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We introduce verifiable criteria for weak posterior consistency of Bayesian nonparametric inference for
jump diffusions with unit diffusion coefficient and uniformly Lipschitz drift and jump coefficients in ar-
bitrary dimension. The criteria are expressed in terms of coefficients of the SDEs describing the process,
and do not depend on intractable quantities such as transition densities. We also show that priors built from
discrete nets, wavelet expansions, and Dirichlet mixture models satisfy our conditions. This generalises
known results by incorporating jumps into previous work on unit diffusions with uniformly Lipschitz drift
coefficients.

Keywords: Bayesian statistics; Dirichlet mixture model prior; discrete net prior; jump diffusion;
nonparametric inference; posterior consistency

1. Introduction

Jump diffusions are a broad class of stochastic processes encompassing systems undergoing
deterministic mean-field dynamics, microscopic diffusion and macroscopic jumps. In this paper,
we let X := (Xt )t≥0 denote a unit jump diffusion, which can be described as a solution to a
stochastic differential equation of the form

dXt = b(Xt ) dt + dWt + c(Xt−, dZt ) (1)

on a domain � ⊆ R
d given an initial condition X0 = x0, coefficients b : � �→ R

d and c : � ×
R

d
0 �→ R

d
0 , a d-dimensional Brownian motion (Wt )t≥0 and a pure jump Lévy process (Zt )t≥0 on

R
d
0 := R

d \ {0} with Lévy measure M(dz) satisfying∫
R

d
0

(‖z‖2
2 ∧ 1

)
M(dz) < ∞.

The notation ‖ · ‖p,ρ denotes the Lp(ρ)-norm, where the Lebesgue measure is meant whenever
the measure ρ is omitted.

Jump diffusions are used as models across a broad spectrum of applications, such as economics
and finance (Merton [35], Aase and Guttorp [1], Bardhan and Chao [5], Chen and Filipović [11],
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Filipović, Cheridito and Kimmel [18]), biology (Kallianpur [28], Kallianpur and Xiong [29],
Bertoin and Le Gall [6], Birkner et al. [8]) and engineering (Au, Haddad and Poor [4], Bodo,
Thompson and Unny [9]). They also contain many important families of stochastic processes as
special cases, including diffusions and Lévy processes.

Remark 1. In the exposition above, the processes X, W and Z all share a common dimension.
This restriction is not necessary for any of the results in the paper, and has been introduced purely
for readability of notation.

Under regularity conditions summarised in the next section, jump diffusions are recurrent,
ergodic Feller–Markov processes with transition densities pt(x,y) dy and a unique stationary
density π(x) dx with respect to the d-dimensional Lebesgue measure. Under such conditions
the procedure of Bayesian inference can be applied to infer the coefficients of the jump diffusion
based on observations taken at discrete times. In this paper, we focus on joint inference of the drift
function b and the family of Lévy measures ν(x, dz) := M(c∗(x, dz)), where c∗(x, ·) denotes the
pull-back of c(x, ·):

c∗(x, dz) := {
y ∈ R

d
0 : c(x,y) ∈ dz

}
.

We abuse terminology and refer to the collection of measures ν(x, ·) as a Lévy measure for the
remainder of the paper. Inference of the Lévy measure will refer to inference of ν, assuming that
neither c nor M is known.

More precisely, let � denote a set of pairs (b, ν), and let � denote a prior distribution on
(�,B(�)), where B(�) is the Borel σ -algebra. Let x0:n = (x0,xδ, . . . ,xδn) denote a time series
of observations sampled from a stationary jump diffusion X at fixed separation δ. The object of
interest is the posterior distribution, which can be expressed as

�(A|x0:n) :=
∫
A

πb,ν(x0)
∏n

i=1 p
b,ν
δ (xi−1,xi )�(db, dν)∫

�
πb,ν(x0)

∏n
i=1 p

b,ν
δ (xi−1,xi )�(db, dν)

for measurable sets A ∈ B(�). In the Bayesian setting, the posterior encodes all the available
information for inferential purposes. The restriction to unit diffusion coefficients implicit in (1)
is a strong assumption in dimension d > 1, though some models which fail to satisfy it outright
can still be treated via the Lamperti transform (Aït-Sahalia [2]). We will outline this procedure
briefly in Section 2.

A typical approach to practical Bayesian inference is to choose � comprised of parametric
families of drift functions and Lévy measures, and fit these parameters to data. However, the
natural parameter spaces for jump diffusions are spaces of functions and measures, which are
infinite dimensional and cannot be represented in terms of finitely many parameters without
significant loss of modelling freedom. Nonparametric Bayesian inference can be thought of as
inference of infinitely many parameters, and retains much of the modelling freedom inherent in
the class of jump diffusions.

A natural and central question is whether the Bayes procedure is consistent, that is, whether
the posterior concentrates on a neighbourhood of the parameter space which specifies the “true”
dynamics generating the data as the number of observations grows. If (b0, ν0) ∈ � denotes the
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data generating drift and Lévy measure, consistency can be expressed as �(Uc
b0,ν0

|x0:n) → 0 as
n → ∞, where Ub0,ν0 is any open neighbourhood of (b0, ν0). In the context of non-identifiable
problems, where the prior supports multiple collections of parameters which the data cannot
distinguish from the “true” dynamics, consistency is instead defined as �((UTI

b0,ν0
)c|x0:n) → 0 as

n → ∞, where UTI
b0,ν0

is the set of points that are topologically indistinguishable from (b0, ν0) in
the parameter space.

Whether or not Bayesian posterior consistency holds in the nonparametric setting is an intricate
question, and depends on subtle ways on the prior � and the topology endowed on � (Diaconis
and Freedman [15]). A further difficulty in the present context is the fact that stationary and tran-
sition densities of jump diffusions are intractable in practically all cases of interest, so that usual
conditions for posterior consistency are difficult to verify. These difficulties were recently over-
come for discretely observed, one-dimensional unit diffusions under restrictive conditions on the
drift function (van der Meulen and van Zanten [50]), and a multidimensional generalisation was
presented in (Gugushvili and Spreij [26]). Both results rely on martingale arguments developed
by Ghosal and Tang for Markov processes with tractable transition probabilities (Ghosal and
Tang [21], Tang and Ghosal [48]). A Bayesian analysis of continuously observed one dimen-
sional diffusions has also been conducted under various setups (van der Meulen, van der Vaart
and van Zanten [51], Panzar and van Zanten [38], Pokern, Stuart and van Zanten [40]), and a re-
view of Bayesian methods for one dimensional diffusions is provided by (van Zanten [52]). Simi-
lar developments have also been made for frequentist drift estimation from discrete observations,
both for one dimensional unit diffusions (Jacod [27], Gobet, Hoffmann and Reiß [23], Comte,
Genon-Catalot and Rozenholc [13]) and their multi-dimensional generalisations (Dalalyan and
Reiß [14], Schmisser [46]).

The main result of this paper is consistency of Bayesian nonparametric joint inference of drift
functions and Lévy measures in arbitrary dimension under verifiable conditions on the prior. This
generalises the result of (Gugushvili and Spreij [26]) by incorporating discontinuous processes
with jumps. We also show that our consistency conditions are satisfied by a prior � constructed
by specifying independent discrete net or wavelet expansion priors for b and c, and a further
independent Dirichlet mixture model prior for M . The key results enabling this generalisation are
a generalised Girsanov-type change of measure theorem for jump diffusions (Cheridito, Filipović
and Yor [12]) and a coupling method for establishing regularity of semigroups (Wang [54]).

The rest of the paper is organised as follows. In Section 2, we introduce the jump diffusion
processes in finite dimensional domains and necessary regularity conditions. In Section 3, we
define the inference problem under study, and state and prove the corresponding consistency
result. In Section 4, we introduce the discrete net prior, and show that it satisfies our consistency
conditions. Section 5 concludes with a discussion.

2. Jump diffusions

A general time-homogeneous, d-dimensional jump diffusion Y := (Yt )t≥0 is the solution of a
stochastic differential equation of the form

dYt = b(Yt ) dt + σ(Yt ) dWt + c(Yt−, dZt ),
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where σ : � �→ R
d×d and the other coefficients are as in (1). The implicit assumption in (1) of

σ ≡ 1 is restrictive in dimensions d > 1. Processes which do not have unit diffusion coefficient
can be dealt with provided they lie in the domain of the Lamperti transform (Aït-Sahalia [2]),
that is, if there exists a mapping q : Y �→ X such that X is of the form (1). Such transforms
exist for any non-degenerate process in one dimension, but only rarely in higher dimensions.
Sufficient conditions for the Lamperti transform to be well defined are non-singularity of σ and
the following symmetry condition (Yu [55], Aït-Sahalia [2]):

∂(σ−1)ij (x)

∂xk

= ∂(σ−1)ik(x)

∂xj

for all i, j, k ∈ {1, . . . , d}. (2)

We note also that the Lamperti transform cannot be constructed from discrete data, so that in
any case σ must be known a priori. While restrictive, this assumption cannot be relaxed without
fundamental changes to the method of proof of consistency and already arises in the simpler case
of diffusions without jumps (van der Meulen and van Zanten [50], Gugushvili and Spreij [26]).

The following proposition summarises the necessary regularity assumptions for existence and
uniqueness of Feller–Markov jump diffusions with transition densities and a unique stationary
density:

Proposition 1. Assume that c(·,0) ≡ 0, and that there exist constants C1,C2,C3,C4 > 0 such
that

∥∥b(x) − b(y)
∥∥2

2 +
∫
R

d
0

∥∥c(x, z) − c(y, z)
∥∥2

2M(dz) ≤ C1‖x − y‖2
2, (3)

∥∥c(x, z) − c(x, ξ)
∥∥2

2 ≤ C2‖z − ξ‖2
2, (4)

For every x ∈ � : ‖x‖2 > C3 the following holds: x · b(x) ≤ −C4‖x‖2
2, (5)∫

R
d
0 :‖z‖2>1

‖z‖2
2M(dz) < ∞. (6)

Then (1) has a unique, ergodic weak solution X with the Feller and Markov properties. Fur-
thermore, X has a unique stationary density πb,ν(x) dx with a finite second moment, and the
associated semigroup P

b,ν
t has transition densities p

b,ν
t (x,y) dy.

Proof. Existence and uniqueness of X are obtained from (3), as well as the linear growth bounds
implied by Lipschitz continuity, by Theorem 6.2.9 of Applebaum [3]. Theorem 6.4.6 of Apple-
baum [3] gives the Markov property under the same conditions. Finally, the corollary in Ap-
pendix 1 of Kolokoltsov [30] yields the Feller property. In turn, the Feller property and the fact
that log(1 + ‖ξ‖2)

−1‖ξ‖2
2 → ∞ as ‖ξ‖2 → ∞ mean that the hypotheses of Theorem 1.1 of

Schilling and Wang [45] are fulfilled, so that X has bounded transition densities with respect to
the Lebesgue measure.

Existence and uniqueness of πb,ν , as well as ergodicity of X will follow from Theorem 2.1 of
Masuda [33], the hypotheses of which will now be verified. Along with c(·,0) ≡ 0, conditions
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(3) and (4) above imply Assumption 1 of Masuda [33]. Now, for every u ∈ (0,1) let

bu(x) := b(x) −
∫

u<‖z‖1≤1
c(x, z)M(dz).

Assumption 2(a)′ of Masuda [34] requires X to admit bounded transition densities, and the dif-
fusion which solves

dXu
t = bu

(
Xu

t

)
dt + σ

(
Xu

t

)
dWt

to be irreducible for each u > 0. Boundedness of the transition density of X was estab-
lished above, and irreducibility of Xu holds because σ ≡ 1 by Theorem 2.3 of Stramer and
Tweedie [47].

Next, we verify Assumptions 3 and 3* of Masuda [33] by checking the conditions of
Lemma 2.4′ of Masuda [34]. The diffusion coefficient is constant, and hence o(‖x‖1−q/2

2 )

for any q ∈ (0,2). Condition (6) is the corresponding hypothesis of Masuda [34], and both
‖x‖q−2

2 x · b(x) → −∞ and ‖x‖−2
2 x · b(x) ≤ −C4 follow from (5). Hence, Assumptions 3 and

3* of Masuda [33] hold. This yields ergodicity (and mixing) by Theorem 2.1 of Masuda [33],
and second moments of the stationary distribution (and exponential mixing) by Theorem 2.2 of
Masuda [33].

It remains to show the invariant measure has a density. By combining Proposition 5.1.9 and
Theorem 5.1.8 of Fornaro [19], it can be seen that invariant measures of irreducible strong Feller
processes are equivalent to the associated transition probabilities, which is sufficient in this case.
Assumption 1 of Masuda [33] and Assumption 2(a)′ of Masuda [34] imply irreducibility of X
(cf. Claim 1 on page 42 of Masuda [33]). Condition (3) guarantees the strong Feller property
by Theorem 2.3 of Wang [54]. Hence the invariant measure has a density with respect to the
transition densities, and thus also the Lebesgue measure. This concludes the proof. �

Remark 2. Assumption (3) is central to the proof of our main result. In contrast, assumptions
(4), (5) and (6) are only needed to ensure the conclusions of Proposition 1.

We denote the law of X with drift function b, Lévy measure ν and initial condition X0 = x
by P

b,ν
x and the corresponding expectation by E

b,ν
x . Dependence on initial conditions is omitted

when the stationary process is meant.

3. Consistency for discrete observations

We begin by defining the topology and weak posterior consistency following the set up of van der
Meulen and van Zanten [50]. In addition to topological details, posterior consistency is highly
sensitive to the support of the prior, which should not exclude the truth. This is guaranteed by
insisting that the prior places positive mass on all neighbourhoods of the truth, typically measured
in terms of Kullback–Leibler divergence. In our setting such a support condition is provided by
(9) below.

We begin by setting out the necessary assumptions on the parameter space �.
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Definition 1. Let � ⊆ {(b, ν) : b : � �→ R
d, ν : � × R

d
0 �→ R+} denote a set of pairs of drift

functions b(x) and Lévy measures ν(x, dz) := M(c∗(x, dz)). Suppose each pair satisfies the
hypotheses of Proposition 1, and that there exists a constant C5 > 0 such that

M
({

z ∈ R
d
0 : ‖z‖2 > 1

})
< C5 (7)

holds uniformly in �. In addition, let � be such that ν(x, ·) ∼ ν′(x, ·), that

0 < inf
x∈�

z∈Rd
0

{
dν′

dν
(x, z)

}
≤ sup

x∈�

z∈Rd
0

{
dν′

dν
(x, z)

}
< ∞, (8)

and that either

1. ν(x, ·) and ν′(x, ·) are finite measures, or
2. there exists an open set A containing the origin such that ν(x, ·)|A = ν′(x, ·)|A,

for any pair (·, ν), (·, ν′) ∈ � and for each x ∈ �.

Remark 3. In effect, the conditions of Definition 1 mean that the unit diffusion coefficient and
the infinite intensity component of the Lévy measure are known confounders of the joint infer-
ence problem for the drift function and the compound Poisson component of the Lévy measure
driving macroscopic jumps. In particular, one of conditions 1 or 2 is needed to ensure finiteness
of the second and third terms in (9).

The topology under consideration is defined as in van der Meulen and van Zanten [50], Gu-
gushvili and Spreij [26] by specifying a subbase determined by the semigroups P

b,ν
t . For details

about the notion of a subbase, and other topological concepts, see, for example, Dudley [16]. Let
Mf (�) denote the set of finite measures supported on a set �, and let Cb(�) denote the Banach
space of continuous, bounded functions on �.

Definition 2. Fix a sampling interval δ > 0 and a finite measure ρ ∈ Mf (�) with positive mass
in all non-empty, open sets. For any (b, ν) ∈ �, ε > 0 and f ∈ Cb(�) define the set

U
b,ν
f,ε := {(

b′, ν′) ∈ � : ∥∥P b′,ν′
δ f − P

b,ν
δ f

∥∥
1,ρ

< ε
}
.

A weak topology on � is generated by requiring that the family {Ub,ν
f,ε : f ∈ Cb(�), ε >

0, (b, ν) ∈ �} is a subbase of the topology.

The topology introduced in Definition 2 coincides with that used by both van der Meulen and
van Zanten [50] for scalar diffusions, as well as Gugushvili and Spreij [26] for multi-dimensional
diffusions. In both of these works, it was shown to separate points, so that the corresponding
inference problems are identifiable. The key tool was a one-to-one correspondence between drift
functions and stationary laws of the corresponding diffusion process. Because of jumps, such a
correspondence does not hold in our setting in general, and thus we have the following, weaker
separation result.
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Lemma 1. The topology defined in Definition 2 is pre-regular, that is for any pair (b, ν) �=
(b′ν′) ∈ � with P

b′,ν′
δ �= P

b,ν
δ there exists a function f ∈ Cb(�) and ε > 0 such that the neigh-

bourhoods U
b,ν
f,ε and U

b′,ν′
f,ε are disjoint.

Proof. By assumption there exists a function f ∈ Cb(�) and a point x ∈ � such that P
b,ν
δ f (x) �=

P b′,ν′
f (x). Thus, continuity implies that there exists a non-empty, open set J on which the

functions P b,νf and P b′,ν′
f differ. Since ρ assigns positive mass to this set by assumption, we

have ‖P b,νf − P b′,ν′
f ‖1,ρ > ε > 0 for some ε > 0. �

The content of Lemma 1 is that our topology can separate distinct pairs of drift and jump
coefficients whenever they give rise to distinct transition semigroups across time interval δ >

0, the time-spacing of the observations. Obviously, no statistical procedure based on discrete
data with time separation δ > 0 can separate two pairs of coefficients for which these transition
semigroups coincide, and hence this topology is well suited to our purposes.

We are now in a position to formally define posterior consistency, and state the main result of
the paper.

Definition 3. Let x0:n := (x0, . . . ,xn) denote n + 1 samples observed at sampling times
0, δ, . . . , δn from X at stationarity, i.e. with initial distribution X0 ∼ πb0,ν0 . Weak posterior
consistency holds if �((UTI

b0,ν0
)c|x0:n) → 0 with P

b0,ν0 -probability 1 as n → ∞, where UTI
b0,ν0

is any open neighbourhood of the set of points that are topologically indistinguishable from
(b0, ν0) ∈ �.

Theorem 1. Let x0:n be as in Definition 3, and suppose that the prior � is supported on a set �

which satisfies the conditions of Definition 1, with the constant C1 in (3) holding uniformly in �.
If

�

(
(b, ν) ∈ � : 1

2
E

b0,ν0
[∥∥b0(X0) − b(X0)

∥∥2
2

]

+ 1

2
E

b0,ν0

[∥∥∥∥
∫

B0(1)\{0}

(
dν0

dν
(X0−, z) − 1

)
zν(X0−, dz)

∥∥∥∥
2

2

]

+E
b0,ν0

[∫
R

d
0

∣∣∣∣log

(
dν0

dν
(X0−, z)

)
− dν0

dν
(X0−, z) + 1

∣∣∣∣ν0(X0−, dz)
]

< ε

)
> 0 (9)

for any ε > 0 and any (b0, ν0) ∈ � where B0(1) is the L2-unit ball, then weak posterior consis-
tency holds for � on �.

Remark 4. In fact, consistency can be proven using the same argument we present below under
the slightly weaker requirement that (9) holds for at least one representative (b0, ν0) in each
equivalence class of topologically equivalent points in �. We omit this relaxation in our proof,
as it only serves to complicate terminology.
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We will prove Theorem 1 by generalising the proof of Theorem 3.5 of van der Meulen and van
Zanten [50]. For (b, ν) ∈ � let KL(b0, ν0;b, ν) denote the Kullback–Leibler divergence between
p

b0,ν0
δ and p

b,ν
δ :

KL(b0, ν0;b, ν) :=
∫

�

∫
�

log

(
p

b0,ν0
δ (x,y)

p
b,ν
δ (x,y)

)
p

b0,ν0
δ (x,y)πb0,ν0(x) dydx,

and for two probability measures P,P ′ on the same σ -field let K(P,P ′) := EP [log( dP
dP ′ )]. The

law of a random object Z under a probability measure P is denoted by L(Z|P).
We require the following two properties:

1. �((b, ν) ∈ � : KL(b0, ν0;b, ν) < ε) > 0 for any ε > 0.
2. Uniform equicontinuity of the functions {P b,ν

δ f : (b, ν) ∈ �} for f ∈ Cb(�), the set of
bounded, continuous functions on �.

These two properties will be established in Lemmas 2 and 3 below, which are the necessary
generalisations of Lemmas 5.1 and A.1 of van der Meulen and van Zanten [50], respectively.

Lemma 2. Condition (9) implies that �((b, ν) ∈ � : KL(b0, ν0;b, ν) < ε) > 0 for any ε > 0.

Proof. As in Lemma 5.1 of van der Meulen and van Zanten [50] it will be sufficient to bound
KL(b0, ν0;b, ν) from above by a constant multiple of

1

2
E

b0,ν0
[∥∥b0(X0) − b(X0)

∥∥2
2

]+ 1

2
E

b0,ν0

[∥∥∥∥
∫

B0(1)\{0}

(
dν0

dν
(X0−, z) − 1

)
zν(X0−, dz)

∥∥∥∥
2

2

]

+E
b0,ν0

[∫
R

d
0

∣∣∣∣log

(
dν0

dν
(X0−, z)

)
− dν0

dν
(X0−, z) + 1

∣∣∣∣ν0(X0−, dz)
]
.

A formal calculation yields

∫
�

∫
�

log

(
πb0,ν0(x)p

b0,ν0
δ (x,y)

πb,ν(x)p
b,ν
δ (x,y)

)
p

b0,ν0
δ (x,y)πb0,ν0(x) dydx

= K
(
πb0,ν0,πb,ν

)+ KL(b0, ν0;b, ν) = K
(
L
(
X0,Xδ|Pb0,ν0

)
,L

(
X0,Xδ|Pb,ν

))
≤ K

(
L
(
(Xt )t∈[0,δ]|Pb0,ν0

)
,L

(
(Xt )t∈[0,δ]|Pb,ν

))

= K
(
πb0,ν0,πb,ν

)+E
b0,ν0

[
log

(
dP

b0,ν0
X0

dP
b,ν
X0

(
(Xt )t∈[0,δ]

))]
(10)

by the conditional version of Jensen’s inequality.
The aim is to identify the Radon–Nikodym derivative using Theorem 2.4 of Cheridito, Fil-

ipović and Yor [12], the hypotheses of which will now be verified. The local boundedness of
Cheridito, Filipović and Yor [12], condition (2.1), follows from the Lipschitz continuity assumed



Posterior consistency for jump diffusions 2191

in (3). We also require Cheridito, Filipović and Yor [12], conditions (2.9) and (2.11) – the accom-
panying Cheridito, Filipović and Yor [12], condition (2.10), concerns killed processes and does
not apply to our setting. To that end, let {�n}∞n=1 denote a sequence of bounded, open subsets of
� such that �1 ⊂ �2 ⊂ · · · and

⋃
n≥1 �n = �. Then

sup
x∈�n

{∥∥∥∥b0(x) − b(x) −
∫
R

d
0

[
dν0

dν
(x, z) − 1

]
1(0,1]

(‖z‖2
)
zν(x, dz)

∥∥∥∥
2

}

≤ sup
x∈�n

{∥∥b0(x) − b(x)
∥∥

2

}

+ sup
x∈�n

{∥∥∥∥
∫
R

d
0

[
dν0

dν
(x, z) − 1

]
1(0,1]

(‖z‖2
)
zν(x, dz)

∥∥∥∥
2

}
. (11)

Note that the first term on the RHS is finite by Lipschitz continuity of b0 and b, and boundedness
of �n. For the second, we have two cases: either ν(x, ·) is a finite measure for each x ∈ �, or
there exists an open set A containing the origin such that dν0

dν
(x, ·)|A ≡ 1 for every x ∈ �. In the

former case, Jensen’s inequality gives the bound

sup
x∈�n

{∥∥∥∥
∫
R

d
0

[
dν0

dν
(x, z) − 1

]
1(0,1]

(‖z‖2
)
zν(x, dz)

∥∥∥∥
2

}

≤ sup
x∈�n,

z∈B0(1)

{∣∣∣∣dν0

dν
(x, z) − 1

∣∣∣∣ν(x,B0(1)
)}

,

where the RHS is finite by (8). If instead ν(x, ·) is infinite and dν0
dν

(x, ·)|A ≡ 1, then the domain
of integration can be changed to R

d
0 \ A because the integrand equals 0 on A. Now ν(x,Rd

0 \ A)

is finite, and hence a slight modification of the previous argument shows that (11) is finite in this
case as well:

sup
x∈�n

{∥∥∥∥b0(x) − b(x) −
∫
R

d
0

[
dν0

dν
(x, z) − 1

]
1(0,1]

(‖z‖2
)
zν(x, dz)

∥∥∥∥
2

}
< Kn

for some Kn < ∞. A similar argument involving the two separate cases outlined in Definition 1
shows that

sup
x∈�n

{∫
R

d
0

[
dν0

dν
(x, z) log

(
dν0

dν
(x, z)

)
− dν0

dν
(x, z) + 1

]
ν(x, dz)

}
< K ′

n

for some K ′
n < ∞. Thus, conditions (2.9) and (2.11) in Remark 2.5 of Cheridito, Filipović and

Yor [12] hold for each (b, ν) ∈ �, and hence Theorem 2.4 of Cheridito, Filipović and Yor [12]
applies.

By Cheridito, Filipović and Yor [12], Theorem 2.4, the Radon–Nikodym derivative on the
RHS of (10) can be expressed as E

b0,ν0[log(E(Lδ))], where E is the Doléans–Dade stochastic
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exponential and the process L := (Lt )t∈[0,δ] is given as

Lt =
∫ t

0

∫
R

d
0

[
dν0

dν
(Xs−, z) − 1

](
Zν(Xs−, dz, ds) − ν(Xs−, dz) ds

)

+
∫ t

0

(
b0(Xs) − b(Xs) −

∫
R

d
0

(
dν0

dν
(Xs−, z) − 1

)
1(0,1]

(‖z‖2
)
zν(Xs−, dz)

)
· dXc

s ,

where (Xc
s )s≥0 is the continuous martingale part of X, that is, a d-dimensional Brownian motion

in this setting, and Zν(x, ·, ·) is a Poisson random measure with intensity ν(x, dz) ⊗ ds. Note
that under Pb0,ν0 the process L is a local martingale, Lc is a continuous local martingale with
quadratic variation

〈
Lc
〉
t
=
∫ t

0

∥∥∥∥b0(Xs) − b(Xs) −
∫
R

d
0

(
dν0

dν
(Xs−, z) − 1

)
1(0,1]

(‖z‖2
)
zν(Xs−, dz)

∥∥∥∥
2

2
ds

and jump discontinuities of L can be written as

�Lt =
[
dν0

dν
(Xt−,�Xt ) − 1

]
1(0,∞)

(‖�Xt‖2
)
,

where �Xt denotes a jump discontinuity of X at time t . Now, the expected quadratic variation
of Lc

t can be bounded by

E
b0,ν0

[〈
Lc

〉
t

]≤
∫ t

0
E

b0,ν0
[∥∥b0(0) + b(0) + 2C1Xs + K

∥∥2
2

]
ds

for some constant K > 0, using (3), the uniform upper and lower bounds on dν0
dν

, and the fact that

either ν and ν0 are equivalent and either both finite measures, or dν0
dν

≡ 1 on a neighbourhood
of 0 and ν is a finite measure on any open set not containing the origin. The stationary density
has a finite second moment by Proposition 1, so that Eb0,ν0 [〈Lc〉t ] ≤ K ′t for some other constant
K ′ > 0. Likewise,

E
b0,ν0

[ ∑
t :‖�Xt‖2 �=0

�L2
t

]
=
∫ t

0
E

b0,ν0

[∫
R

d
0

(
dν0

dν
(Xs−, z) − 1

)2

ν(Xs−, dz)
]

ds

is finite due to the aforementioned conditions on ν0 and ν. Thus, L has expected quadratic vari-
ation

E
b0,ν0

[〈L〉t
]= E

b0,ν0

[ ∑
t :‖�Xt‖2 �=0

�L2
t + 〈

Lc
〉
t

]
< ∞

for each t > 0, and is a true P
b0,ν0 -martingale by Corollary 3 on page 73 of Protter [43]. Thus,

the Radon–Nikodym term in (10) can be written as

E
b0,ν0

[
log

(
dP

b0,ν0
x

dP
b,ν
x

(
(Xt )t∈[0,δ]

))]
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= E
b0,ν0

[
log

(
E(Lt )

)]
= E

b0,ν0

[
Lδ − L0 − 1

2

〈
Lc

〉
δ
+

∑
t :�Xt �=0

{
log(1 + �Lt) − �Lt

}]

= E
b0,ν0

[−1

2

∫ δ

0

∥∥∥∥b0(Xt ) − b(Xt )

−
∫
R

d
0

(
dν0

dν
(Xt−, z) − 1

)
1(0,1]

(‖z‖2
)
zν(Xt−, dz)

∥∥∥∥
2

2
dt

+
∑

0≤t≤δ:�Xt �=0

{
log

(
dν0

dν
(Xt−,�Xt )

)
−
(

dν0

dν
(Xt−,�Xt ) − 1

)}]

≤ δ

2
E

b0,ν0
[∥∥b0(X0) − b(X0)

∥∥2
2

]

+ δ

2
E

b0,ν0

[∥∥∥∥
∫

B0(1)\{0}

(
dν0

dν
(X0−, z) − 1

)
zν(X0−, dz)

∥∥∥∥
2

2

]

+ δEb0,ν0

[∫
R

d
0

∣∣∣∣log

(
dν0

dν
(X0−, z)

)
− dν0

dν
(X0−, z) + 1

∣∣∣∣ν0(X0−, dz)
]
, (12)

where the first equality follows from Theorem 2.4 of Cheridito, Filipović and Yor [12], the sec-
ond by definition of E for jump diffusion processes, and the remainder of the calculation by
stationarity and because ν0 is the compensator of the Poisson random measure driving the jumps
of X under Pb0,ν0 . The result now follows from (10) and (12). �

Lemma 3. For each δ > 0 and f ∈ Cb(�), the collection {P b,ν
δ f : (b, ν) ∈ �} is locally uni-

formly equicontinuous: for any compact K ∈ � and ε > 0 there exists γ := γ (ε,K,f, δ) > 0
such that

sup
(b,ν)∈�

sup
x,y∈K:

‖x−y‖2<γ

∣∣P b,ν
δ f (x) − P

b,ν
δ f (y)

∣∣< ε.

Proof. Theorem 2.3 of Wang [54] establishes Lipschitz continuity for jump diffusions satisfying
(3) using a coupling argument for f ∈ Bb(�), the set of bounded, measurable functions. We
begin by showing that the conditions of Wang [54] are satisfied.

In our notation and setting, the condition of Theorem 2.3 of Wang [54] is that for some constant
β ∈ (0,1) there exists a constant Cβ > 0 such that

(1 + ‖x − y‖2)〈b(x) − b(y),x − y〉
‖x − y‖2

+ (1 + ‖x − y‖2)
∫
‖z‖2≤1 ‖c(x, z) − c(y, z)‖2

2M(dz)

2‖x − y‖2
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+ (
1 + ‖x − y‖2

)∫
‖z‖2>1

∥∥c(x, z) − c(y, z)
∥∥

2M(dz) + (
1 + ‖x − y‖2

)
Cβ ≤ 2

whenever ‖x − y‖2 < β and where 〈·, ·〉 denotes the usual Euclidean inner product. By (3), the
first two summands on the LHS can be bounded by β(1+β)

√
C1 and β(1+β)C1/2, respectively.

The fourth is trivially bounded by (1 + β)Cβ . By Jensen’s inequality, (3) and (7), the third term
can be bounded by β(1 + β)

√
C1C5. Hence, the whole LHS can be bounded by

(1 + β)

[
β
√

C1(1 +√
C5) + βC1

2
+ Cβ

]
,

which can clearly be made arbitrarily small by choosing both β and Cβ to be sufficiently small.
This choice can be made uniformly due to the uniform bounds on the Lipschitz constant C1 and
the total mass constraint C5.

Now, the Lipschitz constant in Wang [54], Theorem 2.3, is of the form

2(1 + β)

(
1

Cβ�
+ 1

β

)
‖f ‖.

Since β and Cβ can be chosen uniformly in �, and � and ‖f ‖ are constants, uniform equicon-
tinuity holds. �

Proof of Theorem 1. Given Lemmas 2 and 3 above, the remainder of the proof follows as in
van der Meulen and van Zanten [50]. It suffices to show that for f ∈ Cb(�) and B := {(b, ν) ∈
� : ‖P b,ν

δ f − P
b0,ν0
δ f ‖1,ρ > ε} we have �(B|x0:n) → 0 with P

b0,ν0 -probability 1. To that end,
we fix f ∈ Lip(�) and ε > 0 and thus the set B . Lemma 2 implies that Lemma 5.2 of van der
Meulen and van Zanten [50] holds, so that if, for measurable subsets Cn ⊂ �, there exists c > 0
such that

enc

∫
Cn

πb,ν(x0)

n∏
i=1

p
b,ν
δ (xi−1,xi )�(db, dν) → 0

P
b0,ν0 -a.s. then �(Cn|x0:n) → 0 P

b0,ν0 -a.s. as well. Likewise, Lemma 3 implies Lemma 5.3 of
van der Meulen and van Zanten [50]: there exists a compact subset K ⊂ �, N ∈N and compact,
connected sets I1, . . . , IN that cover K such that

B ⊂
N⋃

j=1

B+
j ∪

N⋃
j=1

B−
j ,

where

B+
j :=

{
(b, ν) ∈ � : P b,ν

δ f (x) − P
b0,ν0
δ f (x) >

ε

4ρ(K)
for every x ∈ Ij

}
,

B−
j :=

{
(b, ν) ∈ � : P b,ν

δ f (x) − P
b0,ν0
δ f (x) <

−ε

4ρ(K)
for every x ∈ Ij

}
.
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Thus it is only necessary to show �(B±
j |x0:n) → 0 P

b0,ν0 -almost surely. Define the stochastic
process

Dn :=
(∫

B+
j

πb,ν(x0)

n∏
i=1

p
b,ν
δ (xi−1,xi )�(db, dν)

)1/2

.

Now Dn → 0 exponentially fast as n → ∞ by an argument identical to that used to prove Theo-
rem 3.5 of van der Meulen and van Zanten [50]. The same is also true of the analogous stochastic
process defined by integrating over B−

j , which completes the proof. �

We conclude this section with a corollary giving explicit sufficient conditions for the hypothe-
ses of Theorem 1.

Corollary 1. Suppose the prior is of the product form � = �b ⊗�c ⊗�M , with the three factors
corresponding to the drift b, the jump function c and the jump measure M in the obvious way,
and let their respective supports be �b, �c, and �M . Then the following numerous but simple
conditions are sufficient for posterior consistency:

1. There exists a K1 > 0 such that ‖b(x) − b(y)‖2
2 ≤ K1‖x − y‖2

2 uniformly in b ∈ �b .
2. For each b ∈ �b there exists a Kb > 0 and an Rb > 0 such that ‖x‖2 > Rb ⇒ x · b(x) ≤

−Kb‖x‖2
2.

3. For any compact set A ⊂ �, any b0 ∈ �b, and any ε > 0,

�b

(
b ∈ �b : sup

x∈A

{∥∥b(x) − b0(x)
∥∥2

2

}
< ε

)
> 0.

4. There exists a K2 > 0 such that ‖c(x, z) − c(y, z)‖2
2 ≤ K2‖x − y‖2

2 for every z ∈ R
d
0 ,

uniformly in c ∈ �c.
5. For every c ∈ �c there exists a Kc > 0 such that ‖c(x, z) − c(x, ξ)‖2

2 ≤ Kc‖z − ξ‖2
2 for

every x ∈ �.
6. For every c ∈ �c we have c(·,0) ≡ 0.
7. For every x ∈ � there exists a compact set Jx ⊂ R

d
0 which is the image of c(x, ·) simulta-

neously for every c ∈ �c .
8. For each c ∈ �c there exists an Rc > 0 such that

sup
x∈�,z∈Rd

0

{
c(x, z)

}= sup
x∈B0(Rc),z∈Rd

0

{
c(x, z)

}
,

and likewise for infima.
9. c(x, ·) is not constant on any open ball in R

d
0 for any x ∈ � or any c ∈ �c.

10. For any compact set A ⊂ � ×R
d
0 and any c0 ∈ �c,

�c

(
c ∈ �c : sup

(x,z)∈A

{∥∥c(x, z) − c0(x, z)
∥∥

2

}
< ε

)
> 0

for any ε > 0.
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11. There exists a compact set J ⊂ R
d
0 such that every M ∈ �M has M(J c) = 0, and there

exists K3 < ∞ such that M(J) ≤ K3 uniformly in M ∈ �M .
12. Each M ∈ �M has a density M(z) on J that is bounded above and away from 0.
13. For any M0 ∈ �M , �M(M : ‖M − M0‖∞ < ε) > 0 for any ε > 0.

Remark 5. Conditions 4–9 characterising functions c ∈ �c are perhaps the least transparent of
the three sets in the above corollary. A straightforward, one-dimensional example of a function
which satisfies them can be built from

c(x, z) = 2 + sin(z),

by using any Lipschitz modification to ensure that c(x,0) = 0. More generally, families of func-
tions with no dependence on the first argument, with bounded gradient in the second argument,
with no intervals of constancy, and which map into a compact set will satisfy these conditions
provided that they are thus modified at 0.

Proof of Corollary 1. We begin by verifying the hypotheses of Proposition 1. By conditions 1,
4, and 11, the bound

∥∥b(x) − b(y)
∥∥2

2 +
∫

J

∥∥c(x, z) − c(y, z)
∥∥2

2M(dz) ≤ K1‖x − y‖2
2 + K2

∫
J

‖x − y‖2
2M(dz)

≤ (K1 + K2K3)‖x − y‖2
2

holds uniformly in b ∈ �b, c ∈ �c and M ∈ �M . Thus, (3) holds. Furthermore, (4) and (5),
coincide with conditions 2 and 5, and (6) is implied by 11. The requirement that c(·,0) ≡ 0 holds
by condition 6.

Next, we will check that the conditions of Definition 1 are satisfied. Condition 11 implies (7).
To see that any two measures ν(x, ·) and ν0(x, ·) are equivalent, note that neither measure can
have atoms by conditions 9 and 12, and that the support of both measures coincides by conditions
7 and 12. Every ν(x, ·) is also finite by conditions 7 and 11. To see (8), note that by condition 8
we have

inf
x∈�
z∈J

{
dν0

dν
(x, z)

}
= inf

x∈B0(Rc∨Rc0 )

z∈J

{
M0({y ∈ J : c0(x,y) = z})
M({y ∈ J : c(x,y) = z})

}
.

Both the numerator and denominator are strictly positive for every (x, z) ∈ B0(Rc ∨ Rc0) × J

by conditions 7 and 11, and hence so is the infimum by compactness of B0(Rc ∨ Rc0) × J . The
supremum is also finite by an analogous argument, verifying (8).

It only remains to verify (9), which we will do by considering the three expectations separately.
First,

E
b0,ν0

[∥∥b0(X0) − b(X0)
∥∥2

2

]
=
∫

�

∥∥b0(x) − b(x)
∥∥2

2π
b0,ν0(x) dx
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≤
∫

B0(n)

∥∥b0(x) − b(x)
∥∥2

2π
b0,ν0(x) dx +

∫
B0(n)c

∥∥b0(x) − b(x)
∥∥2

2π
b0,ν0(x) dx

≤ sup
x∈B0(n)

{∥∥b(x) − b0(x)
∥∥2

2

}+
∫

B0(n)c

{∥∥b0(0)
∥∥2

2 + ∥∥b(0)
∥∥2

2 + 2C1‖x‖2
2

}
πb0,ν0(x) dx.

The second term on the RHS vanishes as n → 0 because πb0,ν0 has a second moment by Propo-
sition 1. Thus, a positive probability of arbitrarily small values of supx∈B0(n){‖b(x) − b0(x)‖2

2}
for any finite n, assumed in condition 3, implies a positive probability of arbitrarily small values
of Eb0,ν0[‖b0(X0) − b(X0)‖2

2].
Next, Jensen’s inequality and condition 11 yield

E
b0,ν0

[∥∥∥∥
∫

B0(1)∩J

(
dν0

dν
(X0−, z) − 1

)
zν(X0−, dz)

∥∥∥∥
2

2

]

≤ E
b0,ν0

[
ν
(
X0−,B0(1) ∩ J

)∫
B0(1)∩J

(
dν0

dν
(X0−, z) − 1

)2

ν(X0−, dz)
]

≤ sup
x∈B0(Rc∨Rc0 )

z∈B0(1)∩J

{
ν
(
x,B0(1) ∩ J

)2
(

dν0

dν
(x, z) − 1

)2}

≤ K sup
x∈B0(Rc∨Rc0 )

z∈B0(1)∩J

{(
dν0

dν
(x, z) − 1

)2}

for some K < ∞, as supx∈B0(Rc∨Rc0 ){ν(x,B0(1)∩J )2} is finite because M is finite, c is Lipschitz
continuous, and B0(Rc ∨ Rc0) is compact. Now, for a measurable set A ∈ B(J ) and x ∈ B0(Rc ∨
Rc0), we have that

dν0

dν
(x,A) = M0({y ∈ J : c0(x,y) ∈ A})

M({y ∈ J : c(x,y) ∈ A})
≤ M({y ∈ J : c0(x,y) ∈ A}) + |J |‖M − M0‖∞

M({y ∈ J : c(x,y) ∈ A}) .

Now, for each point y ∈ J : c0(x,y) ∈ A we also have d(c(x,y),A) ≤ ‖c0(x,y) − c(x,y)‖2,
where d(x,A) := infy∈A ‖x − y‖2. Thus, if

sup
x∈B0(Rc∨Rc0 ),y∈J

{∥∥c0(x,y) − c(x,y)
∥∥

2

}
< ε,

then {
y ∈ J : c0(x,y) ∈ A

}⊂ {
y ∈ J : d(c(x,y),A

)≤ ε
}
.

By continuity, the M-mass of the latter set converges to M({y ∈ J : c(x,y) ∈ A}) as ε → 0, so
that (

dν0
dν

(x, z) − 1)2 can be made arbitrarily small uniformly in (x, z) ∈ B0(Rc ∨ Rc0) × (J ∩
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B0(1)) by choosing c such that

sup
x∈B0(Rc∨Rc0 ),z∈J∩B0(1)

{∥∥c(x, z) − c0(x, z)
∥∥

2

}
< ε,

and M such that ‖M − M0‖∞ < ε′, for sufficiently small constants ε > 0, and ε′ > 0. By con-
ditions 10 and 13, the prior assigns positive probability to both of these events, and as they are
independent, the joint probability is positive as well.

The proof that the third expectation in (9),

E
b0,ν0

[∫
J

∣∣∣∣log

(
dν0

dν
(X0−, z)

)
− dν0

dν
(X0−, z) + 1

∣∣∣∣ν0(X0−, dz)
]
,

takes arbitrarily small values with strictly positive probability under � follows from a calculation
very similar to the second one above, and is omitted. �

4. Example priors

The conditions of Theorem 1 and Corollary 1 are verifiable, in that they do not depend on in-
tractable quantities, but it is not immediately clear whether there exists a prior � that satisfies
them. In this section, we show that there are at least three distributions which can be used to
construct prior of the form considered in Corollary 1: the wavelet prior (Ruggeri and Vidakovic
[44]), the discrete net prior (Ghosal, Ghosh and Ramamoorthi [20]), and the Dirichlet mixture
model prior (Lo [32]). We will show that these three priors satisfy the respective conditions on
�b , �c , and �M in Corollary 1, though it will also be clear that either of the first two priors
could be used to construct any of the three components. The Dirichlet process mixture model
prior can only used as the �M component without additional assumptions as it does not allow
for control of the growth rate of samples.

Discrete net priors were also used by both van der Meulen and van Zanten [50], and Gugushvili
and Spreij [26] to demonstrate the existence of consistent priors for nonparametric inference of
drifts for diffusions. Wavelet priors were also used in the one-dimensional setting in van der
Meulen and van Zanten [50], and our calculation demonstrates that they remain tractable in any
dimension.

4.1. Wavelet priors

Let Zd
� := Z

d ∩ �, and for each j ≥ 0 define the sets

�j := {
2−j k + 2−j−1ζ : k ∈ Z

d
�, ζ ∈ {0,1}d \ {0, . . . ,0}}.

Let ({
φ(· − k)

}
k∈Zd

�
,
{
2jd/2ψ

(
2j · −λ

)}
λ∈�j ,j≥0

)
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be an orthonormal wavelet basis of L2(�), in other words be such that every f ∈ L2(�) can be
written as

f (x) =
∑

k∈Zd
�

akφ(x − k) +
∞∑

j=0

∑
λ∈�j

a′
λ2jd/2ψ

(
2j x − λ

)

for some sequences of coefficients {ak} and {a′
λ}. Suppose further that the wavelets φ and ψ are

continuously differentiable and compactly supported, and hence also that both the wavelets and
their gradients are bounded functions.

Under regularity conditions on the wavelet basis (Meyer [36], Definition 2, page 21), it is
well known (Meyer [36], Theorem 5, page 179), that f ∈ Cs , the space of s-Hölder continuous
functions, for s > 0 if and only if there exist constants Cf > 0 and Kf > 0 such that

|ak| ≤ Cf for k ∈ Z
d
�,∣∣a′

λ

∣∣≤ 2−j (d/2+s)Kf for λ ∈ �j and j ≥ 0.

For such a function, we have

∣∣∇ · f (x)
∣∣≤ ∑

k∈Zd
�

|ak|∣∣∇ · φ(x − k)
∣∣+ ∞∑

j=0

∑
λ∈�j

∣∣a′
λ

∣∣2jd/2+1
∣∣(∇ · ψ)|2j x−λ

∣∣

≤ Cf

∑
k∈Zd

�

∣∣∇ · φ(x − k)
∣∣+ Kf

∞∑
j=0

2−j (s−1)
∑
λ∈�j

∣∣(∇ · ψ)|2j x−λ

∣∣.
Define R := inf{r > 0 : (supp(φ) ∪ supp(ψ)) ⊆ B0(r)}, which is finite by the assumed compact
support of the wavelets. Then, for each fixed x ∈ � we have the bounds

#
{
k ∈ Z

d
� : φ(x − k) �= 0

}≤ (2R)d,

#
{
λ ∈ �j : ψ(

2j x − λ
) �= 0

}≤ (
2d − 1

)(
2j+1R

)d
.

These bounds, along with compact support and continuous differentiability of wavelets also give
that

∣∣∇ · f (x)
∣∣≤ Cf (2R)d‖∇ · φ‖∞ + Kf

(
2d − 1

)
(2R)d‖∇ · ψ‖∞

∞∑
j=0

2j (d+1−s),

which is finite provided s > d + 1. Thus, for any γ > s − d − 1 > 0 and L > 0, the set

Fγ,L :=
{

f ∈ L2(�) : f (x) =
∑

k∈Zd
�

akφ(x − k) +
∞∑

j=0

∑
λ∈�j

a′
λ2jd/2ψ

(
2j x − λ

)
,

sup
k∈Zd

�

|ak| + sup
j≥0

sup
λ∈�j

2j (3d/2+1+γ )
∣∣a′

λ

∣∣< L

}
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consists of functions f ∈ L2(�) with uniformly bounded gradient.
We specify a prior �′ on Fγ,L as the law of the random function

x �→
∑

k∈Zd
�

Ukφ(x − k) +
∞∑

j=0

∑
λ∈�j

U ′
λ2−j (d+1+γ )ψ

(
2j x − λ

)
,

where {Uk}k∈Zd
�

and {U ′
λ}λ∈�j ,j≥0 are all independent random variables with uniform distribu-

tions on (−L,L). A prior on functions taking values in R
d is specified by drawing each of the d

coordinate maps independently from �′. We denote the resulting law by (�′)⊗d .
Now let {pm}m∈N be a strictly positive probability mass function independent of (�′)⊗d .

A function b ∼ �b is drawn by first sampling b′ ∼ (�′)⊗d and m ∼ pm, and setting

b(x)|b′,m =
{

b′(x) if ‖x‖2 ≤ m,

b′(Pmx) − Cx if ‖x‖2 > m,

where Pm denotes the orthogonal projection to the closed ball B0(m), and C > 0 is a fixed
constant. Samples from �b satisfy conditions 1 and 2 of Corollary 1 with probability 1 by con-
struction. Thus, it only remains to verify condition 3.

Fix a compact A ⊂ � and a drift function b0 ∈ (Fγ,L)d satisfying conditions 1 and 2 of Corol-
lary 1. Let m ∈N be such that A ⊆ B0(m), and let b ∼ �b . Suppose b0,i , the ith coordinate of b0,
has wavelet coefficients {a0

k,i
}k∈Zd

�
and {(a0

λ,i )
′}λ∈�j ,j≥0 ≡ {2−j (d+1+γ )(U0

λ,i )
′}λ∈�j ,j≥0, and

likewise that random wavelet coefficients of bi are denoted by {ak,i}k∈Zd
�

and {a′
λ,i}λ∈�j ,j≥0 ≡

{2−j (d+1+γ )U ′
λ,i}λ∈�j ,j≥0. Then

sup
x∈A

{∥∥b(x) − b0(x)
∥∥2

2

}≤ d sup
x∈A

{∥∥b(x) − b0(x)
∥∥2

∞
}

≤ d sup
x∈A

{
max

i∈{1,...,d}

{∑
k∈Zd

�

∣∣ak,i − a0
k,i

∣∣∣∣φ(x − k)
∣∣

+
∞∑

j=0

∑
λ∈�j

2jd/2
∣∣a′

λ,i − (
a0
λ,i

)′∣∣∣∣ψ(
2j x − λ

)∣∣}}

≤ d sup
x∈A

{ max
i∈{1,...,d}

{
(2R)d‖φ‖∞ max

k∈Bx(R)∩Zd
�

{∣∣ak,i − a0
k,i

∣∣}

+ (2R)d
(
2d − 1

)‖ψ‖∞
∞∑

j=0

2−j (1+γ ) max
λ∈Bx(R)∩�j

{∣∣U ′
λ,i − (

U0
λ,i

)′∣∣}}

≤ d sup
x∈A

{
max

i∈{1,...,d}

{
(2R)d‖φ‖∞ max

k∈Bx(R)∩Zd
�

{∣∣ak,i − a0
k,i

∣∣}
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+ 2(2R)d
(
2d − 1

)‖ψ‖∞
(

max
λ∈Bx(R)∩(�0∪···∪�j∗ )

{∣∣U ′
λ,i − (

U0
λ,i

)′∣∣}+ L2−j∗)}}
, (13)

for any j∗ ∈ N, where the last inequality follows by splitting the summation over j ∈ N into
j ≤ j∗ and j > j∗. Now, the random variables

sup
x∈A

{
max

i∈{1,...,d}

{
max

k∈Bx(R)∩Zd
�

{∣∣ak,i − a0
k,i

∣∣}}} and

sup
x∈A

{
max

i∈{1,...,d}

{
max

λ∈Bx(R)∩(�0∪···∪�j∗ )

{∣∣U ′
λ,i − (

U0
λ,i

)′∣∣}}}

each take arbitrarily small values with positive probability for every j∗ ∈ N, because the suprema
and maxima are taken over compact sets and thus the number of involved i.i.d. U(−L,L)-
distributed random variables is finite. Thus, for each ε > 0 we can choose a j∗ ∈ N such that
the RHS of (13) is smaller than ε with positive probability, and hence condition 3 of Corollary 1
holds.

4.2. Discrete net priors

Let J ⊂R
d
0 be a compact set excluding the origin, and let �′

c be a set of functions c : �×J �→ J

satisfying conditions 4, 5, 7, and 9 of Corollary 1, and with the constant Kc in condition 5 also
holding uniformly in �′

c. Let �
(m)
c := {c|B0(m) : c ∈ �′

c} be the set of restrictions of the first coor-
dinate to the closed ball B0(m) ⊂ �. By uniform equicontinuity and the Arzelà–Ascoli theorem,
�

(m)
c is totally bounded in the uniform norm. Hence, for every n, it is possible to construct a

finite εn-net �
(m,n)
c over �

(m)
c , where {εn}n∈N is a sequence of strictly positive numbers tending

to 0. In other words, �
(m,n)
c is a finite set with the property that every element of �

(m)
c is within

distance εn of some element of �
(m,n)
c in the supremum norm. Each element of �

(m,n)
c can then

be extended to a function on the whole � × J by setting c(x, z) = c(Pmx, z) outside B0(m),
where Pm again denotes orthogonal projection to B0(m). A discrete net prior is constructed by
fixing two strictly positive probability mass functions, {pm}m∈N and {qn}n∈N. A draw from the
prior is then generated by sampling m ∼ pm and n ∼ qn, followed by c|m,n ∼ U(�

(m,n)
c ).

Samples from this prior satisfy the four conditions listed at the top of this paragraph by con-
struction, and it is also clear that condition 8 holds with �c-probability 1, leaving only condition
10 of Corollary 1 to verify. To that end, fix c0 ∈ �′

c, a compact set A ⊂ � and ε > 0. Fix n′ ∈ N

be such that εn′ < ε, and m′ ∈ N such that A ⊆ B0(m
′). Then

�c

(
c : sup

x∈A,z∈J

{∥∥c(x, z) − c0(x, z)
∥∥

2

}
< ε

)
>

pm′qn′

|�(m,n)
c |

> 0,

as required.
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4.3. Dirichlet process mixture model priors

Let φτ (z) denote the d-dimensional centred Gaussian density with covariance matrix τ−1Id×d

restricted to J , as defined in Section 4.2, and renormalised to be a probability density. Let F

be a probability measure on (0,∞) assigning positive mass to all non-empty open sets, and let
DP(ζ ) denote the law of a Dirichlet process (Ferguson [17]) with the mean measure ζ ∈ Mf (J ),
which is taken to be a probability measure with a finite first moment, independent of F . Let
Dϒ(J ) denote the space of continuous, positive densities on J with total mass at most ϒ > 0.
The Dirichlet process mixture model on Dϒ(J ) with truncated Gaussian mixture kernel φτ and
mixing distribution U(0,ϒ) ⊗ F ⊗ DP(ζ ) is specified via the following sampling procedure:

1. Sample P ∼ DP(ζ ). Then P is a discrete probability measure on R
d with countably many

atoms with DP(ζ )-probability 1 (Ferguson [17]). Let z1, z2, . . . denote these atoms in some
fixed ordering.

2. Sample IID copies τ1, τ2, . . . ∼ F .
3. Sample α ∼ U(0,ϒ).
4. Set M(z) = α

∑∞
j=1 P(zj )φτj

(z − zj ).

Note that samples are finite measures with strictly positive, bounded densities on J . Because J is
compact, Dϒ(J ) consists of continuous densities, and because F((x,∞)) > 0 for every x > 0,
we also have that Theorem 1 of Bhattacharya and Dunson [7] holds, giving that the support of
this prior is dense in Dϒ(J ). Thus, conditions 11, 12, and 13 of Corollary 1 hold.

5. Discussion

In this paper, we have shown that posterior consistency for identifiable, nonparametric Bayesian
inference of drift and jump coefficients of jump diffusions from discrete data holds under criteria
which can be readily checked in practice. Products of discrete net, wavelet, and Dirichlet process
mixture model priors were shown to satisfy the conditions for consistency.

Our results share the limitation of Gugushvili and Spreij [26], in that we require priors to assign
full mass to sets of functions for which the Lipschitz condition (3) holds uniformly. This rules
out many widely used families of priors, such as Gaussian measures, but counterexamples exist
to show that without it, uniform equicontinuity fails even for one dimensional unit diffusions
[Matthias Birkner, personal communication]. It seems clear that an entirely different approach is
needed, if consistency results are to be established without a uniform equicontinuity condition.

A further limitation of van der Meulen and van Zanten [50], Gugushvili and Spreij [26] is that
of being established for a weak topology, for which the martingale approach of Walker [53], Lijoi,
Prünster and Walker [31] is well suited. A testing approach, such as that of Ghosal and van der
Vaart [22], would yield convergence in a stronger topology as well as rates of convergence, but
it is not clear how to adapt their results to the diffusion or jump diffusion settings. Currently,
results in this direction are only available for continuously observed scalar diffusions (van der
Meulen, van der Vaart and van Zanten [51], Panzar and van Zanten [38], Pokern, Stuart and
van Zanten [40]), as well as discretely observed scalar diffusions on a compact interval (Nickl
and Söhl [37]). However, these rely, respectively, on the continuity of the observation and on a
tractable representation of the stationary density, neither of which is available in our setting.
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Practical implementation of inference algorithms is beyond the scope of this paper, but we note
that algorithms based on exact simulation for jump diffusions are available, at least in the scalar
case (Casella and Roberts [10], Gonçalves [24]). Exact simulation of jump diffusions is an active
area of research (Gonçalves and Roberts [25], Pollock [41], Pollock, Johansen and Roberts [42])
and well suited for applications in Monte Carlo inference algorithms, with preliminary results in
the continuous diffusion setting indicating that nonparametric algorithms can be feasibly imple-
mented (Papaspiliopoulos et al. [39], van Zanten [52], van der Meulen, Schauer and van Zanten
[49]). As a final remark, we note that presently such algorithms are only available for processes
with jumps driven by compound Poisson processes of finite intensity, and with coefficients sat-
isfying regularity assumptions comparable to those in Proposition 1. Thus our Theorem 1 brings
the theory on nonparametric posterior consistency in line with current state of the art algorithms
in one dimension, and anticipates development of comparable methods in higher dimensions.
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[12] Cheridito, P., Filipović, D. and Yor, M. (2005). Equivalent and absolutely continuous measure changes
for jump-diffusion processes. Ann. Appl. Probab. 15 1713–1732. MR2152242

[13] Comte, F., Genon-Catalot, V. and Rozenholc, Y. (2007). Penalized nonparametric mean square esti-
mation of the coefficients of diffusion processes. Bernoulli 13 514–543. MR2331262

[14] Dalalyan, A. and Reiß, M. (2007). Asymptotic statistical equivalence for ergodic diffusions: The mul-
tidimensional case. Probab. Theory Related Fields 137 25–47. MR2278451

[15] Diaconis, P. and Freedman, D. (1986). On the consistency of Bayes estimates. Ann. Statist. 14 1–67.
MR0829555

[16] Dudley, R.M. (2002). Real Analysis and Probability. Cambridge Studies in Advanced Mathematics
74. Cambridge: Cambridge Univ. Press. Revised reprint of the 1989 original. MR1932358

[17] Ferguson, T.S. (1973). A Bayesian analysis of some nonparametric problems. Ann. Statist. 1 209–230.
MR0350949
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