3,440 research outputs found

    Bayesian Semiparametric Regression Analysis of Multicategorical Time-Space Data

    Get PDF
    We present a unified semiparametric Bayesian approach based on Markov random field priors for analyzing the dependence of multicategorical response variables on time, space and further covariates. The general model extends dynamic, or state space, models for categorical time series and longitudinal data by including spatial effects as well as nonlinear effects of metrical covariates in flexible semiparametric form. Trend and seasonal components, different types of covariates and spatial effects are all treated within the same general framework by assigning appropriate priors with different forms and degrees of smoothness. Inference is fully Bayesian and uses MCMC techniques for posterior analysis. We provide two approaches: The first one is based on direct evaluation of observation likelihoods. The second one is based on latent semiparametric utility models and is particularly useful for probit models. The methods are illustrated by applications to unemployment data and a forest damage survey

    Generalized structured additive regression based on Bayesian P-splines

    Get PDF
    Generalized additive models (GAM) for modelling nonlinear effects of continuous covariates are now well established tools for the applied statistician. In this paper we develop Bayesian GAM's and extensions to generalized structured additive regression based on one or two dimensional P-splines as the main building block. The approach extends previous work by Lang und Brezger (2003) for Gaussian responses. Inference relies on Markov chain Monte Carlo (MCMC) simulation techniques, and is either based on iteratively weighted least squares (IWLS) proposals or on latent utility representations of (multi)categorical regression models. Our approach covers the most common univariate response distributions, e.g. the Binomial, Poisson or Gamma distribution, as well as multicategorical responses. For the first time, we present Bayesian semiparametric inference for the widely used multinomial logit models. As we will demonstrate through two applications on the forest health status of trees and a space-time analysis of health insurance data, the approach allows realistic modelling of complex problems. We consider the enormous flexibility and extendability of our approach as a main advantage of Bayesian inference based on MCMC techniques compared to more traditional approaches. Software for the methodology presented in the paper is provided within the public domain package BayesX

    Semiparametric Bayesian inference in smooth coefficient models

    Get PDF
    We describe procedures for Bayesian estimation and testing in cross-sectional, panel data and nonlinear smooth coefficient models. The smooth coefficient model is a generalization of the partially linear or additive model wherein coefficients on linear explanatory variables are treated as unknown functions of an observable covariate. In the approach we describe, points on the regression lines are regarded as unknown parameters and priors are placed on differences between adjacent points to introduce the potential for smoothing the curves. The algorithms we describe are quite simple to implement - for example, estimation, testing and smoothing parameter selection can be carried out analytically in the cross-sectional smooth coefficient model. We apply our methods using data from the National Longitudinal Survey of Youth (NLSY). Using the NLSY data we first explore the relationship between ability and log wages and flexibly model how returns to schooling vary with measured cognitive ability. We also examine a model of female labor supply and use this example to illustrate how the described techniques can been applied in nonlinear settings

    A mixed effects model for longitudinal relational and network data, with applications to international trade and conflict

    Full text link
    The focus of this paper is an approach to the modeling of longitudinal social network or relational data. Such data arise from measurements on pairs of objects or actors made at regular temporal intervals, resulting in a social network for each point in time. In this article we represent the network and temporal dependencies with a random effects model, resulting in a stochastic process defined by a set of stationary covariance matrices. Our approach builds upon the social relations models of Warner, Kenny and Stoto [Journal of Personality and Social Psychology 37 (1979) 1742--1757] and Gill and Swartz [Canad. J. Statist. 29 (2001) 321--331] and allows for an intra- and inter-temporal representation of network structures. We apply the methodology to two longitudinal data sets: international trade (continuous response) and militarized interstate disputes (binary response).Comment: Published in at http://dx.doi.org/10.1214/10-AOAS403 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Using Simulation-Based Inference with Panel Data in Health Economics

    Get PDF
    Panel datasets provide a rich source of information for health economists, offering the scope to control for individual heterogeneity and to model the dynamics of individual behaviour. However the qualitative or categorical measures of outcome often used in health economics create special problems for estimating econometric models. Allowing a flexible specification of individual heterogeneity leads to models involving higher order integrals that cannot be handled by conventional numerical methods. The dramatic growth in computing power over recent years has been accompanied by the development of simulation estimators that solve this problem. This review uses binary choice models to show what can be done with conventional methods and how the range of models can be expanded by using simulation methods. Practical applications of the methods are illustrated using on health from the British Household Panel Survey (BHPS)Econometrics, panel data, simulation methods, determinants of health

    Using Simulation-based Inference with Panel Data in Health Economics

    Get PDF
    Panel datasets provide a rich source of information for health economists, offering the scope to control for individual heterogeneity and to model the dynamics of individual behaviour. However the qualitative or categorical measures of outcome often used in health economics create special problems for estimating econometric models. Allowing a flexible specification of the autocorrelation induced by individual heterogeneity leads to models involving higher order integrals that cannot be handled by conventional numerical methods. The dramatic growth in computing power over recent years has been accompanied by the development of simulation-based estimators that solve this problem. This review uses binary choice models to show what can be done with conventional methods and how the range of models can be expanded by using simulation methods. Practical applications of the methods are illustrated using data on health from the British Household Panel Survey (BHPS).
    corecore