19,283 research outputs found

    A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning

    Full text link
    We present a tutorial on Bayesian optimization, a method of finding the maximum of expensive cost functions. Bayesian optimization employs the Bayesian technique of setting a prior over the objective function and combining it with evidence to get a posterior function. This permits a utility-based selection of the next observation to make on the objective function, which must take into account both exploration (sampling from areas of high uncertainty) and exploitation (sampling areas likely to offer improvement over the current best observation). We also present two detailed extensions of Bayesian optimization, with experiments---active user modelling with preferences, and hierarchical reinforcement learning---and a discussion of the pros and cons of Bayesian optimization based on our experiences

    Robots that can adapt like animals

    Get PDF
    As robots leave the controlled environments of factories to autonomously function in more complex, natural environments, they will have to respond to the inevitable fact that they will become damaged. However, while animals can quickly adapt to a wide variety of injuries, current robots cannot "think outside the box" to find a compensatory behavior when damaged: they are limited to their pre-specified self-sensing abilities, can diagnose only anticipated failure modes, and require a pre-programmed contingency plan for every type of potential damage, an impracticality for complex robots. Here we introduce an intelligent trial and error algorithm that allows robots to adapt to damage in less than two minutes, without requiring self-diagnosis or pre-specified contingency plans. Before deployment, a robot exploits a novel algorithm to create a detailed map of the space of high-performing behaviors: This map represents the robot's intuitions about what behaviors it can perform and their value. If the robot is damaged, it uses these intuitions to guide a trial-and-error learning algorithm that conducts intelligent experiments to rapidly discover a compensatory behavior that works in spite of the damage. Experiments reveal successful adaptations for a legged robot injured in five different ways, including damaged, broken, and missing legs, and for a robotic arm with joints broken in 14 different ways. This new technique will enable more robust, effective, autonomous robots, and suggests principles that animals may use to adapt to injury

    Automating Active Learning for Gaussian Processes

    Get PDF
    In many problems in science, technology, and engineering, unlabeled data is abundant but acquiring labeled observations is expensive -- it requires a human annotator, a costly laboratory experiment, or a time-consuming computer simulation. Active learning is a machine learning paradigm designed to minimize the cost of obtaining labeled data by carefully selecting which new data should be gathered next. However, excessive machine learning expertise is often required to effectively apply these techniques in their current form. In this dissertation, we propose solutions that further automate active learning. Our core contributions are active learning algorithms that are easy for non-experts to use but that deliver results competitive with or better than human-expert solutions. We begin introducing a novel active search algorithm that automatically and dynamically balances exploration against exploitation --- without relying on a parameter to control this tradeoff. We also provide a theoretical investigation on the hardness of this problem, proving that no polynomial-time policy can achieve a constant factor approximation ratio for the expected utility of the optimal policy. Next, we introduce a novel information-theoretic approach for active model selection. Our method is based on maximizing the mutual information between the output variable and the model class. This is the first active-model-selection approach that does not require updating each model for every candidate point. As a result, we successfully developed an automated audiometry test for rapid screening of noise-induced hearing loss, a widespread and preventable disability, if diagnosed early. We proceed by introducing a novel model selection algorithm for fixed-size datasets, called Bayesian optimization for model selection (BOMS). Our proposed model search method is based on Bayesian optimization in model space, where we reason about the model evidence as a function to be maximized. BOMS is capable of finding a model that explains the dataset well without any human assistance. Finally, we extend BOMS to active learning, creating a fully automatic active learning framework. We apply this framework to Bayesian optimization, creating a sample-efficient automated system for black-box optimization. Crucially, we account for the uncertainty in the choice of model; our method uses multiple and carefully-selected models to represent its current belief about the latent objective function. Our algorithms are completely general and can be extended to any class of probabilistic models. In this dissertation, however, we mainly use the powerful class of Gaussian process models to perform inference. Extensive experimental evidence is provided to demonstrate that all proposed algorithms outperform previously developed solutions to these problems
    corecore