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ABSTRACT 

 
Panel datasets provide a rich source of information for health economists, offering the scope to control 
for individual heterogeneity and to model the dynamics of individual behaviour.  However the qualitative 
or categorical measures of outcome often used in health economics create special problems for estimating 
econometric models. Allowing a flexible specification of the autocorrelation induced by individual 
heterogeneity leads to models involving higher order integrals that cannot be handled by conventional 
numerical methods. The dramatic growth in computing power over recent years has been accompanied by 
the development of simulation-based estimators that solve this problem. This review uses binary choice 
models to show what can be done with conventional methods and how the range of models can be 
expanded by using simulation methods.  Practical applications of the methods are illustrated using data on 
health from the British Household Panel Survey (BHPS). 
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Introduction 

 

Panel datasets, such as the European Community Household Panel (ECHP) and the U.S. PSID 

and Monitoring the Future panels, provide a rich source of information for health economists.  

Panel data offer the scope to control for individual heterogeneity and to model the dynamics of 

individual behaviour.  However the measures of outcome used in health economics are often 

qualitative or categorical. These create special problems for estimating econometric models. 

Allowing a flexible specification of the autocorrelation induced by individual heterogeneity leads 

to models involving higher order integrals that cannot be handled by conventional numerical 

methods. The dramatic growth in computing power over recent years has been accompanied by 

the development of simulation estimators that solve this problem. This review uses binary choice 

models to show what can be done with conventional methods and how the range of models can 

be expanded by using simulation methods.  Practical applications of the methods are illustrated 

using data on health from the British Household Panel Survey (the BHPS). 

 

Section 1 gives an overview of binary choice models for panel data and introduces our empirical 

application to BHPS data for a binary measure of health. It discusses the interpretation of 

individual effects in panel data models and shows how these can be modelled using the random 

effects probit model, the conditional logit model and by parameterising the individual effect. 

Extensions of the random effects model, to allow for serial correlation, can be dealt with by 

simulation-based inference. Section 2 introduces classical simulation methods. These are 

designed to approximate higher order integrals and they include the GHK simulator for the 

truncated multivariate normal distribution. We focus on a particular method of estimation, 

Maximum Simulated Likelihood (MSL). We present some empirical results and use these to 

discuss issues in that arise in practical applications of MSL. The section concludes with a brief 

overview of other methods of estimation (MSM, MSS). Section 3 moves to Bayesian MCMC 

methods. It begins with an introduction to the Bayesian approach to inference before 

introducing the concept of Markov Chain Monte Carlo (MCMC). Implementation of MCMC 

involves the use of Gibbs sampling and Metropolis-Hastings algorithms, along with the use of 

data augmentation to deal with latent variables. This section concludes with an overview of 

convergence analysis and methods for model selection and testing. 
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1.  Binary choice models for panel data 

 

1.1  A brief introduction to our model  

 

To illustrate the methods reviewed in this paper we use a panel data model for a binary measure 

of health applied to data drawn from the British Household Panel Survey (BHPS). The BHPS is 

a longitudinal survey of private households in Great Britain, with the same respondents 

questioned each year. The survey contains data on socio-demographic, income and health 

variables. It is an annual survey of each adult household member (aged 16 and over). The survey 

was designed to be a nationally representative sample of over 5,000 households, giving 

approximately 10,000 individual interviewees. The first wave was carried out between 1st 

September 1990 and  30th April 1991. 

 

We present two sets of results: 

1. The first are based on data for the binary measure of health problems that are artificially 

generated from our BHPS sample, using  models with known parameter values. This 

provides us with a benchmark to illustrate how the different methods of estimation perform 

against the “true” values of the parameters. These results are not intended to provide a 

comprehensive Monte Carlo experiment but they do show how the different estimators 

perform with our dataset and they provide a context for the empirical application. 

2.  We also present results for the actual data on health problems, to show how the methods 

perform in a real empirical application. 

 

Our model applies to a binary dependent variable (“does health limit your daily activities?”). 

There are repeated measurements for each wave (t=1,…., T) for a sample of n individuals 

(i=1,…..,n), and the binary dependent variable yit can be modelled in terms of a continuous latent 

variable y*it, 

 

(1)    yit = 1(y*it > 0) = 1(X'itβ +uit > 0)  

 

where 1(.) is a binary indicator function. In our empirical application with actual data, X includes 

variables to capture “permanent” and “transitory” income, measured by the mean of household 
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income across all waves of the panel and deviations around that mean respectively, along with 

marital status, education and household composition. In our empirical application to the BHPS 

we restrict the analysis to a sub-sample of 2,715 men (full details of the sample and variables are 

given in Contoyannis, Jones and Rice [1]).  

 

The error term uit  could be allowed to be freely correlated over time or the correlation structure 

could be restricted. A common specification is the error components model which splits the 

error into a time-invariant individual random effect (RE), αi, and a time-varying idiosyncratic 

random error, εit, 

 

(2)  yit = 1(y*it > 0) = 1(X'itβ +αi + εit > 0) 

 

The idiosyncratic error term could be autocorrelated, for example following an AR(1) process, 

εit=ρεit-1 + ηit, or it could be independent over t (giving the random effects model). The simplest 

possible specification is to assume that the uit are independent over t.  

 

1.2  Individual effects in panel data 

 

To understand the role of individual effects in panel data models, consider the standard linear 

panel data regression model, in which there are repeated measurements (t=1,…., T) for a sample 

of n individuals (i=1,…..,n), 

 

(3)    yit = X'itβ + uit  = X'itβ + αi + εit 

 

The presence of αi  implies clustering within individuals so that a random effects specification 

can improve the efficiency of the estimates of β. This stems from the structure imposed on the 

variance-covariance matrix of the error term, 

 

(4)    Var[uit] = E[uituis] = σα2  + σε2,  t=s 

  E[uituis] = σα2 ,  t≠s 
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These efficiency gains can be exploited by using (4) to construct a generalised least squares 

(GLS) estimator.  

 

Consistency of the GLS estimator rests on the assumption that the error term is independent of 

the regressors. Failure to account for correlation between the unobservable individual effects (α) 

and the regressors (X) will lead to inconsistent estimates of the βs. The least squares dummy 

variable approach (LSDV) gets around this by conditioning on the individual effects, including a 

dummy variable for each individual, but this may be prohibitive if there are a large number of 

cross section observations.   Alternatively, the individual effects can be swept from the equation 

by transforming variables into deviations from their within-group means. Applying least squares 

to the transformed equation gives the covariance or within-groups estimator of β (CV). Similarly, 

the model could be estimated in first differences to eliminate the time-invariant individual 

effects. Identification of β rests on there being sufficient variation within groups. In practice, 

fixed effects may only work well when there are many observations and much variation within 

groups.  

 

Now consider a nonlinear model, for example the binary choice model based on the latent 

variable specification in Equation (2). Assume that the distribution of εit is symmetric with 

distribution function F(.). Then, 

 

(5)   P(yit =1) = P(εit > -X'itβ - αi) = F(X'itβ + αi) 

 

This illustrates the so-called problem of incidental parameters. As n→∞ the number of 

parameters to be estimated (β, αi) also grows.  In linear models the estimators  and α  are 

asymptotically independent, which means that taking mean deviations or differencing the data 

allows the derivation of estimators for β whose limits do not depend on α .  In general, this is 

not possible in nonlinear models and the inconsistency of estimates of α

β̂ ˆ

ˆ

   carries over into the 

estimates of β.  Setting the incidental parameter problem aside, the fixed effect probit model can 

be estimated by including a dummy variable for each individual. Heckman [2] presents Monte 

Carlo evidence that suggests that the small sample bias in the estimates of β is relatively small for 

values of T of 8 and over. More recently, Greene [3] has championed the use of this ‘brute force’ 

approach to fixed effects estimation of nonlinear models. 
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1.3  Random effects probit model 

 

Assuming that α and ε are normally distributed and independent of X gives the random effects 

probit model (REP). In this case α can be integrated out to give the sample log-likelihood 

function, 

 

(6)   lnL = ∑  {ln (Φ[d
1

n

i= 1

T

t

+∞

=−∞
∏∫ it(X'itβ + α)] )f(α)dα }  

 

where dit = 2yit –1. This expression contains a univariate integral which can be approximated by 

Gauss-Hermite quadrature.   Assuming α~N(0,σα2), the contribution of each individual to the 

sample likelihood function is, 

 

(7)   Li =   (1/√2πσα

+∞

−∞
∫ 2) exp(-α2/2σα2) { g(α) }dα ,     

 

where g(α) = 
1

T

t=
∏  Φ[dit(X'itβ + α)]. Use the change of variables, α = ( 2

2 ασ  )z,, to give, 

 

(8)   Li = (1/√π) exp(-z
+∞

−∞
∫ 2) {g(( 2

2 ασ  )z)}dz 

 

As it takes the generic form exp(-z
+∞

−∞
∫ 2)f(z)dz, this expression is suitable for Gauss-hermite 

quadrature and can be approximated as a weighted sum, 

 

(9)    Li ≈ (1/√π) w
1

m

j=
∑ j g( (

2

2 ασ  )aj) 

where the weights (wj) and abscissae (aj) are tabulated in standard mathematical references and m 

is the number of nodes or quadrature points (see e.g., Butler and Moffitt [4], Pudney [5]). 
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1.4 Extensions and alternatives for the random effects probit 

 

The random effects probit model has two important limitations: it relies on the assumptions that 

the error components have a normal distribution and that errors are not correlated with the 

regressors. Normality can be relaxed by using a  finite mixture model. The possibility of 

correlated effects can be dealt with by using conditional (fixed effects) approaches or by 

parameterising the effect.  

 

The finite mixture model 

Deb [6] applies a random effects probit model in which the distribution of the individual effect is 

approximated by a discrete density. This is an example of a finite mixture model (see e.g., 

Heckman and Singer [7]). In this case the sample log-likelihood is approximated by, 

 

(10) lnL = ∑  ln ( 
1

n

i= 1

C

j=
∑ π Φ πj { [d

1

T

t=
∏ it(X'itβ + αj)] })   , 0 ≤ πj ≤ 1 , 

1

C

j=
∑ j = 1   

Deb uses Monte Carlo experiments to assess the small sample properties of the estimator. These 

show that only 3-4 points of support are required for the discrete density to mimic normal and 

chi-square densities sufficiently well so as to provide approximately unbiased estimates of the 

structural parameters and the variance of the individual effect.  

 

The conditional logit estimator. 

The conditional logit estimator uses the fact that ∑tyit is a sufficient statistic for αi (see e.g., 

Chamberlain [8]). This means that conditioning on ∑tyit allows a consistent estimator for β to be 

derived. Using the logistic function,  

 

(11)  P(yit =1) = F(X'itβ  + αi) = exp(X'itβ  + αi)/(1+ exp(X'itβ + αi)) 

 

 

it is possible to show that, 

 

(12)  P[(0,1)|(0,1) or (1,0)] = exp((Xi2 - Xi1)'β )/(1+ exp((Xi2 - Xi1)'β )) 
 6 



 

This implies that a standard logit model can be applied to differenced data and the individual 

effect is swept out. In practice, conditioning on those observations that make a transition – (0,1) 

or (1,0) – and discarding those that do not – (0,0) or (1,1) – means that identification of the 

models relies on those observations where the dependent variable changes over time. 

 

 

Parameterising the individual effect 

Another approach to dealing with individual effects that are correlated with the regressors is to 

specify E(α|X) directly. For example, in dealing with a random effects probit model 

Chamberlain [8,9] suggests using, 

 

(13)   αi = X'iα  + ui    ,   ui ∼ iid N(0, σ2) 

where Xi=( Xi1,....,XiT), the values of the regressors for every wave of the panel, and =( 

α

α

1,....,αT). Then, by substituting, the distribution of yit  conditional on X but marginal to αi  has 

the probit form, 

 

(14)   P(yit =1) = Φ[(1+σ2)-½(X'itβ  + X'iα)] 

 

The model could be estimated as a random effects probit to retrieve the parameters of interest 

(β,σ). Recently Wooldridge [10] has shown that this approach can also be applied in a random 

effects probit model with state dependence. In this case the initial values of the dependent 

variable are also included in Equation (13) in order to deal with the problem that the initial 

conditions are correlated with the individual effect (the so-called ‘initial conditions’ problem, see 

Heckman [2]). 

 

 

1.5  Empirical applications 

 

Our empirical results are in two parts. First, results are presented for simulated data and, then, 

for the actual BHPS data. The simulated data are designed to match some of the key features of 

the actual BHPS sample and to show how the different estimators perform against the true 
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values of the parameters. The actual data for the BHPS income variable is used as a starting 

point from which to generate observations for a binary dependent variable. This is done for 

three different data generating processes: 

 

Model 1: Based on a RE+AR(1) specification of the error term. 

Model 2: Again with RE+AR(1) but building in a correlation between the error term and the 

income variable, giving a “correlated effects” specification. 

Model 3: The final specification uses uncorrelated effects but allows for a more general 

covariance structure on the error term. This is simulated using a RE+ARMA(2,1) process. 

The full specification of the simulated models is shown in Box 1. 

 

Table 1(a) shows the results of the pooled probit and random effects probit estimators applied to 

simulated data from the three models. Table 1(b) shows a summary of results for the pooled and 

random effects probit models applied to our actual binary measure of health problems in the 

BHPS (for brevity we only report the coefficients on the income variables). The pooled probit 

model treats the data as a single cross section and ignores the fact that there are repeated 

observations for each individual. These estimates provide a useful benchmark for the random 

effects model.  It has been shown that the pooled probit (pseudo-) ML estimator gives 

consistent estimates of the βs, irrespective of whether the assumed error structure is correct 

(Robinson [11]). Of course the pooled probit model does not provide an estimate of σα2 and, 

therefore, information about the structure of the error term and the relative importance of the 

individual effect. 
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BOX 1:  Data generating process for simulated data: 

 

y c incomeit it i it
* ln( )= + × + +β α ε  

yit = 1      iff        yit
* > 0

α σ αi N~ ( ,0 2 )        σ  α
2 08= .

c = 1    β = 1

σ σ σα εv i i
2 2= + t

2
 

ln(income) is the log of transitory income in deviations with respect to its mean.   

 

MODEL 1: PROBIT WITH RANDOM EFFECTS PLUS AR(1).  

( )E incomei itα , ln( ) = 0  

ε ρε ηit i t it= +−( )1  

ηit N~ ( , .0 0102)  

ρ = 0 7.  

Var i it( )α ε+ = 1  
 
The implied variance-covariance matrix for ( ,  is: ,...,ε α ε α ε αi i i i iT1 2+ + + )i

 
1 0.94 0.898 0.8686 0.84802 0.833614 0.82353 

0.94 1 0.94 0.898 0.8686 0.84802 0.833614 
0.898 0.94 1 0.94 0.898 0.8686 0.84802 

0.8686 0.898 0.94 1 0.94 0.898 0.8686 
0.84802 0.8686 0.898 0.94 1 0.94 0.898 

0.833614 0.84802 0.8686 0.898 0.94 1 0.94 
0.82353 0.833614 0.84802 0.8686 0.898 0.94 1 

 

MODEL 2: PROBIT WITH RANDOM EFFECTS PLUS AR(1) INDIVIDUAL 

EFFECTS CORRELATED WITH THE REGRESSORS.   

( )E income income income incomei it i iα |ln( ) . ln( ) . ln( ) ... . ln( )= × + × + + ×81 8 2 8 71 2 i7  

ε ρε ηit i t it= +−( )1  
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ηit N~ ( , .0 0102)  

ρ = 0 7.  

Var i it( )α ε+ = 1  

 

MODEL 3: PROBIT WITH RANDOM EFFECTS PLUS ARMA(2,1).  

( )E incomei itα , ln( ) = 0  

ε ρ ε ρ ε η θ ηit i t i t it i t= + + −− −1 1 2 2 1( ) ( ) ( )−1  

ηit N~ ( , .0 0 0416)  

ρ1 0 7= .          θ  ρ1 0 25= . 1 08= .

Var i it( )α ε+ = 1  
 
The implied Variance-covariance matrix of  is: ( , ,...,ε α ε α ε αi i i i iT1 2+ + + )i

 
1 0.928455 0.939919 0.930057 0.92602 0.920728 0.916014 

0.928455 1 0.928455 0.939919 0.930057 0.92602 0.920728 
0.939919 0.928455 1 0.928455 0.939919 0.930057 0.92602 
0.930057 0.939919 0.928455 1 0.928455 0.939919 0.930057 
0.92602 0.930057 0.939919 0.928455 1 0.928455 0.939919 

0.920728 0.92602 0.930057 0.939919 0.928455 1 0.928455 
0.916014 0.920728 0.92602 0.930057 0.939919 0.928455 1 

 
Note that due to the MA term, the lag 2 correlation is larger than the lag 1 correlation. 
Correlations diminish slowly after the second lag.  
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Table 1(a): Estimates for the pooled (INP) and random effects (REP, with 30 point quadrature) 

probits: simulated data. 

 Model 1: RE+AR(1) 
 

 INP               REP 

Model 2: Correlated 
effects 

INP               REP 

Model 3: 
RE+ARMA(2,1) 

INP               REP 
 

  β (=1) 
 

1.021                  1.023 
(0.031)              (0.036) 

 
0.795                  0.376  
(0.010)              (0.018)  

 
1.002                  1.080     
(0.011)              (0.030) 

σα2 (= 0.8)  0.888  
(0.007) 

0.964  
(0.002) 

0.917  
(0.004) 

 

 

Table 1(b): Estimates for the pooled and random effects probits: actual data. 

 Pooled probit Random effects probit  
(24 point quadrature) 

 
Ln(‘permanent income’) 

 
-0.573 
(0.061) 

 
-0.526 
(0.048) 

Ln(‘transitory income’) -0.115 
(0.030) 

-0.053 
(0.023) 

σα2 - 0.784 
(0.012) 

LnL -6263.5 -4291.2 
 

 

 

Table 1(a) shows that, as expected, the pooled probit gives an estimate of β that is very close to 

the true value in models 1 and 3, despite ignoring the autocorrelation in the error term. However 

the presence of correlated effects, in model 2, means that both the pooled probit and the 

random effects probit are inconsistent estimators of β; in this example there is serious 

downwards bias in the estimates. This has important implications for the empirical application 

with actual data. If the income variables are endogenous, due to correlation between income and 

the individual effect, estimates of the income effects based on the assumption of uncorrelated 

effects may be seriously biased. This possibility cannot be ruled out and the illustrative empirical 

estimates should be treated with caution. 

 

The pooled probit specification does not provide estimates of the variance of the individual 

effect σα2. The estimates of σα2  from the random effects probit show some upwards bias. This is 
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because the estimated values are picking up the AR(1) and ARMA(2,1) processes and the 

estimated values give an average of the implied covariance terms shown in Box 1. In other 

words, the estimate of σα2  is not only picking up the variance of the individual effect but also 

persistence in the error term ε. For model 1 the estimate lies between the lag 1 covariance of 

0.94 and the lag 6 covariance of 0.82. For model 3 it lies between the lag 2 covariance of 0.939 

and the lag 6 covariance of 0.916. 

 

For the actual data, in Table 1(b), the income effects are negative, suggesting that those with 

higher household income are less likely to report limiting health problems. The estimates of the 

coefficient on the log of permanent income are quite similar for the pooled and random effects 

probits, although the size of the permanent effect relative to the transitory effect is smaller in the 

pooled probit. The estimate of the variance of the individual effect in the random effects 

specification, σα2, is 0.784. Since the overall error variance has to be set equal to one in order to 

identify the probit model, this can also be interpreted as the proportion of the overall error 

variance that is explained by the time invariant individual effect, indicating a high degree of 

persistence in health problems.  

 

 

2. Classical simulation methods 

 

2.1 Simulation-based estimation 

 

The random effects probit model only involves a univariate integral. More complex models, for 

example where the error term εit is assumed to follow an AR(1) process lead to sample log-

likelihood functions that involve higher order integrals. Monte Carlo simulation techniques can 

be used to deal with the computational intractability of nonlinear models, such as the panel 

probit model and the multinomial  probit. Popular methods of simulation-based inference 

include classical Maximum Simulated Likelihood (MSL) estimation,  and Bayesian Markov Chain 

Monte Carlo (MCMC) estimation. This section introduces the classical approach. 

 

Recall that the general version of our model is, 

 

(15)   yit = 1(y*it > 0) = 1(X'itβ + uit > 0)  
 12 



 

This implies that the  probability of observing the sequence yi1 …….yiT for a particular individual 

is, 

 

(16)   Prob(yi1,…,yiT) =   … f(u
1

1

bi

ai
∫

biT

aiT
∫ i1,…,uiT)duiT,…,dui1 

 

with ait = -X'itβ, bit=∞ if yit=1 and ait=-∞,  bit =-X'itβ if yit=0. The sample likelihood L is the 

product of these integrals, Li, over all n individuals. In certain cases, such as the random effects 

probit model, Li can be evaluated by quadrature. In general, the T-dimensional integral Li cannot 

be written in terms of univariate integrals that are easy to evaluate. Gaussian quadrature works 

well with low dimensions but computational problems arise with higher dimensions. Multivariate 

quadrature uses the Cartesian product of univariate evaluation points and the number of 

evaluation points increases exponentially (see Judd[12, p.275] for a method of evaluation that 

does not use the Cartesian product). Instead we can use Monte Carlo (MC) simulation to 

approximate integrals that are numerically intractable. This includes numerous models derived 

from the multivariate normal distribution (the panel probit, multinomial and multivariate probit, 

panel ordered probit and interval regression, panel Tobit, etc.). MC approaches use pseudo-

random selection of evaluation points and computational cost rises less rapidly than with 

quadrature.  

 

The principle behind simulation-based estimation is to replace a population value by a sample 

analogue. This means that we can use laws of large numbers (LLNs)  and central limit theorems 

(CLTs) to derive the statistical properties of the estimators. The basic problem is to evaluate an 

integral of the form,  

 

(17)     {h(u)}f(u) du = E
b

a
∫ u[ h(u)] 

 

This can be approximated using draws from f(u), ur, r=1,…,R, 
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(18)     (1/R) ∑  h(u
1

R

r=
r) 

 

This is the direct MC estimate of Eu[ h(u)]. Direct MC estimators are usually unbiased and 

consistent in R (due to the LLN) and asymptotically normal (due to the CLT). 

 

The Crude Frequency Simulator 

Lerman and Manski [13] proposed a MC algorithm for the evaluation of multivariate normal 

(MVN) probabilities such as those in the panel probit model. This is rarely used in practical 

applications but it illustrates a simple way of simulating MVN probabilities directly. The CFS for 

the probability, Pi., of a sequence of binary outcomes in the panel probit model works as follows: 

 

The CFS algorithm 
1. Generate a T vector of pseudo-random independent standard normal variates. 

2. Convert this into a N(0,∑) vector, where ∑ is the covariance matrix of f(ui1,…, uiT). 

3. Determine whether this vector matches the conditions for the observed sequence of 

outcomes yi1, …, yiT. 

4. Repeat these steps a large number, R, times. 

5. Evaluate the relative frequency of draws that are consistent with the observed outcomes. 

This gives an approximate value for Pi. 

 

The CFS is computationally simple and cheap. But it has problems. It can easily return zero for 

Pi. This leads to computational problems when taking logs or ratios. It is discontinuous in the  

parameters creating a problem for derivative-based optimisation routines. The CFS has higher 

variance than other unbiased and consistent simulators for MVN probabilities. 

 

An alternative is the GHK (Geweke-Hajivassiliou-Keane) simulator, which simulates 

probabilities under the multivariate normal distribution (see Part II of the structured 

bibliography in the Appendix). The GHK is a smooth recursive conditioning simulator (SRC). 

The GHK algorithm draws recursively from truncated univariate normals. This relies on the 

decomposition, 

 

(19)   f(u1,…,uT) = f(u1)f(u2|u1)……f(uT-1|uT-2,…u1)f(uT|uT-1,….u1) 
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along with the fact that the conditional (in our case truncated) normal density can be written as a 

univariate normal. The GHK simulator produces probability estimates that are bounded between 

0 and 1. The estimates are continuous and differentiable with respect to (β,∑), because each 

contribution is continuous and differentiable. It has a smaller variance than the CFS, because 

each element is bounded between 0 and 1. The GHK appears to be the most accurate simulator 

available for a given computation time. Box 2 provides Hajivassiliou’s [14] GAUSS code for the 

GHK algorithm, a full description of this program can be found in the reference. 
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BOX 2:  GAUSS code for obtaining probability estimates using the GHK algorithm 

(source: Hajivassiliou [14]) 

 

proc ghk(m,mu,w,wi,c,a,b,r,u); 

local j,ii,ta,tb,tt,wgt,v,p; 

j=1; 

ii=1; 

ta=cdfn((a[1,1]-mu[1,1])/(c[1,1]+1.e-100))*ones(1,r); 

tb=cdfn((b[1,1]-mu[1,1])/(c[1,1]+1.e-100))*ones(1,r); 

tt=cdfni(u[1,.].*ta+(1-u[1,.]).*tb); 

wgt=tb-ta; 

do while j<m; 

j=j+1; 

ta=cdfn(((a[j,1]-mu[j,1])*ones(1,r)-c[j,ii]*tt)/(c[j,j]+1.e-100)); 

tb=cdfn(((b[j,1]-mu[j,1])*ones(1,r)-c[j,ii]*tt)/(c[j,j]+1.e-100)); 

tt=tt| cdfni(u[j,.].*ta+(1-u[j,.]).*tb); 

ii=ii|j; 

wgt=wgt.*(tb-ta); 

endo; 

p=sumc(wgt')/r; 

retp(p); 

endp;    
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2.2  Maximum Simulated Likelihood (MSL) 

 

This is a simple extension of classical maximum likelihood estimation (MLE) and is useful in 

many cases when the log-likelihood function involves high dimensional integrals. This includes 

the panel probit with RE+AR(1). The idea is to replace the likelihood function Li with a sample 

average over random draws, 

 

(20)     li = (1/R)  l(u
1

R

r=
∑ ir) 

where l(uir) is an unbiased simulator of Li. The MSL estimates are the parameter values that 

maximize, 

 

(21)     Lnl =  ∑  Lnl
1

n

i=
i 

 

In practice, antithetics can be used to reduce the variance of the simulator. These are based on, 

 

(22)     li = (1/2R) l(u
2

1

R

r=
∑ ir) 

where uir = ui1 ,….., ui2R and uj = -uj-R for j=R+1,….2R. Antithetics reduce the variance by using 

symmetric draws. If the probability simulator is linear in the draws, this approach reduces the 

variance to zero. 

 

Having an unbiased simulator li of Li (from CFS or GHK) does not imply an unbiased simulator 

of lnLi or the overall sample log-likelihood function (as E[lnli] ≠ ln(E[li])). Of course MLE is, in 

general, biased due to nonlinearity. But, unlike MLE, the MSL estimator is not consistent solely 

in n. This is because the simulator is biased downwards for all individuals and the bias depends 

on β. Consistency and asymptotic unbiasedness can be obtained by reducing the error in the 

simulated sample log-likelihood to zero as R→∞ at a sufficient rate with n. Hajivassiliou and 

Ruud [15] show that a sufficient rate is R/√n→∞ as n→∞. Hajivassiliou and Ruud also show 

that this is sufficient for the usual MLE estimate of the covariance matrix to be used without any 

correction.  
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2.3  Application of MSL 

 

Table 2 compares the estimates of the income effects and the variance of the individual effect 

for the random effects probit model computed using both quadrature (with 24 points) and MSL 

(with 150 replications) with the actual data. Simulation is not required for this model but it 

provides a useful test of the reliability of the simulation approach. It is clear from the table that 

the estimates are very similar. 

 

Table 2: Comparison of quadrature and MSL for the random effects probit:actual data. 

 MLE 
(24 point) 

MSL  
(R=150) 

 
Ln(‘permanent income’) 

 
-0.526 
(0.048) 

 
-0.510 
(0.049) 

Ln(‘transitory income’) -0.053 
(0.023) 

-0.052 
(0.023) 

σα2 0.784 
(0.012) 

0.788 
(0.012) 

LnL -4291.2 -4290.5 
 

 

Simulation becomes necessary to move beyond the simple random effects (RE) specification. 

Table 3(a) shows how the MSL estimates of models that allow for an RE+AR(1) error structure 

and for an unrestricted covariance matrix perform with the simulated data. The estimates are 

based on 150 replications. As with the random effects probit estimator, the MSL estimators do a 

good job of reproducing the the true value of β for models 1 and 3 and they also perform poorly 

when the individual effect is correlated with the regressor in model 2. For the model 1 data, the 

RE+AR(1) estimator over-estimates the size of σα2  and under-estimates the size of ρ, suggesting 

that the are problems in separately identifying the variance components with these data. The 

negative value of ρ for the model 3 data seems to be capturing the fact that, due to the ARMA 

error term, the lag 2 correlation is larger than the lag 1 correlation. Table 3(b) presents estimates 

of the income effects for the actual data with the models ranging from  the RE probit, through 

the RE+AR(1), to an unrestricted covariance matrix. The results show that the income effects 

are largely unaffected by moving to more flexible specifications of the covariance matrix.. 
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However these more flexible specifications do provide information about the variance 

components. 

 

Table 3(a): MSL estimates (R=150): simulated data. 

 Model 1: RE+AR(1) 
 

 RE+AR(1)       Unres 

Model 2: Correlated 
effects 

RE+AR(1)        Unres 

Model 3: 
RE+ARMA(2,1) 

RE+AR(1)        Unres* 
 

  β (=1) 
 

0.993                   0.999    
(0.030)              (0.031) 

 
0.206                  0.200     
(0.013)              (0.013) 

 
1.005                   1.006       
(0.031)              (0.022) 

σα2 (= 0.8) 0.826 
(0.019) 

0.991 
(0.002) 

0.937 
(0.005) 

ρ (=0.7) 0.668 
(0.041) 

0.645 
(0.082) 

-0.046 
(0.051) 

* Due to problems with convergence with R=150 these results are presented for R=40. 

 

Table 3(b):  Estimated income effects under alternative covariance structures: actual data 

 RE (MSL) RE+AR(1) Unrestricted 
Ln(‘permanent 

income’) 
-0.510 
(0.049) 

-0.509 
(0.049) 

-0.511 
(0.049) 

Ln(‘transitory 
income’) 

-0.052 
(0.023) 

-0.057 
(0.025) 

-0.055 
(0.024) 

 

 

To assess the overall statistical performance of the models on the actual data Table 4 shows 

various model selection criteria. The most general model, with an unrestricted covariance matrix, 

has the largest log-likelihood function. But the model has many more parameters than the 

RE+AR(1) and RE specifications. Information criteria can be used to penalise the measure of 

goodness of fit for the loss of degrees of freedom. The unrestricted model is still preferred 

according to the Akaike information criterion (AIC) but, when the number of parameters is 

penalised more heavily with the Bayesian information criterion (BIC) and Consistent AIC 

(CAIC), the RE+AR(1) specification is favoured. 

 

Table 4:  Model selection criteria using MSL: actual data. 

 LnL AIC BIC CAIC 
Unrestricted -4188.07 8421.12 8731.92 8820.00 

RE+AR(1) -4214.83 8455.66 8635.23 8626.82 
RE -4290.55 8606.10 8778.76 8851.31 
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Table 5 assesses the impact of simulation bias on the results by comparing estimates based on 

different numbers of replications. Table 5(a) shows that only 10 replications are required to get 

estimates of β close to the true value, using simulated data from model 1. However many more 

replications are required to get the estimates of the variance components, in particular the value 

of ρ, to converge towards their true values. This reflects the problem of separately identifying 

the variance components. Table 5(b) shows that the estimates  from the actual data are robust 

for  values of R in the range 75-150. Simulation bias can be assessed more formally by using the 

test statistic proposed by Hajivassiliou [14]  (see Contoyannis, Jones and Rice [1] for an 

application of this test).  

 

Table 5(a):  Estimates for different values of R - MSL RE+AR(1) estimator applied to model 1: 

simulated data. 

 β (=1.0) σα2 (=0.8) ρ (=0.7) 
R= 10 1.019 

(0.029) 
0.822 

(0.014) 
0.596 

(0.036) 
R= 20 0.982 

(0.029) 
0.846 

(0.014) 
0.605 

(0.039) 
R= 40 0.999 

(0.030) 
0.830 

(0.017) 
0.636 

(0.040) 
R = 60 0.996 

(0.030) 
0.830 

(0.017) 
0.645 

(0.041) 
R = 100 0.989 

(0.030) 
0.832 

(0.018) 
0.658 

(0.041) 
R=150 0.993 

(0.030) 
0.826 

(0.019) 
0.668 

(0.041) 
 

 

Table 5(b):  Estimates for different values of R: actual data. 

 ‘permanent’ ‘transitory’ σα2 ρ 
R=75 -0.515 -0.057 0.698 0.521 
R=100 -0.515 -0.059 0.695 0.528 
R=150 -0.510 -0.057 0.691 0.541 

 

 

Some guidelines 

Theoretical considerations and experience of applying these methods suggests that the following 

guidelines should be taken into account when putting MSL into practice:-  
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1.  Use fixed draws: The random draws should only be drawn once and not varied as the 

optimisation algorithm searches. If the random variates do change, the values of (β,∑) which 

maximize the simulated log-likelihood will change and the optimisation routine may never 

converge. This is a general requirement for any simulation-based estimation that uses an iterative 

optimisation routine. Furthermore, the asymptotic theory for these estimators is based on a 

given set of draws. 

2.  Use a smooth and bounded simulator:  It is important to use a simulator which is smooth in 

β (such as the GHK algorithm) so that derivative based optimisation routines may be used. It is 

also important to use simulators which are bounded by 0 and 1 (e.g. GHK), so the simulated 

sample log-likelihood can always be evaluated. When using numerical derivatives it is advisable 

to use alternative step sizes until the estimates of the derivatives are stable, starting with a 

relatively large step size and working down 

3. Scale the data and use good initial values: The tails of the multivariate normal density die out 

very rapidly. This causes potential underflows during computation (the values are smaller than 

can be expressed and manipulated during computation). This problem is severe when taking 

logs. Hajivassiliou [14] suggests standardising regressors (to zero mean and unit variance) before 

estimation. More generally, reasonable starting values will help to prevent this problem. These 

can be obtained from simpler specifications that do not require simulation, such as the pooled or 

random effects probit estimators. 

4. Use antithetics: Use of antithetic variates can reduce simulation variance and bias substantially. 

5. Validate the algorithm: Use a simple model to validate a new program by comparing MSL and 

MLE. 

6. Check for bias: Bias is model specific and, while there is guidance in the literature – for 

example many studies suggest that values of R less than 50 are sufficient - sensitivity analysis is 

important. As noted above, a test for asymptotic bias is available (Hajivassiliou, [14]). Bias 

corrections are available but are computationally difficult and may not perform well (e.g., Lee, 

[16]). 

 

2.4  Other Classical estimators  

 

MSL is not the only classical simulation estimator available. The Method of Simulated Scores 

(MSS) is a general approach based on the simulated score function. The estimator is implicitly 

defined as the value of β which satisfies, 
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(23)     1/n ∑  l
1

n

i=
iβ / li  =  0 

 

where liβ  = [1/R1  l
1

1

R

r=
∑ iβr ] is an unbiased simulator for the vector of derivatives Liβ  and li  is an 

unbiased simulator for Li  based on R2 simulations. In general, the MSS estimator is consistent 

and asymptotically normal as n→∞ and R2/√n→∞. The value of R1 affects the efficiency of the 

estimator. 

 

The method of moments (MoM) estimator for the probit model solves the orthogonality 

condition, 

 

(24)     1/n ∑  Q
1

n

i=
i [yi  - Φ(X'iβ)]  = 0 

 

for a fixed and exogenous vector of instruments Q (e.g. X). MoM is equivalent to MLE with a 

suitable choice of Q. If  the moments cannot be evaluated analytically (as in the panel probit 

model) then the residual can be simulated and, for efficiency, so can the optimal instruments. 

This gives the Maximum Simulated Moments (MSM) estimator (McFadden [17]). Further details 

of the links between MSL, MSM and MSS can be found in the references given in the Appendix. 

 

Box 3 suggests some convenient sources of software for classical simulation-based estimation. 
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BOX 3: Software for classical simulation methods 

 

http://econ.lse.ac.uk/~vassilis/pub/simulation 

NMRSIM\_G.LIB  

Library of GAUSS routines for multivariate normal rectangle probabilities and their derivatives. 

Companion to Hajivassiliou, McFadden and Ruud  [18] 

SSMLMNP by A. Borsch-Supan & V. Hajivasilliou 

Estimation code for simulated maximum likelihood of multinomial probit in Fortran 77 

 

Limdep for Windows  (http://www.limdep.com) 

Simulator for multivariate normal CDF using GHK algorithm.  By default, R=100 but can be 

changed. Up to m=20 variate integral 
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3.  Bayesian MCMC methods 

 

3.1 The Bayesian approach 

 

In Bayesian analysis a prior density of the parameters of interest,  π(θ), is updated with the 

information contained in the sample (for the RE+AR(1) panel probit model θ = {β,ρ,σ2α}). 

Given a specified sample likelihood, π(y|θ ), the posterior density of  θ is given by Bayes' 

theorem, 

 

(25)      π(θ|y) =  π(θ)π(y|θ ) / π(y) 

where, 

(26)     π(y) =  ∫ (θ )π(y|θ ) dθ π

 

π(y) is known as the predictive likelihood and it is used for model comparison. It determines the 

probability that the specified model is correct. The posterior density  π(θ|y) reflects updated 

beliefs about the parameters. Given the posterior distribution, a  95% credible interval can be 

constructed that contains the true parameter with probability equal to 95%. Point estimates for 

the parameters can be computed using the posterior mean, 

 

(27)     E(θ|y) =  ∫  θπ(θ |y) dθ  

 

3.2 Markov Chain Monte Carlo (MCMC) Methods 

 

Bayesian estimates can be difficult to compute. For instance, the posterior mean (27) is an 

integral with dimension equal to the number of parameters in the model. In order to overcome 

the difficulties in obtaining the characteristics of the posterior density, Markov Chain Monte 

Carlo (MCMC) methods are used. The methods provide a sample from the posterior 

distribution. Posterior moments and credible intervals are obtained from this sample.  
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Random numbers can be easily generated for some well- known distributions. For example, 

Kinderman et al. [19] developed a simple method to obtain a sample of independent draws from 

a normal density. This or other methods are implemented in standard statistical software, such as 

GAUSS and STATA. However, posterior densities in econometric models have not been so 

extensively studied, and such simple methods do not exist. 

 

MCMC algorithms yield a sample from the posterior density by constructing a Markov Chain 

which converges in distribution to the posterior density. In a Markov chain each value is drawn 

conditionally on the previous iteration. After discarding the initial iterations, the remaining values 

can be regarded as a sample from the posterior density. The algorithms explained below are 

different ways of appropriately constructing a Markov Chain.  

 

Gibbs Sampling 

To implement Gibbs sampling the vector of parameters θ  is subdivided into s groups, 

=(θ ,...θ ). For example, with two groups, let θ =(θ ,θ ). A draw from a distribution 

π(θ ,θ ) can be obtained in two steps. First, draw θ

θ 1

2

s 1

2

2

2

1

1 1  from its marginal distribution π(θ ). 

Second, draw θ

1

2  from its conditional distribution given θ ,  π(θ |θ ).  In many situations it is 

possible to sample from the conditional distribution π(θ |θ ) but it is not obvious how to 

sample from the marginal π(θ ). The Gibbs sampling algorithm solves this problem by sampling 

iteratively from the full conditional distributions. Even though the Gibbs sampling algorithm 

never draws from the marginal, after a sufficiently large number of iterations, the draws can be 

regarded as a sample from the joint distribution. 

1 1

1

 

To implement Gibbs sampling initial values  are fixed arbitrarily. Then, at each iteration in the 

chain,  θ =(θ ,θ ) is drawn as follows: k
1
k

2
k

1. θ  is drawn from the distribution π(θ |y, θ )  1
k

1
1

2
k −

2. θ  is drawn from the distribution π(θ |y, θ ) 2
k

2
1

1
k −

The process is repeated until a sufficiently large sample is obtained.  
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In practice the conditional distributions must be easy to sample from. Also, the number of sub-

groups in which θ is subdivided should be kept as small as possible to speed up convergence. 

Good starting values can substantially save in computing time in complex models. 

 

Data Augmentation 

Following Tanner and Wong [20], latent or missing data can be regarded as parameters 

belonging to θ. Although this introduces many more parameters into the model, the conditional 

densities belong to well-known families and there are simple methods to sample from them. This 

makes the use of the Gibbs sampling possible. For example, in a simple probit model,  

 

(28)    y*i = X'iβ + εi, ε~N(0,1), θ=(β,y*) 

 

If the latent data is not estimated, the posterior density for beta is, 

 

(29)    ∏         with  ,  ( ) ( ) ( )( [ ]) /'Φ d X f yi i
i

n

β β π
=1

( ) ( ) ( )π βy d X fi i
i

n

=
=

∏∫ ( [ ])'Φ
1

β βd

1

β βd

)

 

d yi i= −2 , and where is the prior density of beta. Unfortunately, there are no simple 

methods to generate a sample from this density. However, if the latent data is estimated the 

posterior density for latent data and parameters is: 

( )f β

(30)            ∏  with  ( ) ( ){ } ( ) ( )1 0
1

y d y X f yi i i i
i

n
* * ' /> −

=
φ β β π

( ) ( ) ( ){ } ( )π φ βy y d y X dy fi i i i i
i

n

= > −
=

∏∫ 1 0
1

* * ' *  

where  is the density function of a standard normal, and  is the prior 

density for latent data and β. A Gibbs sampling algorithm can be used to obtain values for β and 

 from this density. 

φ ( ) (f y Xi i
i

n

β φ β* '−
=

∏
1

y i
*

 

The conditional distribution of y*i , given β,  is N(X'iβ,1), truncated to positive values if y=1 and 

truncated to negative values if y=0. The conditional density of β given the latent data is that 
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which arises in a linear regression model.  If the prior density for β is normal, the conditional of 

β given  is a also a normal (Lee [21], page 167) and hence the Kinderman et al. [19] method 

can be used to sample from it.  

y i
*

 

 

Metropolis-Hastings (M-H) Algorithms 

There are situations in which it does not seem possible to sample from a conditional density, and 

hence the Gibbs sampling cannot be applied directly. In these situations,  Gibbs sampling can be 

combined with a so called Metropolis step. In the Metropolis step, values for the parameters are 

drawn from an arbitrary density, and accepted or rejected with some probability. Say that 

π(θ |y, ) is not easy to sample from. Let q(θ |θ , ) be a density for θ , given 

and  , that can be sampled easily. A M-H algorithm generates θ =(θ , ) as 

follows: 

1

1
1
k −

2θ

2
kθ

1
1

1
k − 1

2
kθ −

1

k θθ 1− k
1 2

k

1. Draw a candidate value θ for θ*
1 1

k
 from the distribution q(θ |θ ,θ ).  *

1
1

1
k − 1

2
k −

2. Set kθ1  = θ  with some probability γ otherwise keep θ*
1 1

k
 = θ . 1

1
k −

 

The probability γ depends on the values of the ratio π(.)/q(.) evaluated at the new proposed 

value and at the previous value in the chain (see for instance Gamerman [22]). New candidates 

can be generated in a simple way from a normal distribution centred at the previous value in the 

chain and with arbitrary variance. However, if the dimension of θ  is greater than 2, this may 

not work well. Alternatively, new candidates can be generated from a distribution that 

approximates the conditional density π(θ |y, ). Bad approximations may result in low 

probabilities of acceptance and slow convergence. 

1

1
1

2
kθ −

  

Once a value for θ  has been generated, a value for θ  will be drawn from the conditional 

density π(θ |y, θ ). If it was not obvious how to sample from this density, a Metropolis step 

could also be used to generate θ . Data augmentation can also be combined with the Metropolis 

algorithm. The panel probit model provides an example of how Gibbs sampling, a Metropolis 

step and data augmentation can be combined. 

1

1
k

2

2

2
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3.3  MCMC estimation of the panel probit 

 

To see how MCMC works in practice consider the panel probit with autocorrelated error terms,  

 

(31)  yit = 1(y*it > 0) = 1(X'itβ +αi + εit > 0) ,   εit =  ρεit-1 + ηit,     var(αi ) = σ2α 

 

The priors selected for β, σ2α and ρ are normal, inverted gamma and uniform (-1,1) distributions 

respectively. The parameters and latent data are divided into 5 groups: θ = (y*it , β, αi , σ2α, ρ). 

Note that data augmentation is used, since latent data and individual effects are treated as 

parameters to estimate. We use a Gibbs sampling algorithm, and hence parameters in each group 

are drawn from their conditional density given the parameters in the rest of groups. Since it is 

not obvious how to sample from the conditional density of ρ, a Metropolis step is used to 

generate it. The following six steps describe the algorithm:  

 

 

 

1. Fix the initial values. 

2. Generate y*it from a truncated normal distribution with mean X'itβ +αi and variance var(εit), 

according to the value of yit. 

3. Generate β from a normal distribution. The mean and variance of this distribution are the 

Bayesian point estimates in a model in which y*it and αi are observed and (σ2α, ρ) are known. 

4. Generate αi from a normal distribution. The mean and variance are the point estimates in a 

model in which y*it is observed and (β,σ2α,ρ) are known. 

5. Generate σ2α from an inverted gamma distribution. The parameters of this inverted gamma 

are the same as in a model in which y*it and αi are observed and (β,ρ) are known. 

6. ρ can be generated with a M-H step. New candidates can be generated from a normal 

distribution.  

Box 4 sketches an outline of how this algorithm could be implemented in GAUSS. Each of the 

procedures in the code implements one of the steps in the algorithm. The entire code can be 

found in the web page address referred to in Box 5 below.  
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BOX 4:  GAUSS code for MCMC estimation of panel probit model 

iter=1; 

Beta[1,.]=zeros(1,K);              /*Step 1*/ 

Rho[1]=0; 

Var_ind[1]=1; 

Do while iter<=NIT; 

Latent=augment(Beta[iter,.], Effects, Var_ind[iter], Rho[iter]);             /*Step 2*/ 

Beta[iter+1,.]=sampleB(Latent, Effects, Var_ind[iter], Rho[iter]);         /*Step 3*/ 

Effects=sampleI(Latent, Beta[iter+1,.], Var_ind[iter], Rho[iter]);          /*Step 4*/        

Var_ind=sampleV(Latent, Effects, Beta[iter+1,.], Rho[iter]);                /*Step 5*/ 

Rho[iter+1]=sampleR(Latent, Effects, Beta[iter+1], Var_ind[iter+1], 

Rho[iter]);         /*Step 6 */ 

iter=iter+1; 

endo; 
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3.4  Output and convergence analysis 

 

Sample means, standard deviations and correlations estimated from the MCMC draws are all 

strongly consistent estimates of the corresponding characteristics of the posterior distribution. A 

sample for any transformation of the parameters g(θ ) can be obtained by equivalently 

transforming the sampled values for θ. This allows the calculation of credible intervals and 

posterior means for g(θ ). For example, in the panel probit model, g(θ ) could represent the 

marginal effect of income on the probability of being ill. Since values in the chain are not 

independent, sample standard deviations are usually biased. Geweke [23] proposes an alternative 

method that is implemented in standard packages. 

 

Tables 6(a) and 6(b) show that the MCMC algorithm produces very similar point estimates and 

standard errors to those estimated by MSL, for the full range of specifications. Figure 1 shows 

the results of the MCMC estimation for the autocorrelation parameter ρ and the variance of the 

individual effect σ2α in the RE+AR(1) model. The left-hand panels show the output of the 

Markov chain for successive iterations. The right-hand panels compare kernel density estimates 

of the prior and posterior densities for the two parameters. 

 

Table 6(a): Comparison of MSL(R=150) and MCMC: model 1 simulated data. 

 Model 1: RE+AR(1) 
 

 MSL              MCMC 
 

  β (=1) 
 

0.993                   0.992    
(0.030)              (0.031) 

σα2 (= 0.8) 0.826                   0.825 
(0.019)              (0.020) 

ρ (=0.7) 0.668                  0.667 
(0.041)              (0.041) 

 

 

 

 

Table 6(b): Comparison of MSL and MCMC estimates for the panel probit models: actual data 

 RE + AR(1) Un- restricted 
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MSL MCMC MSL MCMC 
Ln(‘permanent income’) -0.510 

(0.049) 
-0.504 
(0.049) 

-0.511 
(0.049) 

-0.481 
(0.051) 

Ln(‘transitory income’) -0.057 
(0.025) 

-0.057 
(0.024) 

-0.054 
(0.024) 

-0.051 
(0.022) 

σα2 0.691 
(0.025) 

0.696 
(0.025) 

  

ρ 0.541 
(0.040) 

0.541 
(0.042) 
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Figure 1:  MCMC parameter estimates and prior and posterior densities: actual data. 
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Independently of the initial values, after a sufficient number of iterations, the algorithm should 

converge to the posterior distribution. An informal way of checking for convergence is to 

subdivide the chain in several parts and compare the average and standard deviations for each 

part. Alternatively, averages and standard deviations of chains started at different initial values 

may be compared. High serial correlation in the chain values indicates that a longer chain will be 

necessary to obtain precise estimates. Cowles and Carlin [24] review some formal tests of 

convergence. The freely available software CODA includes the following tests: the Geweke  test 

for convergence; the Heidelberger and Welch test for convergence which also tests whether the 

posterior mean has been estimated with a given degree of accuracy; and the Raftery and Lewis 

test gives the length of the chain necessary to calculate a credible interval with a specified degree 

of accuracy.  

 

High serial correlation in the chain indicates that a longer chain will be necessary to obtain 

precise estimates. When there are large autocorrelations, the chain recovers the parameter space 

slowly, and hence more iterations are necessary to obtain a representative sample from the 

posterior density. If the serial correlations are too large, it might be infeasible to run the 

algorithm for long enough, and an alternative algorithm should be designed. Liu [25] describes 

some strategies that can be followed in order to construct a faster algorithm. 

 

Results of applying the CODA software to our MCMC algorithm for the RE+AR(1) model are 

shown in Table 7. These show that a longer chain is required to get convergence in the estimates 

for σα2   and ρ than for the income effects. This finding is reflected in the plots of the 

autocorrelation functions, shown in Figure 2, these ‘die-out’ for the two income parameters but 

persist for σα2   and ρ.  

 

Table 7:  Results of convergence analysis: actual data. 

 Geweke Convergence  
(H-W) 

Posterior mean 
(H-W) 

Length of 
chain required 

Ln(‘permanent income’) 0.108 passed passed 11,000 
Ln(‘transitory income’) 0.255 passed passed 8,000 

σα2 -0.782 passed passed 35,000 
ρ 0.420 passed passed 21,000 

Figure 2: Autocorrelations for key parameters: actual data. 
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3.5  Testing and model selection 
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Bayesian inference offers a unified approach to testing, which can be used to discriminate 

between any type of models. This contrasts with likelihood ratio and Wald tests, which are often 

not appropriate to discriminate between non-nested models or to test parameter values on the 

boundary of the parameter space. Testing in the Bayesian approach consists of comparing the 

probabilities of different hypotheses. The probability of each model is determined by the 

predictive likelihood, π(y), which is the normalising constant in the denominator of Bayes' 

theorem, 

 

(32)    π(y|Mi) =  ∫ (θ)π(y|θ, Mπ i) dθ 

 

Notice that, in comparison to (26), the predictive likelihood is now explicitly conditional on the 

model specification Mi. Given m possible models {Mi}, and prior probabilities for each model, 

π(Mi), the posterior probability for model Mi is, 

 

(33)    π(Mi|y) =   π(Mi)π(y|Mi) / ∑ π(M
1

m

j=
j)π(y|Mj)  

 

Although the posterior probability depends on the number of models m, which is determined a 

priori, the ratio of the probabilities of two different models does not depend on m. In the case of 

equal prior probabilities for each model this ratio is known as the Bayes factor (B), 

 

(34)    Bi,j = π(y|Mi)/π(y|Mj)  

 

If a model is to be selected, it should be the model with the largest value for the predictive 

likelihood.   

 

Chib and Jeliazkov [26] present a method to calculate the predictive likelihood, π(y). From Bayes' 

theorem,     

  

(35)    π(θ|y) =  π(θ)π(y|θ) / π(y) 

 

It follows that any particular value, θ*, of the parameters satisfies the identity, 
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(36)     lnπ(y) =  lnπ(θ*) + lnπ(y|θ*)  -  lnπ(θ*|y) 

 

Chib and Jeliazkov [26] propose a method to estimate the posterior ordinate lnπ(θ*|y). The 

method requires running the algorithm for additional iterations. In order to assess the accuracy 

of the calculation, they also provide the standard deviation of the estimated value for lnπ(θ*|y). 

If evaluation of the likelihood, π(θ*|y), involves multiple integrals it can be computed using the 

methods described in Section 2. 

 

To illustrate the use of Bayes factors for our models let: 

M1: Random effects and independent time variant errors 

M2: Random effects and AR(1) errors 

M3: Unrestricted variance-covariance matrix 

This gives values of the Bayes factors Pr(M1)/Pr(M2) and Pr(M3)/Pr(M2) that are very close to 

zero. These results support the RE+AR(1) specification against the simpler RE model and 

against the more general unrestricted model. This parallels the finding based on the BIC and 

CAIC criteria in the classical analysis.  

 

Testing hypotheses about θ 

When the hypothesis of interest is of the type θ1=k , it is possible to use Verdinelli and 

Wasserman’s [27] method. Unlike the Chib and Jeliazkov method, in many situations this 

method does not require any additional computations. Their procedure gets more complicated in 

terms of computing time when the normalising constant of π(θ1|y,θ2) is not known, or when θ1 

and θ2 are not independent a priori. 

 

Model Averaging. 

The posterior probabilities for each model lead to a procedure to deal with uncertainty about the 

appropriate model to use. The posterior density for θ  takes into account the different possible 

specifications, 

 

(37)    π(θ |y) =   ∑  π(θ |y,M
1

m

j=
j)π(Mj|y) 
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The posterior mean for θ is a weighted average of the posterior means in each model, the 

weighted by the posterior probability of each model.  

 

(38)    E(θ |y) =    E(θ |y,M
1

m

j=
∑ j)π(Mj|y) 

 

 

Box 5 lists sources of software for doing Bayesian analysis using MCMC. It also provides a 

reference for the GAUSS code used to estimate the panel probit models. 
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BOX 5: Software for Bayesian MCMC analysis 

 

BACC freely available at www.econ.umn.edu/~bacc 

Includes, among other models, univariate latent models with flexible distributions for the error 

term (mixture of normals and student-t distributions). Allows the user to implement more 

complex procedures building on simpler models. This requires knowledge of C language. 

 

BUGS and CODA freely available at www.mrc-bsu.cam.ac.uk/bugs/ 

BUGS allows users to easily specify their own MCMC sampling algorithm 

CODA provides checks of convergence for the MCMC output 

 

MLWIN is commercial software which includes Bayesian estimation of multi-level models 

 

The GAUSS code  in Box 3 can be downloaded from http://www.york.ac.uk/res/herc/yshe 
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Overview 

This review illustrates the scope for using simulation methods to allow for flexible specifications 

of heterogeneity in nonlinear models for panel data. It uses binary choice models to show what 

can be done with conventional methods and how the range of models can be expanded by using 

classical and Bayesian simulation methods.  Practical applications of the methods are illustrated 

using data on self-reported health from the British Household Panel Survey (the BHPS). Our 

aim is to provide a brief introduction to simulation methods and to show their relevance for 

applied analysis in health economics. To provide some guidance for readers who would like to 

pursue the topic in more detail the Appendix provides a structured bibliography that includes 

key references to methods and some examples of applications in health economics. 
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