21,467 research outputs found
Strong Effort Manipulations Reduce Response Caution:A Preregistered Reinvention of the Ego-Depletion Paradigm
People feel tired or depleted after exerting mental effort. But even preregistered studies often fail to find effects of exerting effort on behavioral performance in the laboratory or elucidate the underlying psychology. We tested a new paradigm in four preregistered within-subjects studies ( N = 686). An initial high-demand task reliably elicited very strong effort phenomenology compared with a low-demand task. Afterward, participants completed a Stroop task. We used drift-diffusion modeling to obtain the boundary (response caution) and drift-rate (information-processing speed) parameters. Bayesian analyses indicated that the high-demand manipulation reduced boundary but not drift rate. Increased effort sensations further predicted reduced boundary. However, our demand manipulation did not affect subsequent inhibition, as assessed with traditional Stroop behavioral measures and additional diffusion-model analyses for conflict tasks. Thus, effort exertion reduced response caution rather than inhibitory control, suggesting that after exerting effort, people disengage and become uninterested in exerting further effort. </p
Consistency of Bayesian nonparametric inference for discretely observed jump diffusions
We introduce verifiable criteria for weak posterior consistency of
identifiable Bayesian nonparametric inference for jump diffusions with unit
diffusion coefficient and uniformly Lipschitz drift and jump coefficients in
arbitrary dimension. The criteria are expressed in terms of coefficients of the
SDEs describing the process, and do not depend on intractable quantities such
as transition densities. We also show that products of discrete net and
Dirichlet mixture model priors satisfy our conditions, again under an
identifiability assumption. This generalises known results by incorporating
jumps into previous work on unit diffusions with uniformly Lipschitz drift
coefficients.Comment: 20 page
Nonparametric Bayesian estimation of a H\"older continuous diffusion coefficient
We consider a nonparametric Bayesian approach to estimate the diffusion
coefficient of a stochastic differential equation given discrete time
observations over a fixed time interval. As a prior on the diffusion
coefficient, we employ a histogram-type prior with piecewise constant
realisations on bins forming a partition of the time interval. Specifically,
these constants are realizations of independent inverse Gamma distributed
randoma variables. We justify our approach by deriving the rate at which the
corresponding posterior distribution asymptotically concentrates around the
data-generating diffusion coefficient. This posterior contraction rate turns
out to be optimal for estimation of a H\"older-continuous diffusion coefficient
with smoothness parameter Our approach is straightforward to
implement, as the posterior distributions turn out to be inverse Gamma again,
and leads to good practical results in a wide range of simulation examples.
Finally, we apply our method on exchange rate data sets
Bayesian estimation of discretely observed multi-dimensional diffusion processes using guided proposals
Estimation of parameters of a diffusion based on discrete time observations
poses a difficult problem due to the lack of a closed form expression for the
likelihood. From a Bayesian computational perspective it can be casted as a
missing data problem where the diffusion bridges in between discrete-time
observations are missing. The computational problem can then be dealt with
using a Markov-chain Monte-Carlo method known as data-augmentation. If unknown
parameters appear in the diffusion coefficient, direct implementation of
data-augmentation results in a Markov chain that is reducible. Furthermore,
data-augmentation requires efficient sampling of diffusion bridges, which can
be difficult, especially in the multidimensional case.
We present a general framework to deal with with these problems that does not
rely on discretisation. The construction generalises previous approaches and
sheds light on the assumptions necessary to make these approaches work. We
define a random-walk type Metropolis-Hastings sampler for updating diffusion
bridges. Our methods are illustrated using guided proposals for sampling
diffusion bridges. These are Markov processes obtained by adding a guiding term
to the drift of the diffusion. We give general guidelines on the construction
of these proposals and introduce a time change and scaling of the guided
proposal that reduces discretisation error. Numerical examples demonstrate the
performance of our methods
Consistent nonparametric Bayesian inference for discretely observed scalar diffusions
We study Bayes procedures for the problem of nonparametric drift estimation
for one-dimensional, ergodic diffusion models from discrete-time, low-frequency
data. We give conditions for posterior consistency and verify these conditions
for concrete priors, including priors based on wavelet expansions.Comment: Published in at http://dx.doi.org/10.3150/11-BEJ385 the Bernoulli
(http://isi.cbs.nl/bernoulli/) by the International Statistical
Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm
- …
