21,467 research outputs found

    Strong Effort Manipulations Reduce Response Caution:A Preregistered Reinvention of the Ego-Depletion Paradigm

    Get PDF
    People feel tired or depleted after exerting mental effort. But even preregistered studies often fail to find effects of exerting effort on behavioral performance in the laboratory or elucidate the underlying psychology. We tested a new paradigm in four preregistered within-subjects studies ( N = 686). An initial high-demand task reliably elicited very strong effort phenomenology compared with a low-demand task. Afterward, participants completed a Stroop task. We used drift-diffusion modeling to obtain the boundary (response caution) and drift-rate (information-processing speed) parameters. Bayesian analyses indicated that the high-demand manipulation reduced boundary but not drift rate. Increased effort sensations further predicted reduced boundary. However, our demand manipulation did not affect subsequent inhibition, as assessed with traditional Stroop behavioral measures and additional diffusion-model analyses for conflict tasks. Thus, effort exertion reduced response caution rather than inhibitory control, suggesting that after exerting effort, people disengage and become uninterested in exerting further effort. </p

    Consistency of Bayesian nonparametric inference for discretely observed jump diffusions

    Get PDF
    We introduce verifiable criteria for weak posterior consistency of identifiable Bayesian nonparametric inference for jump diffusions with unit diffusion coefficient and uniformly Lipschitz drift and jump coefficients in arbitrary dimension. The criteria are expressed in terms of coefficients of the SDEs describing the process, and do not depend on intractable quantities such as transition densities. We also show that products of discrete net and Dirichlet mixture model priors satisfy our conditions, again under an identifiability assumption. This generalises known results by incorporating jumps into previous work on unit diffusions with uniformly Lipschitz drift coefficients.Comment: 20 page

    Nonparametric Bayesian estimation of a H\"older continuous diffusion coefficient

    Get PDF
    We consider a nonparametric Bayesian approach to estimate the diffusion coefficient of a stochastic differential equation given discrete time observations over a fixed time interval. As a prior on the diffusion coefficient, we employ a histogram-type prior with piecewise constant realisations on bins forming a partition of the time interval. Specifically, these constants are realizations of independent inverse Gamma distributed randoma variables. We justify our approach by deriving the rate at which the corresponding posterior distribution asymptotically concentrates around the data-generating diffusion coefficient. This posterior contraction rate turns out to be optimal for estimation of a H\"older-continuous diffusion coefficient with smoothness parameter 0<λ1.0<\lambda\leq 1. Our approach is straightforward to implement, as the posterior distributions turn out to be inverse Gamma again, and leads to good practical results in a wide range of simulation examples. Finally, we apply our method on exchange rate data sets

    Bayesian estimation of discretely observed multi-dimensional diffusion processes using guided proposals

    Get PDF
    Estimation of parameters of a diffusion based on discrete time observations poses a difficult problem due to the lack of a closed form expression for the likelihood. From a Bayesian computational perspective it can be casted as a missing data problem where the diffusion bridges in between discrete-time observations are missing. The computational problem can then be dealt with using a Markov-chain Monte-Carlo method known as data-augmentation. If unknown parameters appear in the diffusion coefficient, direct implementation of data-augmentation results in a Markov chain that is reducible. Furthermore, data-augmentation requires efficient sampling of diffusion bridges, which can be difficult, especially in the multidimensional case. We present a general framework to deal with with these problems that does not rely on discretisation. The construction generalises previous approaches and sheds light on the assumptions necessary to make these approaches work. We define a random-walk type Metropolis-Hastings sampler for updating diffusion bridges. Our methods are illustrated using guided proposals for sampling diffusion bridges. These are Markov processes obtained by adding a guiding term to the drift of the diffusion. We give general guidelines on the construction of these proposals and introduce a time change and scaling of the guided proposal that reduces discretisation error. Numerical examples demonstrate the performance of our methods

    Consistent nonparametric Bayesian inference for discretely observed scalar diffusions

    Get PDF
    We study Bayes procedures for the problem of nonparametric drift estimation for one-dimensional, ergodic diffusion models from discrete-time, low-frequency data. We give conditions for posterior consistency and verify these conditions for concrete priors, including priors based on wavelet expansions.Comment: Published in at http://dx.doi.org/10.3150/11-BEJ385 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm
    corecore