaviour of experts in the same space has limitations, in that

it depends on the experts visiting the same locations and performing the same actions

as would be required by the explorer. However, we wish to advise based on the way in

which the domain is used – its functional semantics. If a particular task has not been

seen before, there is nothing we can do regarding advising about that task, but there is

still no need for the agent to collide with walls or enter dead ends. We consequently

reason at the level of action distributions, rather than tasks, as we can leverage the fact

that there are overlaps between the behaviours needed for different tasks.

In general, different types of agents may have different distributions over their

expected behaviours, e.g. hospital staff vs visitors. This can be taken into account in

our framework by augmenting the state space with some description of the agent, if

that sensing information is available, e.g. if they are wearing a uniform or name tag.

Another example of this problem is that of building an autonomous advisor to teach

humans or other autonomous agents to play complicated video games where game-

play is not linear, and there are many different subgoals. Many modern games offer

environments where players may progress through the game in any of a number of dif-

ferent ways, or even combinations thereof. Learning the combination of all these play

styles and subgoals would not be feasible, particularly if the data is sparsely provided

through very few instances of each. Consequently, learning a model of common sense

behaviour provides the advisor with a compact description of reasonable courses of
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action.

3.7.1 Advice Giving using Action Priors

To provide advice, we do not need to assume that the advisor has the same action set as

the explorer. Instead, the advisor can provide advice over the outcomes of the actions

(Sherstov and Stone, 2005). In this way, we require that all agents must have state and

action sets mappable to a common set used by the advisor. The implication of this

is that the state and action representations used by each agent can differ, but effects

of these actions should be common to all agents. For instance, each agent may have

a different mechanism for moving, but they should all have actions with outcomes of

movement in the same directions. In what follows, we assume the action sets are the

same for all agents. The advisor also needs to be able to observe the outcomes of the

actions taken by every agent. Learning the model of typical domain behaviours is not

possible using observations of state alone as, for example, the advisor would be unable

to distinguish between an agent repeatedly running into a wall, or standing still. An

illustration of providing advice based on the action priors which are computed from

previous trajectories through the space is shown in Figure 3.18.

Figure 3.18: An illustration of using the action priors for advice in a 3× 3 region of

a larger domain. (a) Assume three expert trajectories (shown in blue) have passed

through this region. (b) When providing advice to an agent situated in the centre cell,

the suggested probabilities (shown in each cell) of taking each direction are computed

from the behaviour of the previous trajectories.

The advisor’s goal is to estimate how much help the agent needs by comparing

behaviour to the action prior representing common sense behaviour in the domain, and
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then based on this, to provide advice to the agent in critical locations.

3.7.1.1 What Advice to Give

When advice is given to the explorer, we assume it is given as the action prior at the

state it currently occupies. In this way, we follow a model of providing action advice

(Torrey and Taylor, 2013) as a method of instruction which does not place restrictive

assumptions on the differences between the advisor and the explorer. The advice is

thus a probability distribution over the action space, as obtained from the prior. If the

agent is currently in state s, the advisor provides the advice θs(A).

The proposed protocol for using the offered advice is that the explorer should select

the next action according to this advised distribution. This protocol for the advice to be

provided as a distribution rather than recommending a single action allows the explorer

to incorporate its own beliefs about the next action it should choose. In this way, the

explorer may thus alternatively use this provided action distribution to update its own

beliefs from which to select an action.

Note that if the explorer uses the proposed protocol of sampling an action from

the offered advice, then the advisor could equivalently have sampled from θs(A) and

offered a single action. The choice of protocol here would depend on the mechanism

used to convey the advice to the agent.

As described in Section 3.2, the action priors describe a model of behaviours in

a single domain, marginalised over multiple tasks. We thus inform the instantaneous

motion of the agent such that it matches this common behaviour. This information will

guide the agent towards regions of the domain in proportion to their importance for

reaching the set of known domain goal locations.

3.7.1.2 When to Give Advice

There are a number of reasons why the advisor may not provide advice to the explorer

at every time step. Costs may be incurred by the advisor when it provides advice, in

terms of the resources required to display the advice to the explorer. In the hospital ex-

ample above, these could take the form of ground lighting pointing the way, electronic

signage, or dispatching a robot to the location of the agent. Additionally, interpreting

this advice may cost the explorer time, and anecdotal evidence suggests that humans

are easily annoyed by an artificial agent continually providing advice where it is not

wanted.
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The result is that the advisor should provide advice only as it is needed. To do so, it

computes an estimate the amount of advice required by the agent, from the probability

of the agent’s trajectory under the action prior at time t. This probability is a measure

of the agent’s similarity to population behavioural normalcy. Because the action prior

models normalcy in the domain, deviation from this corresponds to fault detection in

the absence of task-specific knowledge.

Ideally, advice should only be given if the benefit of the advice outweighs the

penalty incurred from the cost of giving advice. We assume the penalty of giving

advice is a constant κ for the domain. This parameter could, e.g., correspond to average

cost of dispatching a robot, or alternatively to some estimate of user annoyance. The

benefit of giving advice at state s is the utility gain ∆U(s) from using the advice, rather

than taking some other action. Because we do not know the actual values of any states

in the domain, having learnt from expert trajectories only with no access to reward

functions, we approximate this utility gain as a function of the difference between the

probabilities of action selection under the action prior, and the likely action of the

agent. This gives that

∆U(s)' KL
[

θs(A),P(A|s,H)

]
, (3.13)

where KL[·, ·] is the KL-divergence. P(A|s,H) is the action selection probabilities of

the explorer in state s, having followed the state-action history H, computed by

P(A|s,H) =
∫

M
P(A|s,M)P(M|H)dM, (3.14)

with P(A|s,M) being the action selection probabilities in state s under a model M.

P(M|H) is the probability that the agent is selecting actions according to M, given the

state-action history H, and is computed according to

P(M|H) =
P(H|M)P(M)∫

M P(H|M)P(M)dM
. (3.15)

Combining these concepts, we derive a decision rule for giving advice. The ex-

plorer is given advice if the following condition holds:

KL
[

θs(A),
∫

M
P(A|s,M)P(M|H)dM

]
≥ κ. (3.16)

Condition (3.16) requires that a set of different behavioural models be defined.

The action prior provides a model of normal, common sense behaviour in the domain.

Additionally, other models must be defined which describe other classes of behaviour.

We assume there are two models M:
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1. M1: Normalcy, modelled by the action prior, empirically estimates the probabil-

ity of selecting actions from the behaviour of expert agents performing different

tasks.

2. M2: Uniformity, which models the explorer not knowing what it is doing or

where it is going, involves selecting actions with uniform probability.

Without further information, we assume that these two models have equal prior prob-

ability, and so P(M1) = P(M2) = 0.5. Also note that P(A|s,M1) = θs(A), and we are

assuming here that an agent is lost if its action seems to be uniformly drawn at random.

3.7.1.3 Complete Procedure

The advising procedure consists of an offline training phase, and an online advising

phase. These two phases may run concurrently, but whereas the online phase may last

for only a single task, the training phase happens over a considerably longer duration,

consisting of numerous agent interactions with the domain. The full system is shown

in Figure 3.19.

• Offline: train the advisor. During this phase, trajectories are collected from a

number of different agents carrying out various tasks in the same domain. From

these, the advisor learns a model of typical behaviour in this domain, in the form

of action priors (see Section 3.2).

• Online: a new agent, the explorer, begins execution of some unknown task.

The advisor continually evaluates the trajectory of the explorer, and if Condi-

tion (3.16) is satisfied, the advisor provides advice to the explorer in the form of

the action prior for the current state.

3.7.2 Experiments

3.7.2.1 Maze Domain

For these experiments we use a maze domain, being a 30×30 cell grid world through

which an agent navigates by moving at each time step in one of the four cardinal di-

rections. The maze contains many impassable corridors, emulating the layout of an

extremely complicated building, which may have equipment lying about acting as ob-

structions (partially causing the complications). Furthermore, there are eight different

goal locations (randomly placed in either a corner or the end of a corridor), and each
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Figure 3.19: The proposed system. The explorer interacts with the environment by

executing an action a, and receiving a new state s and possibly a reward r. The advisor

observes the agent, by receiving a copy of s and a. It evaluates the trajectory taken by

the explorer, by comparing it to the action prior θ obtained from a database of previous

behaviours. If advice must be given, it is provided to the explorer in the form of the

distribution θs(A).

agent is tasked with reaching a particular one of these. This is a delayed reward prob-

lem, with the agent receiving a reward of 1000 for reaching the goal, and 0 otherwise.

The maze is depicted in Figure 3.20.

3.7.2.2 Agents

The offline training data which is provided to the advisor, is a set of expert trajectories

from agents moving towards each of the eight goals. These trajectories were optimal

for their respective tasks and were learnt using Q-learning. From these the action prior

model M1 is learnt, to model “normal” behaviour in the domain.

Online experiments involve different types of explorers entering the maze. Each

agent has a randomly selected goal location. As a baseline, we consider the perfor-

mance of an agent following an optimal trajectory. We do not know, a priori, how

people behave and do not want to assume that people can easily zero in on a goal

and execute an optimal policy. We thus experiment with various behaviour patterns to



Chapter 3. Action Priors for Domain Reduction 88

Figure 3.20: The maze used in these experiments. White cells denote free space, and

black cells are obstacles. Goal locations are the eight cells marked in red.

clarify how the algorithm behaves, although not all accurately model how humans and

animals search. We consider the effects of advice on the following user models:

• Completely random: at every time step pick a cardinal direction at random and

attempt to move in that direction.

• Random with obstacle avoidance: select actions at random, from those which

will not result in a collision.

• Always turn left: follow the well-known heuristic for navigating mazes, by al-

ways taking the leftmost path at any intersection.

• Goal seeking bug: heuristically move in the direction which will most reduce the

difference in x- and y-coordinates between the agent and its goal.

• Q-learning: this non-stationary agent learns using ε-greedy Q-learning (Sutton

and Barto, 1998).

All of the fixed-policy agents will select an action according to the offered distribution

when advice is given. The Q-learning agent uses the advice as an exploration policy

with probability ε, as described in Algorithm 2.
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Agent Without Advice With Advice

Random motion 50 900

Random with obstacle avoidance 50 750

Always turn left 150 750

Goal seeking bug 100 800

Q-learning 150 1000

Optimal trajectories 1000 1000

Table 3.1: Performance of various agents on the maze domain

Each fixed-policy agent performs 20 random one-shot tasks of up to 5,000 steps,

with and without advice. The learning agents learn for 5,000 episodes, where each

episode is limited to only 200 steps, making this a difficult learning task.

3.7.2.3 Results

The results for the different agents with and without advice are shown in Table 3.1.

Performance curves and probabilities that the agent is acting according to M1 are

shown in Figure 3.21 for the fixed-policy agents, and reward curves in Figure 3.22 for

the learning agents. The probabilities in Condition (3.16) are computed over a moving

window considering only the most recent 300 time steps of the transition history H of

the explorer, in order to avoid underflow.

Figure 3.21 shows the improvement in performance when advice is given to the

different types of agents, over performance without advice. Although the agents all

follow different action selection procedures, injection of advice results in them re-

sembling normal behaviour in the domain more closely, and subsequently improving

performance significantly.

In Figure 3.22, one can notice a similar improvement in the performance of Q-

learning by guiding the learning agent towards sensible goal locations. The difficulty

with a domain such as that in Figure 3.20 is that a specific sequence of correct actions

is required, and the standard learning agent does not receive information to guide its

progress. Using advice, the learning agent can discover the correct goal location within

a handful of episodes, something which is not possible otherwise.

Figure 3.23 shows the amount of advice given to the agents as κ in Condition

(3.16) is varied. κ is the cost of giving advice, to both the explorer and the advisor.

As κ is increased, the quantity of advice provided decreases. Although not included
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Figure 3.21: P(M1|H) and rewards of different fixed-policy agents, averaged over 20

random tasks with κ= 0.5. Solid lines show non-advised performance, and dotted lines

are advised. Results are smoothed for readability.

here, we note that the Q-learning agent behaves initially as the random agent, and after

convergence behaves as optimal.

3.7.3 Related Work

A similar and related problem to our own is that of one learning agent teaching another

to perform a particular task (Torrey and Taylor, 2013). Our problem differs, as our

domain supports a number of different tasks, and so the advisor does not know the

explorer’s goal. Advice is more useful in our case as a distribution over different

possibilities. Further, our problem does not explicitly restrict the amount of advice to

a constant, which seems unnatural, but instead computes the trade-off in utility from

giving the advice.
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Figure 3.22: Performance from advice giving with a learning agent, averaged over 20

tasks with κ = 0.5. The shaded region denotes one standard deviation.

An alternative approach to learning a model of common sense behaviour in the

domain, would be learning latent variable models to infer the current activities. One

method is to learn the typical behaviours of individual agents (e.g. Liao et al. (2007)),

but our application assumes many unique users who are not active in the system for

long enough to be modelled. Instead one could also learn models of all the different

tasks in the domain, using e.g. hidden-goal MDPs. Again, we include the possibility in

our problem of there being a large number of goals, and furthermore providing advice

from hidden-goal MDPs is PSPACE-complete (Fern and Tadepalli, 2010a).

Our work is very similar in spirit to that of Price and Boutilier (2003) who, through

the use of a Bayesian model, allow a learning agent to update beliefs over the MDP

dynamics by observing an expert in the domain. The primary difference to our appli-

cation, is that we do not provide the expert trajectories in their entirety to the learner.

Instead, the advisor gathers this information (from multiple experts) and is able to

supply localised pieces of this knowledge to the agent.

Having one agent advise another is a form of transfer learning (Taylor and Stone,
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Figure 3.23: Amount of advice given to different agents per 100 steps as a function

of κ. κ = 0 implies that advice is always given. 10 trajectories of 1000 time steps

were generated for each agent at each value of κ. The error bars denote one standard

deviation.

2009), in that it is a mechanism for simplifying and speeding up the learning of a new

task by using the expertise of one agent to bootstrap another. There are many other ap-

proaches to transferring knowledge in this way, with two common restrictions: 1) the

advisor and learner agree on the task and goal, and 2) the amount of teaching/advice is

unlimited. Common inter-agent teaching methods include imitation learning, or learn-

ing from demonstration (Argall et al., 2009; Meltzoff et al., 2009), and in particular to

the reinforcement learning case, apprenticeship learning (Abbeel and Ng, 2004; Syed

and Schapire, 2008; Rosman and Ramamoorthy, 2010). Finally, a teacher may also

instruct a learner in a more passive manner by deconstructing the main task into a se-

quence of simpler tasks of increasing difficulty. This approach is typically referred to

as reward shaping or curriculum learning (Konidaris and Barto, 2006; Erez and Smart,

2008; Bengio et al., 2009; Knox and Stone, 2009).
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3.8 Conclusion

This chapter introduces the concept of action priors, as distributions over the action set

of an agent, conditioned on either the state or observations received by the agent. This

provides a mechanism whereby an agent can, over the course of a lifetime, accumulate

general knowledge about a domain in the form of local behavioural invariances. This

is an important form of knowledge transfer, as it allows for a decision making agent to

bias its search process towards previously useful choices.

The same principle demonstrated here in the context of reinforcement learning

could additionally be applied to planning, similar to the idea of learning initial condi-

tions (Schmill et al., 2000), and the action priors could be used to either prune certain

actions or provide a preference list for depth-first search. In either case, this should

guide the search toward solutions that have been previously encountered, allowing a

deeper focused search with minimal additional computational overhead.

Furthermore, the principle of action priors could also be applied to online and

bandit algorithms. This would have the positive effect of enabling features of the

problem to propose an initial distribution over the value of the arms, which in turn

could lead to faster convergence with less exploration.

Action priors also have the potential to be useful to collections of agents. Learning

action priors constitutes learning “common sense” behaviour in a domain. By acquir-

ing this information from multiple agents performing different tasks, an external agent

can build a model which can then be used to provide advice and training to new agents,

even when their specific goals are unknown.

We have shown that action priors are useful in practice, and they draw parallels to

the way in which humans prune action choices automatically when making decisions.

Hopefully further work in this direction can serve to strengthen this connection of

accelerating learning between human and artificial decision making.
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Bayesian Policy Reuse

Work presented in this chapter was done in collaboration with Majd Hawasly, M. M.

Hassan Mahmud and Pushmeet Kohli.

Parts of the work presented in this chapter also appear in: Mahmud et al. (2014).

4.1 Introduction

Online personalisation is becoming a core concept both in human-robot and human-

computer interaction, driven largely by a proliferation of new sensors and input devices

which allow for a more natural means of communicating with hardware. Consider for

example an interactive interface, such as might be used for tele-operation of a robot,

which interprets the gestures of a human user, set up in a public space such as a mu-

seum or a store. The device is required to map human movement to interpretable in-

structions, so as to provide the user with information or other services. The difficulty in

this setting is that the same device may be expected to interact with a wide and diverse

pool of users, who differ both at the low level of interaction speeds and body sizes,

and at the higher level of which gestures seem appropriate for particular commands.

The device should autonomously calibrate itself to the class of user, and a mismatch

in intentions could result in a failed interaction. On the other hand, taking too long to

calibrate is likely to frustrate the user, who may then abandon the interaction.

This problem can be characterised as a short-term interactive adaptation to a new

situation. This problem appears in interactive situations other than interaction with

humans. As an example, consider a system for localising and monitoring poachers in a

large wildlife reserve. The agent in this setting is an intelligent base station which can

deploy light-weight drones to scan particular locations in the park for unusual activity.

94
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The number of drone deployments in this problem is limited, as the poachers can be

expected to spend a limited time stalking their target before leaving.

The key component of the aforementioned problems is the need for sample-efficient

decision making, as the agent is required to adapt or respond to scenarios before they

have ended. The interaction is inherently short, so the agent needs to perform well

in the limited time available. Then, solution methods need to have both low sample

complexity and low regret. Thus, the question we address in this chapter is how to act

well in a sample-efficient manner in a large space of possible tasks.

While it is unreasonable to assume that any new task instance could be solved

from scratch in the constrained interaction time, it is plausible to consider seeding the

process with a set of policies of solved instances, in what can be seen as a strategy for

transfer learning (Taylor and Stone, 2009). For example, the interactive interface may

ship with a set of different classes of user profiles which have been acquired offline,

and the monitoring system may have a collection of pre-learnt behaviours to navigate

the park when a warning is issued.

We term this problem of short-lived sequential policy selection for a new instance

the policy reuse problem, and we define it formally as follows. Let an agent be a

decision making entity in a specific domain, and let it be equipped with a policy library

Π for tasks in that domain. The agent is presented with an unknown task which must

be solved within a limited and small number of trials. At the beginning of each trial

episode, the agent can select one policy from Π to execute for the full episode. The

goal of the agent is thus to

select policies to minimise the total regret incurred in the limited task du-
ration with respect to the performance of the best alternative from Π in
hindsight.

The online choice from a set of alternatives for minimal regret in a new situation

could be posed as a multi-armed bandit. Here, each arm would correspond to a pre-

learnt policy, and our problem becomes a sequential optimal selection of fixed policies.

Solving this problem in general is difficult as it maps into the intractable finite-horizon

online bandit problem (Niño-Mora, 2011). On the other hand, traditional bandit ap-

proaches have to try each available arm on the new task in order to gauge its perfor-

mance, which may be a very costly procedure from a sample complexity point of view.

Instead, one can exploit knowledge which has been acquired offline to accelerate

online response times. We propose a solution for policy reuse that exploits the natural

correlation between policies captured offline through testing under canonical operating
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conditions, by maintaining a Bayesian belief over the nature of the new task instance in

relation to the seen ones. Then, executing a policy provides the agent with information

not only about the policy chosen but also about the suitability of all policies. This

information is used to update the belief, which facilitates choosing the next policy to

execute.

A version of the policy reuse problem appears in Mahmud et al. (2013), where

it is used to test a set of landmark policies retrieved through clustering in the space

of MDPs. The term ‘policy reuse’ was used by Fernandez and Veloso (2006) in a

different context. There, a learning agent is equipped with a library of previous policies

to aid in exploration, as they enable the agent to collect relevant information quickly

to accelerate learning. In our case, learning is infeasible, and policy reuse is the only

way to achieve the objective of the agent.

4.1.1 Contributions

The primary contributions made in this chapter are as follows:

1. We introduce Bayesian Policy Reuse (BPR) as a general Bayesian framework

for solving the policy reuse problem (Section 4.2).

2. We present several specific instantiations of BPR using different policy selec-

tion mechanisms (Section 4.5.2), and compare them on a domain modelling a

surveillance problem.

3. We provide an empirical analysis of the components of our model, considering

different classes of observation signal, and the trade-off between library size and

sample complexity.

4. We present an application of interface adaptation, with a variant of the BPR

algorithm known as BEAT for solving this problem.

4.2 Bayesian Policy Reuse

We now pose the policy reuse transfer problem in a Bayesian framework. Throughout

the discussion, we adopt the following notational conventions: P(·) refers to a proba-

bility, E[·] refers to an expectation, H(·) refers to entropy, and ∆(·) is a distribution.
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For a set of tasks X and a set of policies Π, Bayesian policy reuse involves two

key components. The first, P(U |X ,Π), where U is utility, is the performance model;

a probability model over performance of the set of policies Π on the set of seen tasks

X . This information is available in an offline phase. The second key component is the

observation model, defined as a probability distribution P(Σ|X ,Π) over Σ, the space of

possible observation signals which can be provided by the environment. This latter dis-

tribution describes some kind of information which is correlated with the performance

and that can be observed online. When the performance information is directly observ-

able online, the observation model and the performance model may be essentially the

same.

A 1-D caricature of the Bayesian policy reuse problem is depicted in Figure 4.1,

where, given a new task x∗ ∈ X , the agent is required to select the best policy π∗ ∈Π in

as few trials as possible, whilst accumulating as little regret as possible in the interim.

The agent has prior knowledge only in the form of performance models for each policy

in Π on a set of tasks from X (as well as observation models, not depicted here).

Having an observation model means that applying a known policy on a new task

instance provides the agent with a sample observational signal, which is used to update

a ‘similarity’ measure, the belief, over the seen tasks. This belief allows for the selec-

tion of a policy at the next time step, so as to optimise expected performance. This is

the core idea behind Bayesian policy reuse.

We present the general form of Bayesian Policy Reuse (BPR) in Algorithm 7.

Algorithm 7 Bayesian Policy Reuse (BPR)
Require: Problem space X , policy library Π, observation space Σ, prior over the prob-

lem space P(X ), observation model P(Σ|X ,Π), performance model P(U |X ,Π),

number of episodes K.

1: Initialise beliefs: β0(X )←− P(X ).

2: for episodes t = 1 . . .K do
3: Select a policy πt ∈Π, using the current belief of the task βt−1.

4: Apply πt on the task instance.

5: Obtain an observation signal σt from the environment.

6: Update the belief βt(X ) ∝ P(σt |X ,πt)βt−1(X ).

7: end for
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Figure 4.1: A simplified depiction of the Bayesian Policy Reuse problem. The agent

has access to a library of policies (π1, π2 and π3 in the figure), and has previously

experienced a set of task instances (τ1 . . .τ4), as well as samples of the utilities of the

library policies on these instances (the black dots are the means of these estimates,

while the agent maintains distributions of the utility as illustrated by P(U |τ1,π3)). The

agent is presented with a new unknown task instance (x∗), and it is asked to select the

best policy from the library (optimising between the red hollow points) without having

to try every individual option (in less than 3 trials in this example). The agent has no

knowledge about either the complete curves, or where the task instances occur in the

problem space, but tries to infer this from utility similarity. Not depicted here are the

observation models.
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4.2.1 Chapter Organisation

The problem space X is first defined in Section 4.3. The performance model P(U |X ,Π)

and the observation model P(Σ|X ,Π) are discussed further in Sections 4.3.4 and 4.4

respectively. The two core steps of BPR are the Bayesian update of beliefs over seen

tasks (line 6 of Algorithm 7), discussed in more detail in Section 4.4, and selecting a

policy to reuse (line 3 of Algorithm 7), detailed in Section 4.5.

4.3 Problem Space

4.3.1 Tasks

Let a task be specified by a Markov Decision Process (MDP). An MDP is defined as a

tuple µ = (S,A,T,R,γ), where S is a finite set of states; A is a finite set of actions which

can be taken by the agent; T : S×A×S→ [0,1] is the state transition function where

T (s,a,s′) gives the probability of transitioning from state s to state s′ after taking action

a; R : S×A×S→R is the reward function, where R(s,a,s′) is the reward received by

the agent when transitioning from state s to s′ with action a; and finally, γ ∈ [0,1] is a

discounting factor. As T is a probability function, ∑s′∈S T (s,a,s′) = 1,∀a ∈ A,∀s ∈ S.

Denote the space of all MDPs M . We will consider episodic tasks, i.e. tasks that have

a specified time horizon.

A policy π : S×A→ [0,1] for an MDP is a mapping from states to actions, which

describes the probability of taking any action from a state. The return, or utility, gen-

erated from running the policy π on a task instance x is the accumulated discounted

reward Uπ
x = ∑

∞
i=0 γiri, for ri being the reward received at step i. We omit the subscript

x when the task identity is unambiguous. If the task is episodic, Uπ = ∑
K
i=0 γiri, with K

being the length of the episode. The goal of reinforcement learning is to learn an opti-

mal policy π∗ = argmaxπUπ which maximises the total expected return of an MDP µ,

where typically T and R are unknown.

We denote a collection of policies known by the agent as Π, and refer to it as the

policy library.

4.3.2 Regret

In order to evaluate the performance of our approach, we define regret as the policy

selection metric to be optimised by Bayesian Policy Reuse.
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Definition 4.3.1 (Library Regret). For a library of policies Π and for a policy selection

algorithm ξ : X →Π that selects a policy for the new task instance x∗ ∈ X , the library

regret of ξ is defined as

R (ξ) =Uπ∗
x∗ −Uξ(x∗)

x∗ ,

where π∗ = argmaxπ∈ΠUπ
x∗ , the best policy in hindsight in the library for the task

instance x∗, and Uπ∗
x∗ = maxπ∈ΠUπ

x∗ is the best performance that can be achieved on

task x∗ with the library Π.

Definition 4.3.2 (Average Library Regret). For a library of policies Π and for a policy

selection algorithm ξ : X → Π, the average library regret of ξ over K trials is defined

as the average of the library regrets for the individual trials,

R K(ξ) =
1
K

K

∑
t=1

R (ξt).

The metric we minimise in BPR is the average library regret R K(ξ) for K trials.

That is, the goal of BPR is to not only find the right solution at the end of the K trials,

possibly through expensive exploration endeavours, but also to optimise performance

even when exploring in the short duration of the task.

We will refer to this metric simply as ‘regret’ throughout the rest of the chapter.

4.3.3 Types

When the problem space of BPR is the task space M , it is very likely that maintaining

a belief would require a large number of samples, and would hence be expensive to

maintain and to compute with. Depending on the application, we may find that there

is a natural notion of clustering in M , where many tasks are similar with minor varia-

tions. Previous work has looked into finding the clustering in a space of tasks; see for

example Mahmud et al. (2013) for a detailed account. We do not try to discover the

clustering in this work, but we assume it exists.

To this end, we introduce a simpler notion of types as ε-balls of tasks in task space,

where we cluster with respect to the performance of a collection of policies on the

tasks. Another way to define types is the notion of classes of tasks as probability

distributions over task parameters as used by Wilson et al. (2007).

Definition 4.3.3 (Type). A type τ is a subset of tasks such that for any two tasks µi,µ j

from a type τ, and for all policies π in a set of policies Π, the difference in utility is
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upper-bounded by some ε ∈R:

µi,µ j ∈ τ⇔ |Uπ
i −Uπ

j | ≤ ε, ∀π ∈Π,

where Uπ
i ∈ R is the utility from executing policy π on task µi. Then, µi and µ j are

ε-equivalent under the policies Π.

Figure 4.1 depicts four example types, where each accounts for an ε region in

performance space, as explicitly shown for τ1.

Note that these types do not have to be disjoint, i.e. there may exist tasks that belong

to multiple types. We denote the space of types with T . Assuming disjoint types, we

can work with T as the problem space of BPR, inducing a hierarchical structure in

the space M . The environment can then be represented with the generative model in

Figure 4.2(a) where a type τ is drawn from a hyperprior τ∼G0, and then a task is drawn

from that type µ ∼ ∆τ(µ). By definition, the set of MDPs generated by a single type

are ε-equivalent under Π, hence the BPR regret of representing all the MDPs in τ with

any one of them cannot be more than ε. Let us call that chosen MDP a landmark MDP

of type τ, and denote this by µτ. This would reduce the hierarchical structure into the

approximate model shown in Figure 4.2(b), where the prior acts immediately on a set

of landmark MDPs µτ, τ∈ T . The benefit of this for BPR is that each individual stored

alternative of the seen tasks is a representative for a region in the original task space,

defined by a maximum loss of ε. Maintaining only this set of landmarks removes near

duplicate tasks from consideration.

For the remainder of this chapter, we will use the type space T as the problem

space, although we note that the methods we propose would allow the full task space

M to be alternatively used.

4.3.4 Performance Model

One of the key components of BPR is the performance model of policies on task in-

stances, which holds the distribution of returns of a policy for the seen tasks. Using

types, a performance model represents the variability in return under the various tasks

in a type.

Definition 4.3.4 (Performance Model). For a policy π and a type τ, the performance

model is a probability distribution over the utility of π when applied to all tasks µ ∈ τ.
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Figure 4.2: Problem space abstraction model under disjoint types. (a) Tasks µ are

related by types τ, with a generating distribution G0 over them. (b) A simplification of

the hierarchical structure under ε-equivalence. The tasks of each type are represented

by a single task µτ.

Figure 4.1 depicts the performance profile for π3 on type τ1 in the form of a Gaus-

sian distribution. Recall that for a single type, and each policy, the domain of the per-

formance model would be of size ε or less. The agent maintains performance models

for all the policies it has in the library Π and for all the types it has experienced.

4.4 Observation Signals and Beliefs

Definition 4.4.1 (Signal). A signal σ ∈ Σ is any information which is correlated to the

performance of a policy and which is provided to the agent in an online execution of

the policy on a task.

The most straightforward signal is the performance itself, unless this is not directly

observable (e.g. in cases where the payoff may only be known after a long time hori-

zon). However, the information content and richness of a signal determines how easily

an agent can identify the type of the new task with respect to the seen types. In order to

perform this identification, the agent learns a model of how types, policies and signals

relate in the offline phase.

4.4.1 Observation Model

For some choice of signal space, the agent learns canonical models of the signal values

expected from every type-policy pair.
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Definition 4.4.2 (Observation Model). For a policy π and type τ, the observation model

is a probability distribution over the signals that may result by applying that policy to

that type, F τ
π (σ) = P(σ|τ,π).

We consider the following offline procedure to learn the signal models for a policy

library Π:

1. The type label τ is announced.

2. A set of tasks are generated from the type τ.

3. The agent runs all the policies from the library Π on all the instances of τ, and

observes the resultant signals.

4. Distributions F τ
π = ∆(σ) are fitted to the data.

The benefit of these models is that they connect observable online information to

the latent type label. Identifying the true type (or the most similar one) of the new

instance is sufficient to play a good policy from the policy library, which is the goal of

the policy reuse problem.

4.4.2 Some Candidate Signals

4.4.2.1 State-Action-State Tuples

The richest information signal which could be accrued by the agent is the history of

all (s,a,s′) tuples encountered during the execution of a policy. Thus, the observation

model in this case is exactly the expected transition function of the MDPs under the

type τ, even though the agent would only learn part of that model to which it has access

in the offline phase. The expressiveness of this signal does have a drawback, in that it

is expensive to learn and maintain these models for every possible type.

This form of signal is useful in cases where some environmental factors may affect

the behaviour of the agent in a way that does not directly relate to attaining an episodic

goal.

4.4.2.2 Instantaneous Rewards

Another form of information is the instantaneous reward r ∈ R received during the

execution of a policy, and hence the observation model is the expected reward function
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for the MDPs in the type. This may provide a relatively fine-grained knowledge on the

behaviour of the task when intermediate rewards are informative.

This is a more abstracted signal than the state-action-state tuples, and is likely to be

useful in scenarios where the task has a number of subcomponents which individually

contribute to overall performance.

4.4.2.3 Episodic Returns

An example of a sparser signal is the total utility Uπ
τ ∈R accrued over the full episode

of using a policy in a task. This signal is useful for problems of delayed reward, where

intermediate states cannot be valued easily, but the extent to which the task was suc-

cessfully completed defines the return. The observation model of such a scalar signal

is much more compact, and thereby easier to learn, than the previous two proposals.

We also note that for our envisioned applications, the execution of a policy cannot be

terminated prematurely, meaning that an episodic return signal is always available to

the agent before selecting a new policy.

In our framework, using episodic returns as signals has the additional advantage

that this information is already captured in the performance model, which relieves the

agent from maintaining two separate models, as P(U |τ,π) = F τ
π (U) for all π and τ.

4.4.3 Bayesian Belief over Types

Definition 4.4.3 (Type Belief). For a set of seen types T and a new instance x∗, the

Type Belief is a probability distribution over T that measures to what extent x∗ matches

the types in their observation signals.

The type belief, or belief for short, is a surrogate measure of similarity in type

space. It approximates where a new instance may be located in relation to the known

types, which act as bases of the unknown type space. Belief is initialised with the prior

probability over the environment generating an instance of each of the types, labelled

G0 in Figure 4.2.

After each execution of a policy on the new unknown task, the environment pro-

vides an observation signal to the agent, which is used to update beliefs. Line 6 in

Algorithm 7 computes the posterior probability over the task space βt(T ) using Bayes’
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rule:

β
t(τ) =

P(σt |τ,πt)βt−1(τ)

∑τ′∈T P(σt |τ′,πt)βt−1(τ′)
(4.1)

=
F τ

πt (σt)βt−1(τ)

∑τ′∈T F τ′
πt (σt)βt−1(τ′)

, ∀τ ∈ T , (4.2)

where πt is the policy played in episode t, and σt is the signal received thereafter.

We use β to refer to βt where this is not ambiguous.

4.5 Policy Selection

Given the current type belief, the agent is required to choose a policy for the next

episode for two concurrent purposes: to acquire useful information about the new

instance, and at the same time to avoid accumulating additional regret.

At the core of this policy selection problem is the trade-off between exploration

and exploitation, an important problem since early work on the analysis of Markov

chains and decision processes (Martin, 1965). When a policy is executed at some time

t, the agent receives both some utility and information about the true type of the new

task. We wish to gain as much information about the task as possible, so as to choose

policies optimally in the future, but at the same time minimise performance losses

due to sub-optimal1 policy choices. We can define the following MDP to describe the

process:

• The states are the continuous belief states β ∈ [0,1]|T |−1.

• The actions are the available policies π ∈Π.

• The reward process is defined by the utility of the unknown test type τ∗ after

execution of a policy π, U ∼ P(U |τ∗,π).

Under this formulation, the value of a policy choice π is given by

Q(β,π) =
∫

U∈R
P(U |τ∗,π)

(
U +max

π′∈Π

Q(βU ,π′)

)
dU, (4.3)

where βU is the belief after incorporating the observed utility U . Then, the optimal

policy selection for some belief β is the greedy optimisation, π∗ = argmaxπ∈Π Q(β,π).

1Note that we call the best policy in the library for a specific instance its optimal policy, as we are
not considering problems with time feasible for learning.
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Computing the Q-function in Equation (4.3) directly is not possible for two reasons.

Firstly, the performance profile P(U |τ∗,π) is not explicitly known for the true target

type τ∗ a priori, and thus neither is βU . One possible solution is to approximate this

with the expected performance under the belief β, P̂(U |τ∗,π) = ∑τ∈T β(τi)P(U |τi,π).

This is the Bayesian optimum with respect to the current belief, but that still represents

an approximation to the true performance profile that would be generated by type τ∗.

Secondly, even if we approximate the performance profile, the state in Equation (4.3) is

continuous and hence discretisation or function approximation is needed, which does

not generalise well to different problem settings.

We now propose several policy selection mechanisms for dealing with this prob-

lem. A first approach is through ε-greedy exploration, where with probability 1−ε we

choose the policy which maximises the expected utility under the belief β, and with

probability ε we choose a policy from the policy library uniformly at random. This

additional random exploration component perturbs the belief from local minima.

A second approach is through sampling the belief β. This involves sampling a type

from the belief, and playing the best response to that type from the policy. In this case,

the sampled type acts as an approximation of the true unknown type, and exploration

is achieved through the sampling process.

The third approach to this problem is through the method of employing heuristics

that estimate a value for each policy, so as to achieve a balance between exploitation

and a limited degree of look-ahead to approximate optimal exploration. This approach

is discussed further in Section 4.5.1.

4.5.1 Exploration Heuristics

The goal of the agent is to maximise utility over the full K episodes of the task. This

corresponds to minimising the cumulative, rather than instantaneous, regret. A purely

greedy policy selection mechanism would fail to choose exploratory options which

return the information needed for the belief to converge to the closest type. That is, a

greedy approach would be myopically but not asymptotically optimal, and may result

in the agent becoming trapped in local maxima of the utility function. On the other

hand, a purely exploratory policy selection mechanism could be designed to ensure

that the most information possible is elicited in expectation, but this would not make

an effort to improve performance. We thus require a mechanism to explore as well

as exploit; find a better policy to maximise asymptotic utility, and exploit the current
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estimates of which are good policies to maximise myopic utility.

Using the prevalent approach in Bayesian optimisation, we greedily maximise, in-

stead of utility, a surrogate function2 that takes into account both the expected re-

turn from executing a policy, with a notion of the variance of this return estimate

(e.g. Brochu et al. (2010)). These functions have been widely considered in the multi-

armed bandit (MAB) literature, and for the finite-horizon total-reward multi-armed

bandit problem, Lai and Robbins (1978) show that index-based methods achieve opti-

mal performance asymptotically. In general there are a large number of ways in which

they can be defined, ranging from early examples such as the Gittins index (Gittins

and Jones, 1974) (for infinite horizon problems) to more recent methods such as the

knowledge gradient (Powell, 2010). The benefit of such methods is that they involve

estimating a separate value of each policy (or arm, in the relevant literature), indepen-

dent of other policies.

Although these different surrogate utility functions balance exploration and ex-

ploitation, in what follows we refer to them as exploration heuristics.

4.5.2 Bayesian Policy Reuse with Exploration Heuristics

By incorporating the notion of an exploration heuristic that computes an index νπ for a

policy π into Algorithm 7, we obtain the proto-algorithm Bayesian Policy Reuse with

Exploration Heuristics (BPR-EH) described in Algorithm 8. Note that by defining the

problem space to be the type space T , we can use G0 as the prior over types.

Next, we discuss some candidate heuristics V that can implement line 3 in the

algorithm, and we define four variants of the BPR-EH algorithm, as

• BPR-PI using probability of improvement (Section 4.5.2.1),

• BPR-EI using expected improvement (Section 4.5.2.1),

• BPR-BE using belief entropy (Section 4.5.2.2),

• BPR-KG using knowledge gradient (Section 4.5.2.3).

We note that there are a number of such action selection mechanisms which could

be used in place of V , see e.g. Berry and Fristedt (1985) or Bubeck and Cesa-Bianchi

(2012) for further examples. Algorithm 8 requires the use of some such selection

2This idea of forming a surrogate function is also known as adding an exploration bonus to a reward
function (Wyatt, 1997).
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Algorithm 8 Bayesian Policy Reuse with Exploration Heuristics (BPR-EH)
Require: Type space T , Policy library Π, observation space Σ, prior over the type

space P(T ), observation model P(Σ|T ,Π), performance model P(U |T ,Π), num-

ber of episodes K, an exploration heuristic V .

1: Initialise beliefs: β0(T )←− G0.

2: for episodes t = 1 . . .K do
3: Compute νπ = V (π,βt−1) for all π ∈Π.

4: πt ←− argmaxπ∈Π νπ.

5: Apply πt to the task instance.

6: Obtain the observation signal σt from the environment.

7: Update the belief βt using σt by Equation (4.1).

8: end for

mechanism, but in general we are agnostic to the choice of this mechanism. The fol-

lowing four approaches are presented as examples.

4.5.2.1 Probability of Improvement and Expected Improvement

One heuristic for policy selection is through the probability with which a specific pol-

icy can achieve a hypothesised increase in performance. Assume that U+ is some

utility which is larger than the current best estimate under the current knowledge,

U+ >U t = maxπ∈ΠŨ t(π), where Ũ t(π) is defined as

Ũ t(π) = ∑
τ∈T

β
t(τ)

∫ Umax

Umin
UP(U |τ,π)dU (4.4)

= ∑
τ∈T

β
t(τ)E[U |τ,π]. (4.5)

The probability of improvement (PI) principle chooses the policy that maximises

the term

π
t = argmax

π∈Π
∑

τ∈T
β(τ)P(U+|τ,π).

The choice of U+ is not straightforward, and this choice is the primary factor af-

fecting the performance of this exploration principle. One approach to addressing this

choice, is through the related idea of expected improvement (EI). This requires integra-

tion over all the possible values of improvement U t < U+ < Umax, and the policy is
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chosen with respect to the best potential. That is,

π
t = argmax

π∈Π

∫ Umax

U t
∑

τ∈T
β(τ)P(U+|τ,π)dU+

= argmax
π∈Π

∑
τ∈T

β(τ)
∫ Umax

U t
P(U+|τ,π)dU+

= argmax
π∈Π

∑
τ∈T

β(τ)(1−F(U t |τ,π))

= argmin
π∈Π

∑
τ∈T

β(τ)F(U t |τ,π),

where F(U |τ,π) =
∫U
−∞

P(u|τ,π)du is the cumulative distribution function of U for

π and τ.

4.5.2.2 Belief Entropy

Both PI and EI principles select a policy which has the potential to achieve higher

utility. An alternate approach is to select the policy which will have the greatest effect

in reducing the uncertainty over the type space.

The belief entropy (BE) approach seeks to estimate the effect of each policy in

reducing uncertainty over type space, represented by the entropy of the belief. For

each policy π ∈Π, estimate the expected entropy of the belief after executing π as

H(β|π) = −β
π logβ

π,

where βπ is the updated belief after seeing the signal expected from running π:

β
π(τ) = Eσ

[
F τ

π (σ)β(τ)

∑τ′∈T F τ′
π (σ)β(τ′)

]
=

∫
σ∈Σ

F τ
π (σ)

F τ
π (σ)β(τ)

∑τ′∈T F τ′
π (σ)β(τ′)

dσ.

Then, selecting the policy

π
t = argmin

π∈Π
H(β|π)

reduces the most uncertainty in the belief in expectation. This is in essence a purely

exploratory policy. To incorporate exploitation of the current state of knowledge, we

rather select

π
t = argmax

π∈Π

(
Ũ t(π)−κH(β|π)

)
,

where κ ∈ R is a positive constant controlling the exploration-exploitation trade-off,

and Ũ t(π) is the expected utility of π under the current belief, given by Equation 4.4.
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4.5.2.3 Knowledge Gradient

Another approach is to use the knowledge gradient (KG), which aims to balance explo-

ration and exploitation through the optimisation of myopic return whilst maintaining

asymptotic optimality (Powell, 2010). The principle behind this approach is to esti-

mate a one step look-ahead, and select the policy which maximises utility over both

the current time step, and the next in terms of the information gained.

To select a policy using the knowledge gradient, we choose the policy πt which

maximises the online knowledge gradient at time t

π
t = argmax

π∈Π

(
Ũ t(π)+(K− t)νKG,t

π

)
,

trading-off between Ũ t(π), of Equation 4.4, and ν
KG,t
π , the offline knowledge gradient

of π for a horizon of K trials, which essentially measures the performance of a one-step

look-ahead in the process, given as

ν
KG,t
π = Eβ

[
max

π′
Ũ t+1(π′)−max

π′
Ũ t(π′)

∣∣∣ π

]
, (4.6)

which is the difference in the expectation, with respect to β, of the best performance of

any policy at t+1 if π was played at t, with that of the best policy at t. By marginalising

over the signal, the first term in the expectation is

Ũ t+1(π′) |π = ∑
τ∈T

β
t(τ)

∫
σ∈Σ

F τ
π (σ) ∑

τ′∈T
β

t+1(τ′)E[U |τ′,π′]dσ,

where βt+1 is the updated belief resulting from the previous belief β and the signal σ

through Equation (4.1). The second term in the expectation of Equation (4.6) is given

by Equation (4.4).

An approach to action selection which is similar in principle is myopic value of

perfect information (Dearden et al., 1998), which estimates the balance of the expected

gains which could occur if an improved policy is found during exploration, against the

cost which would be incurred by selecting a suboptimal policy.

4.6 Experiments

4.6.1 Golf Club Selection

As an initial, illustrative experiment we consider the problem of a simulated robot

golfer taking a shot on an unknown golf course, where it cannot reliably estimate the
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distance to the hole. The robot is only allowed to take K = 3 shots (less than the

number of clubs) from a fixed position from the hole, and the task is evaluated by how

close to the hole the ball ends. The robot can choose any club from a set of available

clubs, and assume it has a default canonical stroke with each club.

In this setting, we consider the type space T to be a set of different golfing experi-

ences the robot had before, each defined by how far the target was (other factors, such

as weather conditions, could be factored into this as well). The performance of a club

for some hole is defined as the negative of the absolute distance to the hole, such that

this quantity must be maximised.

Then, given the fixed stroke of the robot, the choice of a club corresponds to a pol-

icy. For each, the robot has a performance profile (in this case, the profile is over final

distance of the ball from the hole) for the different courses that the robot experienced.

We assume a small selection of four clubs, with properties shown in Table 4.1 for the

robot canonical stroke. The distances shown in this table are the simulated ground

truth values, and are not known to the robot.

Club Average Yardage Standard Deviation of Yardage

π1 = 3-wood 215 8.0

π2 = 3-iron 180 7.2

π3 = 6-iron 150 6.0

π4 = 9-iron 115 4.4

Table 4.1: Statistics of the ranges (yardage) of the four clubs used in the golf club

selection experiment. We choose to model the performance of each club by a Gaussian

distribution. We assume the robot is competent with each club, and so the standard

deviation is small, but related to the distance hit.

The robot cannot measure distances in the field, but for a feedback signal, it can

crudely estimate a qualitative description of the result of a shot as falling into one of

several categories (such as near or very far). Note that this is not the performance sig-

nal, but is a weaker observation correlated with performance. The distributions over

these qualitative categories (the observation models) are known to the agent for each

club on each of the training types it has encountered. We assume the robot has ex-

tensive training on four particular holes, with distances τ110 = 110yds, τ150 = 150yds,

τ170 = 170yds and τ220 = 220yds. The performance signals are shown in Figure 4.3.

When the robot faces a new hole, BPR allows the robot to overcome its inability
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Figure 4.3: Performance signals for the four golf clubs in Table 4.1, on four training holes

with distances 110yds, 150yds, 170yds and 220yds. The signals are probabilities of the

ball landing in the corresponding coarse distance category. The width of each category

bin has been scaled to reflect the distance range it signifies. The x-axis is the distance

to the hole, such that negative values indicate under-shooting, and positive distances

of over-shooting the hole.

to judge the distance to the hole by using the feedback from any shot to update an

estimate of the most similar previous task, using the distributions in Figure 4.3. This

belief enables the robot to choose the club/clubs which would have been the best choice

for the most similar previous task/tasks.

Consider, as an example, a hole 179 yards away. A coarse estimate of the distance

can be incorporated as a prior over T , otherwise an uniformed prior is used.

For a worked-out example, assume the robot is using greedy policy selection, and

assume that it selects π1 for the first shot due to a uniform prior, and that this resulted in

an over-shot of 35 yards. The robot cannot gauge this error more accurately than that

it falls into the category corresponding to over-shooting in the range of 20 to 50 yards.

This signal will update the belief of the robot over the four types, and by Figure 4.3, the

closest type to produce such a behaviour would be τ170 = 170 yards. The new belief

dictates that the best club to use for anything similar to τ170 is π2. Using π2, the hole

is over-shot by 13 yards, corresponding to the category with the range 5 to 20 yards.

With the same calculation, the most similar previous type is again τ170, keeping the
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best club as π2, and leading the belief to converge. Indeed, given the ground truth in

Table 4.1, this is the best choice for the 179 yard task. Table 4.2 describes this process

over the course of 8 consecutive shots taken by the robot.

Shot 1 2 3 4 5 6 7 8

Club 1 2 2 2 2 2 2 2

Error 35.3657 13.1603 4.2821 6.7768 2.0744 11.0469 8.1516 2.4527

Category 20–50 5–20 -5–5 5–20 -5–5 5–20 5–20 -5–5

β entropy 1.3863 0.2237 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 4.2: The 179 yard example. For each of 8 consecutive shots: the choice of club,

the true error in distance to the hole, the coarse category within which this error lies (the

signal received by the agent), and the entropy of the belief. This shows convergence

after the third shot, although the correct club was used from the second shot onwards.

The oscillating error is a result of the variance in the club yardage. Although the task

length was K = 3 strokes, we show these results for longer to illustrate convergence.

Figure 4.4 shows the performance of BPR with greedy policy selection in the golf

club selection task averaged over 100 unknown golf course holes, with ranges ran-

domly selected between 120 and 220 yards. This shows that on average, by the second

shot, the robot will have selected a club capable of bringing the ball within 10–15 yards

of the hole.

4.6.2 Online Personalisation

Consider a service offered telephonically, such as telephone banking for example,

where the bank tries to improve the speed of answering telephonic queries by having a

personalised model for understanding the speech of each user, and perhaps responding

with a voice preferred by that user. In a traditional speech recognition system, the user

may have time to train the system to her own voice, but this is not possible in this

scenario. As a result, the phone service may have a number of different pretrained lan-

guage models and responses, and over the course of many interactions with the same

user, try to estimate the best such model to use.

Let a user i be defined by a preference in language model λi ∈ {1, . . . ,L}, where

L is the number of such models. The policy π executed by the telephonic agent also
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Figure 4.4: Performance of BPR on the golf club example, with results averaged over

100 unknown holes, showing the decrease in entropy of the belief β and average dis-

tance to the hole (where lower scores are better). Performance of the pure four clubs

(being the average performance of each single club over all 100 holes), as well as the

best club for each hole in retrospect, is shown for regret comparison. Although the task

length was K = 3 strokes, we show these results for longer to illustrate convergence.

Error bars have been omitted for clarity.

corresponds to a choice of language model, i.e. π ∈ {1, . . . ,L}. The goal of the agent

is to identify the user preference λi, whilst minimising frustration to the user.

Assume that each telephonic interaction proceeds by means of the transition sys-

tem through the six states given in Figure 4.5. In every state, there is only one action

which can be taken by the system, being to use the chosen language model. At the

beginning of the call, the user is in the start state. We assume the system can identify

the user (perhaps by caller ID), and selects a language model. If, at any point, the

system can deal with the user’s request, the call ends successfully. If not, we assume

the user becomes gradually more irritated with the system, passing through states frus-

trated and annoyed. If the user reaches state angry and still has an unresolved request,

she is transferred to a human. This counts as an unsuccessful interaction. Alterna-

tively, at any point the user may hang up the call, which also terminates the interaction

unsuccessfully.

The transition dynamics of this problem depend on a parameter ρ = L−|(π−λi)|
L
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Figure 4.5: Transition system describing the online telephonic personalisation example.

Circles are states, thick bordered circles are terminal states, small black edge labels

in square brackets are the transition rewards, and large blue edge labels are transition

probabilities. See text for a description of the parameters ρ and η.

which describes how well the selected language model π can be understood by a user

of type λi. An additional parameter η governs the trade-off between the user becoming

gradually more frustrated, and simply hanging up when the system doesn’t respond as

expected. In our experiments, η = 0.3, unless π = λi, in which case η = 0.

The aim of this experiment is to demonstrate the effect of using different observa-

tion signals to update beliefs, as described in Section 4.4.1. As a result, the transition

dynamics and the rewards of this domain, shown in Figure 4.5, have been selected

such that only two utility signals are possible: U = 10 for a successful completion of

the task, and U = 3 otherwise. Similarly, any state that transitions to the unsuccess-

ful outcome angry state, receives the same reward for a transition to the unsuccessful

outcome hang up state. Finally, all transition probabilities between the states start,

frustrated, annoyed, and angry are independent of ρ, and thus the type. This set up

mirrors the fact that in general the state sequence given by the signal (s,a,s′) is more

informative than the reward sequence (s,a,r), which is in turn more informative than

the utility signal U , being the total reward. However, in many applications U may be

the only one of these signals available to the agent, for example gauging the frustration

of the caller may not be possible.

Figure 4.6 shows comparative performance between BPR, using sampling of the
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belief as a policy selection mechanism, with these three candidate signals. As ex-

pected, the lowest regret (and variance in regret) is achieved using the (s,a,s′) signal,

followed by the (s,a,r), and finally the U signal. We do note that all three signals

eventually converge to zero regret.

Figure 4.6: Regret, showing comparative performance of BPR on the telephone banking

domain, using (s,a,s′), (s,a,r), and U as signals.

4.6.3 Pacman

The Pacman domain involves an autonomous agent (the Pacman) moving around a

discrete two-dimensional maze with free space arranged in a figure-eight layout, and

tasked with collecting items of food located in a subset of the free (non-obstacle) cells

in the maze. There is one adversary (the ghost) which moves around according to some

stationary policy. The task is episodic and ends in a win if the Pacman collects all food

items, or a loss if the Pacman collides with the ghost. The Pacman agent can move up,

down, left and right into neighbouring free cells. Figure 4.7 shows the domain.

The Pacman agent receives a reward of 10 for each food collected, 100 for winning,

and -100 for losing. The state and action space are always the same, but the motion

strategies used by the adversary change from episode to episode, reflecting a type τ

that must be inferred. These include moving backwards and forwards across the top

row, traversing the entire domain clockwise or anti-clockwise, or moving randomly.
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Figure 4.7: The Pacman domain, featuring the Pacman agent in the centre cell, an

adversarial ghost in blue, and four food items.

The Pacman is only able to observe the position of the ghost if it is within line of sight;

i.e., the same row or column with all intermediary spaces free. This leads to a partially

observable process from the agent’s point of view.

For each movement strategy used by the ghost adversary (type), the Pacman agent

is equipped with an optimal policy trained offline using Q-learning. We use the total

utility received by the agent in an episode as the observation signal, and model the

corresponding performance functions as Gaussian distributions over the utility signals.

Figure 4.8 shows the performance of BPR using sampling of β as a policy selection

mechanism compared to Probabilistic Policy Reuse with Q-learning (PRQ) (Fernandez

and Veloso, 2006) and standard Q-learning.

These experiments were run without discounting, i.e. γ = 1, over N = 10000

episodes for a maximum of 200 time steps. The PRQ parameters were set as τ = 0

and ∆τ = 0.05 as used by Fernandez and Veloso (2006). The algorithms used learning

rate α = 0.5 and exploration probability ε = 0.5, both of which were decreased by

0.5/N per episode.

These results demonstrate that BPR, being a bandit-style algorithm equipped with

pre-trained policies, is able to converge orders of magnitude faster than learning from

scratch (Q-learning), even when that learning is seeded by policy transfer (PRQ).

This experiment further demonstrates the ability of BPR to handle partially observ-

able domains, as well as domains involving the execution of complex policies.
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Figure 4.8: The comparative convergence of performance on different Pacman tasks

between BPR, PRQ and Q-learning, averaged over twenty random tasks. The shaded

region denotes one standard deviation.

4.6.4 Surveillance Domain

The surveillance domain models the monitoring problem laid out in the introduction.

Assume a base station is tasked with monitoring a wildlife reserve spread out over

some large geographical region. The reserve suffers from poaching and so the base

station is required to detect and respond to poachers on the ground. The base station

has a fixed location, and so it monitors the region by deploying a low-flying (in or-

der to observe behaviour on the ground) light-weight autonomous drone to complete

particular objectives, using different strategies. The episodic commands issued by the

base station may be to deploy to a specific location, scan for unusual activity, and then

report back. After each such episode the drone returns with some information, being

an indicator of whether or not there was any suspicious activity in the designated re-

gion. The base station is required to use that information to better decide on the next

strategy to be used by the deployed drone.

Concretely, we consider a 26× 26 cell grid world, which represents the wildlife

reserve, and the base station is situated at a fixed location in one corner. We assume

that there are 68 target locations of interest, perhaps being areas with a particularly
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high concentration of wildlife. These areas are arranged around four ‘hills’, the tops

of which provide better vantage points. Figure 4.9 depicts this setting.

Figure 4.9: Example of the surveillance domain. The red cell is the base station, green

cells correspond to surveillance locations, and blue cells are hill tops. The base station

is tasked with deploying drones to find poachers which may be at one of the surveillance

locations.

At each episode, the base station deploys the drone to one of the 68 locations.

These 68 target locations each correspond to a different type, as we assume that each

represents a large geographical area, and thus multiple locations in the reserve. For

each type, we assume that the drone has a pre-learnt policy for reaching and surveying

that area, which includes elements of local control, such as dealing with wind pertur-

bations and avoiding trees.

The observation model is described by the drone being able to identify whether

an intruder is at the location it visits, or somewhere nearby, in a diagonally adjacent

cell. The only exceptions are the centres of each hill, which by corresponding to a

high vantage point, provide a weak signal stating that the intruder is around the hill.

Additionally this signal process is noisy. For a distance d between the region surveyed

and the region occupied by the poachers, the reward R received by the agent is

R ←−


200−30d +ψ if agent surveys a hilltop and d ≤ 15

200−20d +ψ if agent surveys another location and d ≤ 3

ψ otherwise,

where ψ∼N (10,20) is Gaussian noise.

Figure 4.10 presents a comparison between six variants of the BPR algorithm. Four

are the exploration heuristics proposed in Section 4.5, being BPR-KG, BPR-BE, BPR-
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PI, BPR-EI. Additionally, we use two further heuristics, being sampling the belief β,

and ε-greedy selection, which chooses the best policy according to β with probability

1− ε, and selects a policy uniformly at random with probability ε, where ε = 0.3.

These six variants were run on the domain in Figure 4.9, and averaged over 10 random

tasks, with standard deviations of the regret shown in Table 4.3.

Figure 4.10: Comparison of the six policy selection heuristics on the 68 task surveil-

lance domain, averaged over 10 random tasks. (a) The entropy of the belief β(τ) after

each episode. (b) The regret after each episode. Error bars are omitted for clarity, but

standard deviations of the regret are shown in Table 4.3.

Note in Figure 4.10 that BPR-BE, BPR-KG, and BPR with sampling the belief β

all converge in about 15 episodes, which is approximately a quarter the number that

would be required by a brute force strategy which involved testing every policy in turn.

Both BPR-PI and BPR with ε-greedy selection fail to converge within the allotted 50

episodes. BPR-EI shows the most rapid convergence.
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episode ε-greedy sampling BPR-KG BPR-BE BPR-PI BPR-EI

5 72.193 103.07 76.577 96.529 15.695 27.801

10 97.999 86.469 75.268 91.288 62.4 33.112

20 83.21 18.834 7.1152 17.74 72.173 16.011

50 86.172 10.897 18.489 13.813 101.69 11.142

Table 4.3: Standard deviations of the regret for the six BPR variants shown in Figure

4.10, after episodes 5, 10, 20 and 50.

We now compare the performance of BPR to different approaches for solving the

same problem, namely multi-armed bandits for which we use UCB1 (Auer et al.,

2002a), and Bayesian optimisation represented by GP-UCB (Srinivas et al., 2009).

We note upfront that although these are the most similar to our own in terms of the

problems they solve, the assumptions they place on the problem space are different,

and thus so is the information they use. These results are presented in Figure 4.11,

showing comparative performance between these approaches on the surveillance do-

main, averaged over 50 tasks. We use BPR-EI in this experiment, as it was the best

performing BPR variant as seen in Figure 4.10.

We provide the UCB bandit algorithm with prior information, in the form of the

expected performance of each policy given the task distribution G0(τ), assumed to be

uniform in this case. This prevents UCB from having to test each arm first on the new

task, which requires 68 episodes in this case before it can begin the decision process.

It is still slower to converge than BPR, as information from each episode only allows

UCB to update the performance estimate of a single policy, whereas BPR can make

global updates over the policy space.

This same problem would be encountered by other methods which involve esti-

mating the performance of each policy (arm in the original literature) individually. A

notable example is interval estimation (Kaelbling, 1990) which, for each policy, esti-

mates a statistical upper bound on the value of that policy from previous executions

of the policy based on the assumption that these values are, for example, normally

distributed (Vermorel and Mohri, 2005). As with the UCB method, an approach such

as this is inherently slower, as each policy can only update its own statistics, and not

those of other policies. Our method is able to achieve this through the use of the F τ
π

observation model, which allows us to update beliefs over all types simultaneously, in

turn simultaneously updating estimates of the performance of every policy through the
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Figure 4.11: Comparison of the episodic regret of BPR (represented by BPR-EI), a

bandit approach (UCB1), and a Bayesian optimisation approach (GP-UCB) on the 68

task surveillance domain, averaged over 50 random tasks. Shaded regions represent

one standard deviation.

performance model P(U |T ,Π). Even incorporating accurate prior probabilities and

estimates of value does not help in this case, as each task is equi-probable.

On the other hand, an optimisation approach such as GP-UCB is better suited to

this problem, as it operates with the same restriction as BPR of maintaining low sample

complexity. However, unlike BPR, Bayesian optimisation requires a metric in policy

space. This information is not known in this problem, but is approximated from per-

formance in the training tasks. As a result of this approximation, sampling a single

point in GP-UCB (corresponding to executing a policy) again only provides informa-

tion about a local neighbourhood in policy space, whereas the same action allows BPR

to update beliefs over the entire task space.

Further discussion of the differences between BPR and both bandits and optimisa-

tion approaches is provided in Sections 4.7.2 and 4.7.3 respectively.

Figure 4.12 shows the trade-off between library size and sample complexity with

respect to the regret. For each setting of library size and sample complexity pairs, we
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average over 200 trials. For each trial, a random subset of the full task set is used

as the policy library, and the task is drawn from the full task set, meaning that this

includes both seen and unseen tasks in the online phase. As can be seen, performance

can be improved by increasing either the library size, or the time allocated (in terms of

number of episodes) to complete the new task.

Figure 4.12: Average episodic regret for running BPR-EI on the 68 task surveillance

domain, with different library sizes (as a proportion of the full task space size) and

number of episodes (sample complexity), averaged over 200 random tasks.

4.7 Discussion and Related Work

4.7.1 Transfer Learning

The optimal selection from a set of provided policies for a new task is in essence a

transfer learning problem (see the detailed review by Taylor and Stone (2009)). Specif-

ically, Bayesian policy reuse aims to select the policy in a library Π which is the best

policy for the most similar seen type to transfer into a new, initially unknown, task

instance. One transfer approach that considers the similarity between source and tar-

get tasks is by Lazaric (2008), where generated (s,a,r,s′) samples from the target task

are used to estimate similarity to source tasks. Similarity is measured by the average
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probability of the generated transitions happening under the source task. Then, sam-

ples from the more similar source tasks are used to seed the learning of the target task,

while less similar tasks are avoided, escaping negative transfer. Bayesian policy reuse

does not assume learning is feasible in the first place, so that it relies on transferring a

useful policy immediately. Also, we use a Bayesian similarity measure which allows

exploiting prior knowledge of the task space.

4.7.2 Correlated Bandits

Using a once-off signal per episode relates BPR to an instance of correlated bandits. In

this problem, the decision-making agent is required to pull an arm every decision time

slot from a fixed set of arms and observe its return, which will then be used to update

the estimates of the values of not only the arm that was pulled, but instead of a subset

of all the arms. In the case of BPR, the arms correspond to policies, and the new task

instance is the bandit ‘machine’ that generates utilities per pull of an arm (execution of

a policy).

In the correlated bandits literature, the form of correlation between the arms is

known to the agent. Usually, this happens to be the functional form of the reward curve.

The agent’s task is then to identify the parameters of that curve, so that the hypothesis

of the best arm moves in the parameter space of the reward curve. In response surface

bandits (Ginebra and Clayton, 1995), the rewards of the arms are correlated through

a functional form with unknown parameters, with a prior over these parameters, and

with a known metric on the policy space. In our work, we do not assume any functional

form for the response surface, and we assume that the metric on the policy space is

unknown. More recently, Mersereau et al. (2009) present a greedy policy which takes

advantage of the correlation between the arms in their reward functions, assuming a

linear form with one parameter, with a known prior.

In our framework, we do not specify any functional form for the response sur-

face, but only specify assumptions on the continuity and smoothness of the surface.

Instead, we treat the known types as a set of learnt bandit machines with known be-

haviour for each of the different arms. These behaviours define local ‘kernels’ on the

response surface, which we then approximate by a sparse kernel machine, and then

track a hypothesis of the best arm using that space. This is similar to the Gaussian pro-

cess framework, but in our case, the lack of a metric on the policy space prevents the

definition of the covariance functions needed there. This point is elaborated in Section
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4.7.3.

In another thread, dependent bandits (Pandey et al., 2007) assume that the arms in

a multi-armed bandit can be clustered into different groups, the members of each have

correlated reward distribution parameters. Then, each cluster is represented with one

representative arm, and the algorithm proceeds in two steps: first, a cluster is chosen

by a variant of UCB1 (Auer et al., 2002a) applied to the set of representative arms,

then the same method is used again to choose between the arms of the chosen cluster.

We assume in our work that the set of seen tasks span and represent the space well,

but we do not dwell on how this set of tasks can be selected. Clustering is one good

candidate for that, and one particular example of identifying the important types in a

task space can be seen in the work of Mahmud et al. (2013).

4.7.3 Relation to Bayesian Optimisation

If the problem of Bayesian policy reuse is treated as an instance of Bayesian optimisa-

tion, we consider the objective

π
∗ = argmax

π∈Π
E[U |x∗,π],

where x∗ ∈X is the unknown process with which the agent is interacting, and E[U |x∗,π]
is the unknown expected performance when playing π on x∗. This optimisation in-

volves a selection from a discrete set of alternative policies (π ∈ Π), corresponding to

sampling the performance function at a discrete set of locations. Sampling this func-

tion is expensive, corresponding to executing a policy for an episode, and as a result

the performance function must be optimised in as few samples as possible.

However, a Bayesian optimisation solution requires the optimised function to be

modelled as a Gaussian Process (GP). There are two issues here:

1. Observations in BPR need not be the performance itself (see Section 4.4), while

the GP model is appropriate only where these two are the same.

2. BPR does not assume knowledge of the metric in policy space. This is how-

ever required for Bayesian optimisation, so as to define a kernel function for the

Gaussian process. An exception is in the case where policies all belong to a

parametrised family of behaviours, placing the metric in parameter space as a

proxy for policy space.

Still, we assume smoothness and continuity of the response surface for similar tasks

and policies, which is a standard assumption in Gaussian process regression. Bayesian
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policy reuse uses a belief that tracks the most similar seen type, and then reuses the

best policy for that type. This belief can be understood as the mixing coefficient in a

mixture model that represents the response surface.

To see this, consider Figure 4.13 which shows an example 2D response surface.

Each type is represented by a ‘band’ on that surface; a set of curves only precisely

known (in terms of means and variances) at the set of known policies. Projecting these

‘bands’ into performance space gives a probabilistic description of the performance of

the different policies on that type. Each of these projections would be a component of

the mixture model, and would represent the type’s contribution to the surface.

Figure 4.13: An example 2D response surface. The ‘bands’ on the curve show two

types, and the lines that run through the curve from left to right are policy performances

for all types. The agent only has access to the intersection of types’ bands with policy

curves (the black dots). Shown on the left are the performance curves of the two types

τ1 and τ2 under all policies. These are represented as Gaussian processes in the

Policies-Performance plane.

Any new task instance corresponds to an unknown curve on the surface. Given

that the only knowledge possessed by the agent from the surface is these type proba-

bilistic models, Bayesian policy reuse implicitly assumes that they act as a basis that

span the space of possible curves, so that the performance under any new task can be

represented as a weighted average of the responses of the seen types3. To this extent,

3Note that this will create a bias in the agent’s estimated model of the type space toward the types
that have been seen more often previously. We assume that the environment is benign and that the offline
phase is long enough to experience the necessary types.
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the performance for the new task instance is approximately identified by a vector of

weights, which in our treatment of BPR we refer to as the type belief. As a result, the

BPR algorithm is one that fits a probabilistic model to a curve through sampling and

adjusting weights in an approximated mixture of Gaussian processes.

4.7.4 Relation to Bayesian Reinforcement Learning

Bayesian Reinforcement Learning (BRL) is a paradigm of Reinforcement Learning

that handles the uncertainty in an unknown MDP in a Bayesian manner by main-

taining a probability distribution over the space of possible MDPs, and updating that

distribution using the observations generated from the MDP as the interaction contin-

ues (Dearden et al., 1999). In work by Wilson et al. (2007), the problem of Multi-

task Reinforcement Learning of a possibly-infinite stream of MDPs is handled in a

Bayesian framework. The authors model the MDP generative process using a hierar-

chical infinite mixture model, in which any MDP is assumed to be generated from one

of a set of initially-unknown classes, along with a prior over the classes.

Bayesian Policy Reuse can be regarded as an special instance of Bayesian Multi-

task Reinforcement Learning with the following construction. Assume an MDP that

has a chain of K states and a collection of actions that all connect each state in the

chain to the next. The set of actions is given by Π, the policy library. The MDPs are

parametrised by their type label τ. For each time step in an MDP, the agent takes an

action (a policy π ∈Π) and the MDP returns with a performance signal, Uπ
τ . The task

of the agent is to infer the best policy for this MDP (a sequence π0, . . . ,πt) that achieves

the fastest convergence of values U .

4.7.5 Other Bayesian Approaches

Engel and Ghavamzadeh (2007) introduce a Bayesian treatment to the Policy Gra-

dient method in reinforcement learning. The gradient of some parametrised policy

space is modelled as a Gaussian process, and paths sampled from the MDP (completed

episodes) are used to compute the posteriors and to optimise the policy by moving in

the direction of the performance gradient. The use of Gaussian processes in policy

space is similar to the interpretation of our approach, but they use them to model the

gradient rather than the performance itself.

When no gradient information is available to guide the search, Wingate et al. (2011)

propose to use MCMC to search in the space of policies which is endowed with a
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prior. These authors discuss various kinds of hierarchical priors that can be used to

bias the search. In our work, we choose the policies using exploration heuristics based

on offline-acquired performance profiles rather than using kernels and policy priors.

Furthermore, we have a small set of policies to search through in order to optimise the

time of convergence.

4.7.6 Storage Complexity

As described in Section 4.4, the use of different signals entail different observation

models and hence different storage complexities. Assume that |S| is the size of the

state space, |A| is the size of the action space, |Π| is the size of the policy library, N

is the number of seen types, |R| is the size of the reward space, T is the duration of

an episode, and B is the number of bits needed to store one probability value. For the

performance signal, the storage complexity of the observation model is upper bounded

by SC per f = |Π|N |R|B for the average reward case, and SC per f ,γ = |Π|N 1−γT

1−γ
|R|B

for the discounted reward case. For the state-action-state signals, the term is SC s′ =

|Π|N |R| |S| |A|B, and for the immediate reward signal we get SC r = |Π|N |S|2 |A|B.

In applications that have |R|> |S| we get the ordering SC per f < SC r < SC s′ .

4.8 Online Adaptation of Interaction Environments to

Diverse Users

4.8.1 Introduction

Modelling different classes of tasks as types with related optimal policies and related

policy performance has been shown in this chapter to be an effective representation

for reasoning about policy reuse. The notion of types thus lends itself naturally to

describing different classes of people, such as the users of some interactive system,

which are likely to differ in skill levels and preferences. To this end, we examine the

particular application of adapting an interface itself to best suit different users, through

the type and policy reuse formalisms introduced above.

Interactive interfaces, such as natural gesture-based user interfaces, have revolu-

tionised the way we interact with robots, video games and many related applications.

A key attribute of such an interface is the way in which users’ high-dimensional move-

ments are interpreted and correspondingly mapped to the command set within the
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application. Many modern software applications have similar requirements. For in-

stance, interfaces to search engines (e.g., Google, Bing), or photo-editing software

(e.g., Adobe Photoshop), involve numerous configuration choices that, implicitly or

explicitly, define the context of the interaction between the human user and the com-

putational process actually being performed.

Almost all of these applications must be deployed with large user populations, with

substantial diversity in the performance that results from any given pair of user and

configuration setting. For instance, even with a simple interface such as joystick-based

navigation within a video game or field robotics application, there is wide interface-

dependent variety in dexterity and skill of users (Rosman et al., 2014). A mismatch

between a user’s skill level and settings such as the sensitivity level at which one in-

terprets a particular motion as a signal can have substantial negative impact on the

user’s ability to perform a task. Sometimes the mismatches can be in assumptions

about perceptual ability, e.g., how precisely aware the user is regarding the current

computational context. As studies have shown, perceptual limitations can have a dis-

proportionately large effect on a user’s performance when the task involves interactive

decisions in a dynamic environment (Valtazanos and Ramamoorthy, 2013). Similar

effects are observed in software applications, such as in the performance difference

between young children and skilled adults when presented with a number of choices

by an interface.

These issues of personalisation in diverse applications are unified in the compu-

tational problem of automatically shaping the environment so that it is best adapted

to the specific user whom the system is currently facing. Our particular interest is in

adapting online, to personalise on the fly as the user interacts with the system, without

long calibration phases and with only partial knowledge of the underlying traits that

induce variability. As such, this domain is well suited to BPR.

The objective of this section is to present such a model of personalisation and

a version of the BPR algorithm for optimally adapting the corresponding action set

using which the user must solve the task at hand. The effectiveness of such a model

and algorithm can be characterised by a few key properties – safety, i.e., ensuring that

individualised adaptation does not lead to worse performance than a pre-configured

statically optimal setting, efficiency, i.e., learning to obtain settings that enable the user

to achieve their maximal performance, and speed, i.e., the ability to adapt within a

few episodes (a low sample complexity) which roughly corresponds to users’ patience.

With this in mind, we present an empirical evaluation with real and simulated human
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participants to further validate these claims.

4.8.2 Related Work

The problem of learning to adapt to user behaviour is garnering increasing attention

from researchers in different domains. In one formulation, the learning agent may

be assisting a user whose goal is unknown. For instance, Fern and Tadepalli (2010b)

present the hidden-goal MDP to model problems such as that faced by a doorman who

must anticipate when and where to go in order to help someone. In general, this is a

computationally hard problem and fairly strong assumptions are required to achieve

tractable results, such as that the only unknown is the goal state of the user. Indeed,

this problem has a longer history in the literature on plan recognition (Charniak and

Goldman, 1991).

Our focus is different in that our problem is not that of trying to predict the user’s

future state alone, based on the past (as in the doorman example above), but instead we

try to infer latent ‘personality traits’ or skills/preferences of the user in order to shape

their environment – to enable them to do better in their chosen task. In this sense, our

work is related to recent work on personalisation (Seuken et al., 2012; Zhang et al.,

2009).

In work by Hoey et al. (2010), a closely related problem is solved using par-

tially observable MDPs (POMDPs). The problem is to synthesise a policy for issuing

prompts to dementia patients that is best adapted to an unobserved ‘attitude’ that must

be inferred. A key attribute of this model is that there are two actors – the patient and

the prompting assistive device, so that the adaptation is to change what the prompting

device does in order to get the patient to do what is best. This is also related to in-

centive decision processes (Reddi and Brunskill, 2012), environment shaping (Zhang

et al., 2009), website morphing (Hauser et al., 2009), etc. In other applications, such

as robotics, similar ideas have been explored in the form of mixed-observability MDPs

(MOMDPs) (Ong et al., 2010), applied to intention-aware motion planning (Bandy-

opadhyay et al., 2012; Sisbot et al., 2007).

In related work in recommender systems, it is common to model user behaviour as

a Markov Chain, based on which one adapts recommendations (Jannach et al., 2011).

Sometimes, this problem is given a sequential decision making flavour (Chickering

and Paek, 2007; Shani et al., 2005) such as by using a bandit learning algorithm to pick

optimal recommendation strategies over time. In our work, we need more expressive
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models of the user herself, whom we model as a parametrised-MDP, based on which

we invoke a version of BPR as a sequential decision making algorithm.

The notion of designing a customised user interface has been studied in the HCI

community, e.g. Gajos et al. (2008), where one finds ways to automatically synthesise

user interfaces tuned to user abilities. The process involves offline calibration using a

battery of tasks, based on which one obtains information necessary to pose the inter-

face design problem as one of combinatorial search. While we take inspiration from

such work, the focus of our own work is different as we are motivated by quick online

adaptation to different users. More so than the combinatorial search, the harder prob-

lem in our setting is that of model selection to identify types of users whose relevant

traits are latent and unobserved.

4.8.3 A Model of User Interaction

4.8.3.1 Interaction Shaping As Action Set Selection

In our model (Mahmud et al., 2014), the user4 of the system acts according to a Markov

decision process (MDP) (Puterman, 1994) and invokes a correspondingly optimal pol-

icy. The user is defined by her skill level (her type τ ∈ T ), which determines the tran-

sition function of the MDP – this models the fact that, for instance, a less skilled user

will have a different way of transitioning between states (e.g., being more variable)

to that of an expert. Unlike in standard applications of optimising policies for given

MDPs, we will be changing the action set α as the interaction proceeds in episodes,

which is the main point of the interaction shaping process. Changing the action set

corresponds to invoking a policy in policy reuse. The goal of the learner5 is to choose

action sets so as to maximise the future expected discounted reward of the user. So,

the search space for our learning algorithm is again the type space T , rather than the

space of paths the user actually traverses, and the value of a type is the value of the

optimal policy given the type.

Note that for the remainder of the discussion of this application domain, the choice

of action set provided to the user by the learning agent corresponds to a policy in the

policy reuse sense. We then refer to policy as the behaviour invoked by the user in her

current task.
4In other applications the user may be represented by another behaviourally motivated model of

choice, without fundamentally altering anything else in our framework.
5We refer to the learning algorithm which chooses the action sets as the learner.
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In particular, we are concerned with a class of MDPs M parametrised by the type

parameter τ:

M = {((S,A,T (·;τ),R,γ)|τ ∈ T }. (4.7)

These MDPs differ only in the transition function T (s′|s,a;τ), which depends on τ (the

skill level of the user). T is the set of all types, τ. For instance, the user controlling

a joystick corresponds to a MDP. Furthermore, a poorly skilled user will have poor

control over the joystick which means that she will only be able to make coarse moves

(regardless of the sensitivity of the joystick). Whereas, a highly skilled user will be able

to execute sharp curves if given an appropriately sensitive joystick. This implies that

the MDP corresponding to the task for each user type has different transition functions

(for example, transitions with high and low entropy for low and high skilled users

respectively).

We further assume that the action space A is large, but is partitioned, where AS is

the set of all the cells of the partition. That is, if action sets α,α′ ∈ AS, then α and α′

are disjoint; and
⋃

α∈ASα = A. We only allow user policies that take values in a single

α ∈ AS (we say the user policy is restricted to α). In the joystick example, different

action sets α∈AS correspond to different sensitivity levels of the joystick. The actions

for a particular α/joystick sensitivity are the motion actions at that particular level of

granularity. Of course, whether the user will be able to execute them depends on her

skill level (i.e. the transition function ultimately also depends on the user type). The

value function of a user policy π now depends on τ and is denoted by V π
τ . For a given

α, we denote V α
τ =maxπV π

τ and denote by π∗α = argmaxπV π
τ , where the max is defined

over π restricted to α.

Our learning problem can now be defined as follows. The user solves a sequence of

MDPs from the set M in collaboration with the learner – that is the goal of both the user

and the learner is to maximise the future expected discounted reward of the user. At the

beginning of each phase of the problem, nature chooses the type τ∗ (corresponding to

a new user) according to a distribution G0(τ) and in response, the learner is required to

choose the action set α. The user can now only use policies restricted to α. The learner

cannot observe the true τ∗ but knows the value of T for each τ, that is, the observation

signal models are given by the transition functions T . The user knows her own type

and also knows the value of T and R. Once α is given, the user acts according to her

optimal policy for that action set, π∗α.

The role of the learner is as follows. At any point in time, the learner can step

in and change the action set from α to a new action set α′. In response, the user
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starts acting according to π∗
α′ instead (we assume that the user can adapt to this change

immediately). The goal of the learner is to choose the action set argmaxαV α
τ . In terms

of the joystick example, this means that at the beginning some user of unknown skill

(τ∗) begins to use the interface. She operates the interface to the best of her ability

given the sensitivity. Given her actions, the learner agent tries to estimate the skill

level and based on that either increases or decreases the sensitivity.

Given the above setup, the a priori optimal action set is defined to be

α∗ = argmax
α
EG0(τ)[V

α
τ ]. (4.8)

In the next section, we derive an a posteriori optimal action set selection policy, that is,

a policy for the learner agent that adaptively and optimally chooses the action set that

is optimal according to some well-defined and reasonable criteria, and also eventually

converges.

4.8.4 Determining Agent Type

In the following we present our approach to adaptively determine the user type through

repeated interactions. We first describe our criterion, Bayes optimality, for choosing

action sets and then describe the algorithm that uses the Bayes optimal action set.

4.8.4.1 Bayes Optimal Action Set

We assume the learner has full knowledge of the set of user types T = {τ1,τ2, · · · ,τn},
through having learnt the transition and reward signal models. In the experiments, we

acquire these types during an initial training phase by interacting with users. This is

discussed further in Section 4.8.5. Assume that at time step t of a particular interaction

session we have observed a state-action sequence sa0:t = s0a0s1a1 · · ·st (with sa0:0 =

s0). Given this session, the probability of a type τi can be computed as P(τi|sa0:t) =

∏
t−1
i=0 T (si+1|si,ai;τi)β

0(τi), where β0(·) is the prior distribution over T . Note that this

probability P(τi|sa0:t) is exactly the belief of τi at time t: βt(τi).

Having defined the posterior distribution over types as the belief, at step t the

learner agent is required to choose the Bayes optimal action set αBO i.e. the action

set maximising expectation of V α
τ with respect to the posterior over T . More formally,

αBO(sa0:t) = argmax
α

∑
i

V α
τi

β
t(τi). (4.9)

For the empty sequence /0, we define αBO( /0) = argmaxα ∑iV α
τi

β0(τi).
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4.8.4.2 Learning Algorithm

Our learning algorithm, Bayesian Environment Adaptation with Types (BEAT) is listed

as Algorithm 9. At each step, BEAT observes the user action and updates the belief

of each type. Additionally, it chooses a new action set. With probability 1− εt it

chooses the Bayes optimal action set and with probability εt it chooses an action set at

random. The exploration terms satisfy the condition of ∑n εn = ∞ and limn→∞ εn = 0

(for instance εn = 1/n).

Algorithm 9 The Bayesian Environment Adaptation with Types (BEAT) Algorithm
Require: The set of observation models T (·;τ), task termination condition ω, set of

types T , prior β0 over types.

1: Initialize: εn is a sequence with ∑n εn = ∞ and limn→∞ εn = 0.

2: Compute V α
τi

for each α ∈ AS and type τi.

3: Let s0 be the initial state and t← 0.

4: while ω = f alse do
5: Observe user action at , reward rt and next state st+1.

6: Update belief of each type: βt+1(τi) = T (st+1|st ,at ;τi)×βt(τi).

7: αt+1←−

αBO(sa0:t+1) (defined in (4.9)) w.p. 1− εt

a random action set w.p. εt

8: t←− t +1.

9: end while

Note that the BEAT algorithm is a special case of BPR, corresponding to the use of

ε-greedy policy selection, MDP transition functions as observation models, and action

sets as pre-learnt policies to reuse.

4.8.5 Experiments

In this section we present two sets of experiments in a video game domain to illus-

trate our method. In the first set, the user is a robot/artificial user, while in the sec-

ond set the users are humans. In the following, we describe the comparison algo-

rithms and then discuss the results in detail. In our experiments, we compare BEAT

with α∗ (the a priori/population optimal action set), and the EXP-3 algorithm (Auer

et al., 2002b; Cesa-Bianchi and Lugosi, 2006) for non-stochastic multi-armed bandits

(NSMB). This latter framework is a natural fit for addressing the problem of action

set selection. In the NSMB problem, there are c arms where each arm i has a pay-
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off process xi(t) associated with it. The learner runs for T steps and at each step t

needs to pull/select one of the arms f (t), giving her a payoff of x f (t)(t). Additionally,

the learner only gets to view the payoff of the arm f (t) it has chosen. The goal of

the learner is to minimise its regret with respect to the best arm, that is minimise the

quantity maxi ∑
T
t=1 xi(t)−∑

T
t=1 x f (t)(t). In general it is not possible to minimise this in

any meaningful sense. An optimal algorithm in the general case, for minimising the

expected regret was developed by Auer et al. (2002b), called the EXP-3 algorithm. In

our experiment, each arm corresponds to an action set run for k steps and the payoff is

the total discounted reward obtained in those k steps.

4.8.5.1 Experiment Setup

Design. Figure 4.14 shows the domain used in our experiments.

Figure 4.14: Our video game domain. The blue polygons are obstacles, the white

regions are free space, the green rectangle is the goal location, and the red circle is the

ball which is controlled by the user.

The goal of the user is to move a ball (red circle) from a fixed start location to

the goal location (green rectangle). The ball moves with a constant speed z and at

each step the user can choose to change the direction of motion into one of N, S, E,

and W. Her loss (negative reward), received when she reaches the goal, is the sum of

the normalised time taken and the normalised number of collisions. During play, the

learner (system) chooses the speed to help minimise the loss. We capture two types of
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limitations in user behaviour. The size of the ball reflects limits to the user’s perceptual

ability, with large ball sizes indicating reduced acuity. The noise of the motion of the

ball reflects limits to motor ability, such as intrinsic jitter in the way she uses the device.

Combinations of larger ball and noise imply less skill. These limitations are designed

to be exaggerated in order to override natural variation in the user base.

Parameters. The state space is the location of the ball at each time step (the

game field was 1000× 1000). Each action is a move by z-units in a cardinal direc-

tion (N,S,E,W ), where z ∈ {30,40,50,60,70}. Each action set αz corresponds to all

the motions at speed z. The direction at step t is the most recent direction chosen by

the user at t ′ ≤ t (so, the actual play of the user is modelled in the MDP as the user

choosing the same action at every step as her last choice of direction). There was a

constant amount of noise (on top of noise due to type) with each action, so the ball

moves in the given direction followed by (discretised) Gaussian motion (perpendicular

to the direction of motion) with mean 0, and σ ∈ [0.3,8] (chosen randomly for each

episode). There were 6 different types: ball size b ∈ {2,5,10,20,40,60}, with noise

levels nb = b/2%. So for type b, with probability 1−nb, the ball moves in the current

direction, and with probability nb, it moves in another random direction. Hence, the

type modifies the base transition probabilities (1) by the noise nb and (2) because the

ball sizes determine the locations that result in collisions. We ran two sets of experi-

ments, one with a simulated user and another with human users. In both cases, we ran

an initial training phase to learn the observation models corresponding to the transition

distributions for each (b,nb)× z pair. We used k = 1, and ε0 = 0.5 with ε decreased by

0.1 every episode.

Algorithms. The simulated user policy was the A∗ algorithm, where the direction

chosen at each step, given speed z, was toward the location, at distance z from the

current location, that had the lowest cost. After training, we ran a test phase, during

which we chose the type at random and recorded the loss over 5 episodes of BEAT,

each individual action set and EXP-3 averaged over 100 runs. Note that the user knows

her type but these algorithms do not. For the simulated user, the policy used was the

same, and for the human experiment, we used three different users, each performing a

sequence of many trials involving combinations of ball sizes and speeds.

4.8.5.2 Results

Simulated User. We present three types of plots. The first plot, Figure 4.15 shows the

loss of each z for three representative (b,nb) and illustrates a ‘phase-transition’ phe-
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Figure 4.15: Simulated Users. The performance of each speed for each type establish-

ing baseline domain performance.

nomenon on the loss of the speeds for the different sizes: higher speeds tend to work

better for smaller sizes and vice versa. Figure 4.16 shows the losses in terms of the pop-

ulation diversity. Here, in the x-axis each x corresponds to all possible combinations

of x types (so all
(6

x

)
combinations). This captures different levels of heterogeneity in

user populations. In the figure, for the curve α∗, the point α∗(x) gives the loss of the

best speed averaged across all populations of size x. Hence EXP-3(x) gives the loss of

EXP-3 averaged over all populations of size x, while BEAT(x) gives the loss of BEAT

averaged over all populations of size x. This curve shows, that averaged across popula-

tion sizes, BEAT outperforms EXP-3 significantly. This is compatible with the results

seen in the surveillance domain results in Section 4.6.4, particularly the comparison to

UCB in Figure 4.11. Furthermore, while for the smaller population size, the α∗ outper-

forms BEAT, for the larger population sizes BEAT outperforms α∗ comprehensively,

illustrating the need for adaptation.

Finally, Figure 4.17 shows how well BEAT is able to identify types. This plot

shows that BEAT has trouble identifying the smallest type. We conjecture that this is

because the behaviour of b = 5 and b = 2 are nearly indistinguishable. However, other

than that, it is able to identify the correct type fairly rapidly, almost always halfway

through the first episode.
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Figure 4.16: Simulated Users. The performance of best static speed α∗, EXP-3 and

BEAT for each of 6 possible combinations of type populations when the user is simu-

lated. See text for details.

Figure 4.17: Simulated Users. The ratio of the maximum-likelihood type and posterior

and the true type in BEAT, averaged over all population-diversity trials in our experi-

ments.
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Figure 4.18: Human Users. The performance of each speed for each type, establishing

baseline performance in the domain.

Human User. The results for the human experiments are presented as before in

three plots. Figure 4.18 shows the phase-transition in the loss at different speeds.

Figure 4.19 shows the performance of BEAT and α∗ for the human experiments in

terms of population diversity. We do not report the performance of EXP-3 because

data collection for that algorithm takes time that exceeded the constraints of our human

subjects. In these experiments, we see that BEAT significantly outperforms α∗ for

all population sizes, hence demonstrating the benefit of adaptation with real human

subjects, corroborating our more extensive simulation results above. This is a key

experimental result of this application domain. Finally, Figure 4.20 shows the efficacy

of our algorithm at identifying different types. As in simulated user experiments, our

algorithm has some trouble distinguishing between the very nearby types b = 5 and

b = 2 but the error is not beyond the threshold of small noise.

Safety, Efficiency And Speed. As stated above, our goal in designing the algo-

rithm was to ensure safety, efficiency and speed.

Safety: The experiments show asymptotic safety. For simulated users, BEAT does

not under-perform w.r.t. any alternatives including EXP-3 and the static best speed

α∗. In the human experiments, BEAT always does better than α∗ (Figure 4.19). In the

artificially constrained low-population-diversity setting (1-3) with simulated users, α∗
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Figure 4.19: Human Users. The performance of best static speed α∗ and BEAT for

each of 6 possible combinations of population types. See text for details.

Figure 4.20: Human Users. The ratio of the maximum-likelihood type and posterior and

the true type in BEAT, averaged over all population-diversity trials in our experiments

when the user is human.
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is marginally better than BEAT, but BEAT outperforms at realistic levels of diversity

(Figure 4.16).

Efficiency: In the experiments, Figures 4.16 and 4.19 report on the regret, which

also shows efficiency in practice.

Speed. Figures 4.17 and 4.20 show that we identify the true types fairly rapidly,

with low sample complexity, demonstrating the speed of this approach.

4.9 Conclusion

In this chapter we address the policy reuse problem, which involves being presented

with an unknown task instance and being required to select between a number of differ-

ent policies so as to minimise regret within a short number of episodes. This problem

is motivated by many application domains, where tasks have short durations, such

as human interaction and personalisation, as well as monitoring tasks. We introduce

Bayesian Policy Reuse as a Bayesian framework for solving this problem, by tracking

a belief over the space of known tasks which is updated using observation signals and

models trained offline for each policy. Several mechanisms for selecting policies from

the belief are also described, giving rise to different variants of the core algorithm.

This approach is empirically evaluated in four domains, where we show com-

parisons between the different variants of BPR, as well as a bandit algorithm and a

Bayesian optimisation algorithm. We also show the effect of using different observa-

tion signals, and illustrate the trade-off between library size and sample complexity

required to achieve a certain level of performance in a task.

Finally as an application, we present a particular instantiation of BPR, known as

Bayesian Environment Adaptation with Types (BEAT), which performs online inter-

face adaptation and personalisation based on the performance of a user on a task. This

algorithm is shown to possess three key properties in its responses: safety, efficiency,

and speed.



Chapter 5

Discussion and Conclusion

5.1 Discussion

In this thesis we set out to explore mechanisms for learning and acting in domains over

prolonged periods of time. The ultimate goal is to be able to deploy an agent in some

rich environment where it would be expected to solve sequences of tasks, the details

of which are unknown a priori. To this end, such an agent would need to be able to

make fast decisions based on a number of task and domain variables, some of which

may not be directly observable. The capabilities and performance of this agent would

therefore be greatly enhanced by learning about regularities in the environment, which

in turn cause regularities in behaviour.

The work presented in this thesis emphasises three core themes which contribute

to the successful operation of lifelong robots.

The first of these themes is the idea of learning the structure of a domain. A better

understanding of the general compositions of the family of domains encountered by

an agent suggests that better representations could be developed, which in turn means

that plans can be better specified and more successfully executed. Ideally, an agent

should be equipped with the ability to learn and refine environmental representations

autonomously. In Chapter 2, we presented an algorithm that can learn spatial relation-

ships from labelled data, and use this to uncover functional aspects of the topological

structure of the objects in a scene. This therefore illustrates one aspect of potentially

long-term representation learning.

The second theme relates to learning across tasks, and using the experience gained

in previous tasks to guide solutions to new tasks. This also corresponds to learning

structure in the domain, albeit more dynamic structure, in that it is a property of the
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behaviours of the agent within the domain. By introducing the concept of action pri-

ors in Chapter 3, we show how behaviours used in a number of different tasks can be

combined, so as to identify the common elements. Together, these form a notion of

“common sense” behaviour within the domain, by providing a prior over action se-

lection which is acquired from multiple tasks. This is knowledge which an agent can

gradually accumulate over an entire operational lifetime.

The third and final theme concerns the concept of reusing behaviours and selec-

tion between them based on environmental cues, rather than learning new ones from

scratch. This approach works well when tasks or environments are similar, but they

differ in ways which are not directly observable. Solution speeds can be many orders

of magnitude faster by trying to find a good policy from a pre-learnt repertoire than to

treat each problem as completely new and unrelated to previous experiences. In intro-

ducing Bayesian policy reuse in Chapter 4 we show how policies can be reused in this

way, in a sample efficient manner.

5.2 Future Work

Each of the methods and techniques described in this thesis present possible avenues

for future research, and we describe some of these here, either as extensions to the

current work, combinations of the approaches presented herein, or further questions

raised by these methods.

Extending the Language of Spatial Relations

The work on spatial relationships is limited to being a proof of concept, in that it

only covers the learning of the concepts of “on” and “adjacent”. This could be easily

extended to include other spatial relationships between objects, such as “under” or “in

front of”.

In addition, incorporating a logic engine would allow for more complicated rela-

tionships to be inferred. For example, “between” would require two different “adja-

cent” relationships to be identified, or “in” requires the presence of “on” as well as

“adjacent”.

In the original work, we did not delve deeply into the uses of the topological struc-

tures of objects which arose from the contact point networks. These topologies can be

used to define a functional similarity between different objects, and thus classify ob-
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jects based on the way in which they are used in a scene. This choice of representation

would allow for objects to be used in planning, without knowing the identities of the

objects themselves. This could provide many advantages to an embodied agent, who

could then form and execute plans even if some of the objects involved were unknown.

Action Priors in Different Reasoning Models

Action priors were introduced in this thesis as a means for prioritising action selection

based on commonalities between families of tasks. In particular, we used them in the

context of reinforcement learning. However, the principle as presented is agnostic to

the decision making paradigm.

As a result, action priors are applicable to different action choice frameworks, and

in particular it would be interesting to investigate using this principle to guide the

search process in planning paradigms, such as Monte-Carlo tree search (Browne et al.,

2012).

Context in Bayesian Policy Reuse

The work on Bayesian policy reuse presented in this thesis defines a prior distribution

G0 over the task types. This distribution is used to seed the initial belief: β0 = G0. In

our experiments, we assume this distribution to be uniform.

A simple extension could incorporate learning this distribution from the training

data. The prior could actually be made more interesting, if it was assumed that this

changed over time. If such an adaptation process did occur, this could be tracked,

which would lead to learning at multiple time scales: identification of an individual

task over that task’s duration, vs a slower tracking of the task distribution.

Finally, Bayesian policy reuse could also use external context as a signal for seed-

ing the prior distribution to result in even faster convergence. This would be useful

for cases where there are different families of tasks, such as for an assistive robot in

a hospital dealing with the requests of either a patient or a doctor. This task seeding

would work using the principle of action priors.

Closing the Loop

In Section 3.3.2 we touch on the issue of feature selection, by examining the entropy

of the action priors over each feature in a feature set.
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As an avenue for further research, it would be interesting to further investigate

ways in which one could close the perception-action loop by using perceptual signals

to identify candidate regions for policy learning, and in so doing establish a form of

artificial curiosity.

The entropy in the action priors for a particular context provides an indication

that there is scope for further learning. As we have already shown this to be useful

for feature selection, so too could it indicate a candidate situation for learning a new

behaviour or action.

Furthermore, if being presented with a new task in Bayesian policy reuse results in

a belief spread over more than one of the pre-learnt types, then this suggests that the

new task may have been drawn from a previously unseen type. Again, this indicates

an occasion for learning the new type, as well as a corresponding optimal policy.

Systems Integration

One major avenue to be explored following the ideas presented in this thesis lies in

their integration and subsequent implementation on robot hardware, and to actually

deploy it into a real-world multitask domain.

The three primary threads developed in this thesis can be naturally combined. The

spatial relationships and topological abstractions of objects presented in Chapter 2

provide a general basis for observation features to be used with the action priors. The

action priors in turn can be used to provide context-specific priors for Bayesian policy

reuse.

Together, these provide a solid framework for decision making in multitask en-

vironments. Implementing these as a complete system on a multi-purpose hardware

platform should enable a robot to select between and execute a large number of be-

haviours quickly under novel conditions.

5.3 Conclusion

In order to build robotic systems which are capable of being deployed for long periods

of time and working on a wide range of tasks in their environment, many of which may

not have been conceptualised at the time of deployment, we require learning systems

which have been developed with these specifications in mind.

This is a problem for which the human brain seems highly skilled. As humans, we
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are able to generalise from experiences and use abstracted features of environments,

together with sparse feedback from the environment, to make competent decisions in

a wide range of novel situations.

This research has thus focused on the ideas of learning general domain knowledge,

and reusing both this knowledge and previously learnt behaviours so as to accelerate

the completion of new tasks. We have introduced algorithms for learning the spatial

structure between different objects, for guiding exploration towards behaviours that

have worked well in the past, and for using sparse signals and expected performance

to inform policy selection.

The common theme demonstrated throughout this thesis is the strength of abstrac-

tions in allowing agents to learn and make decisions rapidly in new situations. We

have shown how, in a number of different contexts, agents can acquire general domain

knowledge from multiple instances of different tasks in the same domain. This loosely

corresponds to “common sense” knowledge in humans, which we use to provide a set

of behavioural guidelines for dealing with both familiar and foreign tasks and situa-

tions. In this work, we have shown abstractions for describing relationships between

physical objects, for describing the functional topologies of objects, for prioritising

actions based on successful choices in similar situations in the past, and for describing

families of related tasks such that response policies can be selected quickly.

Three major final questions emerge when considering the ideas encapsulated in

this thesis. Firstly, what other abstractions and “common sense” knowledge can and

should be extracted from a domain to continually improve the performance of a lifelong

agent? Clearly there are a number of other aspects of general environments to be

modelled and abstracted, such as general object models, or principles of causality. Is

it then possible to enumerate a complete list of the forms of foundational and general

knowledge required by an agent to exist autonomously in a dynamic environment with

evolving task descriptions?

Finally, we note that the different abstractions discussed within this thesis are dis-

joint in the ways in which they are learnt and represented. In order to develop the

assistive hospital robots outlined in Chapter 1, it is important that the research commu-

nity extend this line of inquiry into abstractions, and address the question of how one

could develop a single unified framework for acquiring and utilising the many forms

of knowledge such as those introduced herein.

This thesis presents a step towards general purpose lifelong robots, and it is our

hope that future work can build on these ideas, so that we may one day soon have
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robots which are able to be deployed into common environments such as homes and

hospitals, and as such can augment the capabilities of the humans already present there,

in meaningful and long-term support roles.
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