7,730 research outputs found

    Application of Saliency Maps for Optimizing Camera Positioning in Deep Learning Applications

    Get PDF
    In the fields of process control engineering and robotics, especially in automatic control, optimization challenges frequently manifest as complex problems with expensive evaluations. This thesis zeroes in on one such problem: the optimization of camera positions for Convolutional Neural Networks (CNNs). CNNs have specific attention points in images that are often not intuitive to human perception, making camera placement critical for performance. The research is guided by two primary questions. The first investigates the role of Explainable Artificial Intelligence (XAI), specifically GradCAM++ visual explanations, in Computer Vision for aiding in the evaluation of different camera positions. Building on this, the second question assesses a novel algorithm that leverages these XAI features against traditional black-box optimization methods. To answer these questions, the study employs a robotic auto-positioning system for data collection, CNN model training, and performance evaluation. A case study focused on classifying flow regimes in industrial-grade bioreactors validates the method. The proposed approach shows improvements over established techniques like Grid Search, Random Search, Bayesian optimization, and Simulated Annealing. Future work will focus on gathering more data and including noise for generalized conclusions.:Contents 1 Introduction 1.1 Motivation 1.2 Problem Analysis 1.3 Research Question 1.4 Structure of the Thesis 2 State of the Art 2.1 Literature Research Methodology 2.1.1 Search Strategy 2.1.2 Inclusion and Exclusion Criteria 2.2 Blackbox Optimization 2.3 Mathematical Notation 2.4 Bayesian Optimization 2.5 Simulated Annealing 2.6 Random Search 2.7 Gridsearch 2.8 Explainable A.I. and Saliency Maps 2.9 Flowregime Classification in Stirred Vessels 2.10 Performance Metrics 2.10.1 R2 Score and Polynomial Regression for Experiment Data Analysis 2.10.2 Blackbox Optimization Performance Metrics 2.10.3 CNN Performance Metrics 3 Methodology 3.1 Requirement Analysis and Research Hypothesis 3.2 Research Approach: Case Study 3.3 Data Collection 3.4 Evaluation and Justification 4 Concept 4.1 System Overview 4.2 Data Flow 4.3 Experimental Setup 4.4 Optimization Challenges and Approaches 5 Data Collection and Experimental Setup 5.1 Hardware Components 5.2 Data Recording and Design of Experiments 5.3 Data Collection 5.4 Post-Experiment 6 Implementation 6.1 Simulation Unit 6.2 Recommendation Scalar from Saliency Maps 6.3 Saliency Map Features as Guidance Mechanism 6.4 GradCam++ Enhanced Bayesian Optimization 6.5 Benchmarking Unit 6.6 Benchmarking 7 Results and Evaluation 7.1 Experiment Data Analysis 7.2 Recommendation Scalar 7.3 Benchmarking Results and Quantitative Analysis 7.3.1 Accuracy Results from the Benchmarking Process 7.3.2 Cumulative Results Interpretation 7.3.3 Analysis of Variability 7.4 Answering the Research Questions 7.5 Summary 8 Discussion 8.1 Critical Examination of Limitations 8.2 Discussion of Solutions to Limitations 8.3 Practice-Oriented Discussion of Findings 9 Summary and OutlookIm Bereich der Prozessleittechnik und Robotik, speziell bei der automatischen Steuerung, treten oft komplexe Optimierungsprobleme auf. Diese Arbeit konzentriert sich auf die Optimierung der Kameraplatzierung in Anwendungen, die Convolutional Neural Networks (CNNs) verwenden. Da CNNs spezifische, für den Menschen nicht immer ersichtliche, Merkmale in Bildern hervorheben, ist die intuitive Platzierung der Kamera oft nicht optimal. Zwei Forschungsfragen leiten diese Arbeit: Die erste Frage untersucht die Rolle von Erklärbarer Künstlicher Intelligenz (XAI) in der Computer Vision zur Bereitstellung von Merkmalen für die Bewertung von Kamerapositionen. Die zweite Frage vergleicht einen darauf basierenden Algorithmus mit anderen Blackbox-Optimierungstechniken. Ein robotisches Auto-Positionierungssystem wird zur Datenerfassung und für Experimente eingesetzt. Als Lösungsansatz wird eine Methode vorgestellt, die XAI-Merkmale, insbesondere solche aus GradCAM++ Erkenntnissen, mit einem Bayesschen Optimierungsalgorithmus kombiniert. Diese Methode wird in einer Fallstudie zur Klassifizierung von Strömungsregimen in industriellen Bioreaktoren angewendet und zeigt eine gesteigerte performance im Vergleich zu etablierten Methoden. Zukünftige Forschung wird sich auf die Sammlung weiterer Daten, die Inklusion von verrauschten Daten und die Konsultation von Experten für eine kostengünstigere Implementierung konzentrieren.:Contents 1 Introduction 1.1 Motivation 1.2 Problem Analysis 1.3 Research Question 1.4 Structure of the Thesis 2 State of the Art 2.1 Literature Research Methodology 2.1.1 Search Strategy 2.1.2 Inclusion and Exclusion Criteria 2.2 Blackbox Optimization 2.3 Mathematical Notation 2.4 Bayesian Optimization 2.5 Simulated Annealing 2.6 Random Search 2.7 Gridsearch 2.8 Explainable A.I. and Saliency Maps 2.9 Flowregime Classification in Stirred Vessels 2.10 Performance Metrics 2.10.1 R2 Score and Polynomial Regression for Experiment Data Analysis 2.10.2 Blackbox Optimization Performance Metrics 2.10.3 CNN Performance Metrics 3 Methodology 3.1 Requirement Analysis and Research Hypothesis 3.2 Research Approach: Case Study 3.3 Data Collection 3.4 Evaluation and Justification 4 Concept 4.1 System Overview 4.2 Data Flow 4.3 Experimental Setup 4.4 Optimization Challenges and Approaches 5 Data Collection and Experimental Setup 5.1 Hardware Components 5.2 Data Recording and Design of Experiments 5.3 Data Collection 5.4 Post-Experiment 6 Implementation 6.1 Simulation Unit 6.2 Recommendation Scalar from Saliency Maps 6.3 Saliency Map Features as Guidance Mechanism 6.4 GradCam++ Enhanced Bayesian Optimization 6.5 Benchmarking Unit 6.6 Benchmarking 7 Results and Evaluation 7.1 Experiment Data Analysis 7.2 Recommendation Scalar 7.3 Benchmarking Results and Quantitative Analysis 7.3.1 Accuracy Results from the Benchmarking Process 7.3.2 Cumulative Results Interpretation 7.3.3 Analysis of Variability 7.4 Answering the Research Questions 7.5 Summary 8 Discussion 8.1 Critical Examination of Limitations 8.2 Discussion of Solutions to Limitations 8.3 Practice-Oriented Discussion of Findings 9 Summary and Outloo

    ChemTS: An Efficient Python Library for de novo Molecular Generation

    Full text link
    Automatic design of organic materials requires black-box optimization in a vast chemical space. In conventional molecular design algorithms, a molecule is built as a combination of predetermined fragments. Recently, deep neural network models such as variational auto encoders (VAEs) and recurrent neural networks (RNNs) are shown to be effective in de novo design of molecules without any predetermined fragments. This paper presents a novel python library ChemTS that explores the chemical space by combining Monte Carlo tree search (MCTS) and an RNN. In a benchmarking problem of optimizing the octanol-water partition coefficient and synthesizability, our algorithm showed superior efficiency in finding high-scoring molecules. ChemTS is available at https://github.com/tsudalab/ChemTS
    corecore