22 research outputs found

    Bayesian optimization for automated model selection

    Get PDF
    Abstract Despite the success of kernel-based nonparametric methods, kernel selection still requires considerable expertise, and is often described as a "black art." We present a sophisticated method for automatically searching for an appropriate kernel from an infinite space of potential choices. Previous efforts in this direction have focused on traversing a kernel grammar, only examining the data via computation of marginal likelihood. Our proposed search method is based on Bayesian optimization in model space, where we reason about model evidence as a function to be maximized. We explicitly reason about the data distribution and how it induces similarity between potential model choices in terms of the explanations they can offer for observed data. In this light, we construct a novel kernel between models to explain a given dataset. Our method is capable of finding a model that explains a given dataset well without any human assistance, often with fewer computations of model evidence than previous approaches, a claim we demonstrate empirically

    Fingerprint Policy Optimisation for Robust Reinforcement Learning

    Full text link
    Policy gradient methods ignore the potential value of adjusting environment variables: unobservable state features that are randomly determined by the environment in a physical setting, but are controllable in a simulator. This can lead to slow learning, or convergence to suboptimal policies, if the environment variable has a large impact on the transition dynamics. In this paper, we present fingerprint policy optimisation (FPO), which finds a policy that is optimal in expectation across the distribution of environment variables. The central idea is to use Bayesian optimisation (BO) to actively select the distribution of the environment variable that maximises the improvement generated by each iteration of the policy gradient method. To make this BO practical, we contribute two easy-to-compute low-dimensional fingerprints of the current policy. Our experiments show that FPO can efficiently learn policies that are robust to significant rare events, which are unlikely to be observable under random sampling, but are key to learning good policies.Comment: ICML 201

    Regret bounds for meta Bayesian optimization with an unknown Gaussian process prior

    Full text link
    Bayesian optimization usually assumes that a Bayesian prior is given. However, the strong theoretical guarantees in Bayesian optimization are often regrettably compromised in practice because of unknown parameters in the prior. In this paper, we adopt a variant of empirical Bayes and show that, by estimating the Gaussian process prior from offline data sampled from the same prior and constructing unbiased estimators of the posterior, variants of both GP-UCB and probability of improvement achieve a near-zero regret bound, which decreases to a constant proportional to the observational noise as the number of offline data and the number of online evaluations increase. Empirically, we have verified our approach on challenging simulated robotic problems featuring task and motion planning.Comment: Proceedings of the Thirty-second Conference on Neural Information Processing Systems, 201

    Facebook Prophet Model with Bayesian Optimization for USD Index Prediction

    Get PDF
    Accuracy is the primary focus in prediction research. Optimization is conducted to improve the performance of prediction models, thereby enhancing prediction accuracy. This study aims to optimize the Facebook Prophet model by performing hyperparameter tuning using Bayesian Optimization to improve the accuracy of USD Index Value prediction. Evaluation is conducted through multiple prediction experiments using different ranges of historical data. The results of the study demonstrate that performing hyperparameter tuning on the Facebook Prophet model yields better prediction results. Prior to parameter tuning, the MAPE indicator metric is 1.38% for the historical data range of 2014-2023, and it decreases to 1.33% after parameter tuning. Further evaluation shows improved prediction performance using different ranges of historical data. For the historical data range of 2015-2023, the MAPE value decreases from 1.39% to 1.20%. Similarly, for the data range of 2016-2023, the MAPE decreases from 1.12% to 0.80%. Furthermore, for the data range of 2017-2023, there is a decrease from 0.80% to 0.76%. This is followed by the data range of 2018-2023, with a decrease from 0.75% to 0.70%. Lastly, for the data range of 2019-2023, there is a decrease from 0.63% to 0.55%. These results demonstrate that performing Hyperparameter Optimization using Bayesian Optimization consistently improves prediction accuracy in the Facebook Prophet model
    corecore