605 research outputs found

    Bayesian analysis of spatial point processes in the neighbourhood of Voronoi networks

    Get PDF

    Local cellular neighbourhood controls proliferation in cell competition

    Get PDF
    Cell competition is a quality control mechanism through which tissues eliminate unfit cells. Cell competition can result from short-range biochemical inductions or long-range mechanical cues. However, little is known about how cell-scale interactions give rise to population shifts in tissues, due to the lack of experimental and computational tools to efficiently characterise interactions at the single-cell level. Here, we address these challenges by combining long-term automated microscopy with deep learning image analysis to decipher how single-cell behaviour determines tissue make-up during competition. Using our high-throughput analysis pipeline, we show that competitive interactions between MDCK wild-type cells and cells depleted of the polarity protein scribble are governed by differential sensitivity to local density and the cell-type of each cell's neighbours. We find that local density has a dramatic effect on the rate of division and apoptosis under competitive conditions. Strikingly, our analysis reveals that proliferation of the winner cells is upregulated in neighbourhoods mostly populated by loser cells. These data suggest that tissue-scale population shifts are strongly affected by cellular-scale tissue organisation. We present a quantitative mathematical model that demonstrates the effect of neighbour cell-type dependence of apoptosis and division in determining the fitness of competing cell lines

    Data-efficient machine learning for design and optimisation of complex systems

    Get PDF

    Spatial cluster point processes related to Poisson-Voronoi tessellations

    Get PDF

    Modelling discrepancy in Bayesian calibration of reservoir models

    Get PDF
    Simulation models of physical systems such as oil field reservoirs are subject to numerous uncertainties such as observation errors and inaccurate initial and boundary conditions. However, after accounting for these uncertainties, it is usually observed that the mismatch between the simulator output and the observations remains and the model is still inadequate. This incapability of computer models to reproduce the real-life processes is referred to as model inadequacy. This thesis presents a comprehensive framework for modelling discrepancy in the Bayesian calibration and probabilistic forecasting of reservoir models. The framework efficiently implements data-driven approaches to handle uncertainty caused by ignoring the modelling discrepancy in reservoir predictions using two major hierarchical strategies, parametric and non-parametric hierarchical models. The central focus of this thesis is on an appropriate way of modelling discrepancy and the importance of the model selection in controlling overfitting rather than different solutions to different noise models. The thesis employs a model selection code to obtain the best candidate solutions to the form of non-parametric error models. This enables us to, first, interpolate the error in history period and, second, propagate it towards unseen data (i.e. error generalisation). The error models constructed by inferring parameters of selected models can predict the response variable (e.g. oil rate) at any point in input space (e.g. time) with corresponding generalisation uncertainty. In the real field applications, the error models reliably track down the uncertainty regardless of the type of the sampling method and achieve a better model prediction score compared to the models that ignore discrepancy. All the case studies confirm the enhancement of field variables prediction when the discrepancy is modelled. As for the model parameters, hierarchical error models render less global bias concerning the reference case. However, in the considered case studies, the evidence for better prediction of each of the model parameters by error modelling is inconclusive

    Improving the convergence rate of seismic history matching with a proxy derived method to aid stochastic sampling

    Get PDF
    History matching is a very important activity during the continued development and management of petroleum reservoirs. Time-lapse (4D) seismic data provide information on the dynamics of fluids in reservoirs, relating variations of seismic signal to saturation and pressure changes. This information can be integrated with history matching to improve convergence towards a simulation model that predicts available data. The main aim of this thesis is to develop a method to speed up the convergence rate of assisted seismic history matching using proxy derived gradient method. Stochastic inversion algorithms often rely on simple assumptions for selecting new models by random processes. In this work, we improve the way that such approaches learn about the system they are searching and thus operate more efficiently. To this end, a new method has been developed called NA with Proxy derived Gradients (NAPG). To improve convergence, we use a proxy model to understand how parameters control the misfit and then use a global stochastic method with these sensitivities to optimise the search of the parameter space. This leads to an improved set of final reservoir models. These in turn can be used more effectively in reservoir management decisions. To validate the proposed approach, we applied the new approach on a number of analytical functions and synthetic cases. In addition, we demonstrate the proposed method by applying it to the UKCS Schiehallion field. The results show that the new method speeds up the rate of convergence by a factor of two to three generally. The performance of NAPG is much improved by updating the regression equation coefficients instead of keeping it fixed. In addition, we found that the initial number of models to start NAPG or NA could be reduced by using Experimental Design instead of using random initialization. Ultimately, with all of these approaches combined, the number of models required to find a good match reduced by an order of magnitude. We have investigated the criteria for stopping the SHM loop, particularly the use of a proxy model to help. More research is needed to complete this work but the approach is promising. Quantifying parameter uncertainty using NA and NAPG was studied using the NA-Bayes approach (NAB). We found that NAB is very sensitive to misfit magnitude but otherwise NA and NAPG produce similar uncertainty measures
    • …
    corecore