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Abstract  

Cell competition is a quality control mechanism through which tissues eliminate unfit cells. Cell 

competition can result from short-range biochemical inductions or long-range mechanical cues. 

However, little is known about how cell-scale interactions give rise to population shifts in tissues, 

due to the lack of experimental and computational tools to efficiently characterise interactions at 

the single-cell level.  Here, we address these challenges by combining long-term automated 

microscopy with deep learning image analysis to decipher how single-cell behaviour determines 

tissue make-up during competition. Using our high-throughput analysis pipeline, we show that 

competitive interactions between MDCK wild-type cells and cells depleted of the polarity protein 

scribble are governed by differential sensitivity to local density and the cell-type of each cell’s 

neighbours.  We find that local density has a dramatic effect on the rate of division and apoptosis 

under competitive conditions. Strikingly, our analysis reveals that proliferation of the winner cells is 

upregulated in neighbourhoods mostly populated by loser cells. These data suggest that tissue-scale 

population shifts are strongly affected by cellular-scale tissue organisation. We present a 

quantitative mathematical model that demonstrates the effect of neighbour cell-type dependence 

of apoptosis and division in determining the fitness of competing cell lines. 
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Introduction 
Competition between cells is a phenomenon originally identified in development that results in the 

elimination of less fit cells (the loser cells) from a tissue (Levayer and Moreno, 2013; Vincent et al., 

2013; Merino et al., 2016). The viability of loser cells depends strongly on context: when they are 

cultured alone, they thrive but, when they are cultured in a mixed population, they are eliminated 

by cells with greater fitness. Many of the mutations leading to competition give rise to a change in 

growth rate with the faster growing cells eventually eliminating the slower growing ones (Morata 

and Ripoll, 1975; Simpson and Morata, 1981; Oliver et al., 2004). The relationship between cell 

competition and cancer is complex. In some cases, competition can confer protection against 

tumorigenesis by eliminating cells with oncogenic mutations (Hogan et al., 2009; Tamori et al., 2010; 

Norman et al., 2012; Martins et al., 2014; Merino et al., 2015; Porazinski et al., 2016) but, in other 

cases, cancer cells can turn competition to their advantage leading to field cancerization (Rhiner and 

Moreno, 2009; Fernandez et al., 2016). In cancer, many different lineages with distinct mutations are 

present in a tumour (Sottoriva et al., 2013; Navin et al., 2011) and their interaction can be viewed as 

a competition. Recent computational work has shown that a small competitive advantage, linked for 

example to better survival in the presence of a drug, can lead to one lineage taking over to whole 

tumour (Waclaw et al., 2015). Thus, a detailed understanding of cell competition, how it depends on 

local context and how competition is modulated by the environment, is of clear therapeutic interest.   

Competition involves either the exchange of short-range biochemical information (biochemical 

competition) or longer-range mechanical cues (mechanical competition). In the former, competing 

cells must be in contact with one another and, as a result, cell death occurs only at the interface 

between cell types (Moreno et al., 2002). In mechanical competition, cell death occurs because of 

differences in tolerance to cell density and the role of contact interaction is less clear. To date, most 

studies have quantified competition at the tissue-scale mainly concentrating on increases in 

apoptotic events and reporting these across tissues (Levayer et al., 2015; Wagstaff et al., 2016). 

Although these studies have yielded insight into the mechanisms of competition, many important 

aspects still remain unclear. Indeed, changes in population composition can arise not only from 

increases in apoptosis but also through changes in division rates. Furthermore, as competition is by 

nature context dependent, a tissue-scale description of outcome obscures key characteristics of how 

competition takes place at the single cell level. For example, recent work has revealed that, when 

loser cells have a limited fraction of their surface in contact with winner cells, they survive (Levayer 

et al., 2015).  

These examples highlight the need to quantitatively characterise the apoptosis and division rates of 

each cell type and investigate how local cell density and neighbourhood modulate these. Such 

characterisation presents several challenges. First, cell trajectories must be accurately tracked and 

the cell cycle states determined over long durations for several hundred cells. Second, new data 

analysis tools and metrics must be developed to characterise the spatiotemporal rules of 

competition. Here, we address these challenges by developing long-term automated microscopy 

together with deep learning image analysis to decipher single cell behaviours underlying population 

shifts during competition. As a test case for our analysis pipeline, we examine competition between 

MDCK cells depleted in the polarity protein scribble (scribblekd) and wild-type cells (MDCKWT). 

Competition induced by loss of scribble is widely regarded as an example of mechanical competition 
(Norman et al., 2012). Recent work has suggested that mechanical competition might stem from 
differences in the tolerances of each cell type to density. Indeed, when cultured in pure populations, 
the density in each cell population first increases before reaching a plateau (the homeostatic 
density). This homeostatic density is maintained over time because rate of cell death exactly 
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compensates rate of cell birth. Remarkably, scribblekd cells reached lower homeostatic densities than 
MDCKWT cells because of a 3-fold larger apoptosis rate (Wagstaff et al., 2016). In competitive 
conditions, MDCKWT cells compacted scribblekd cells causing an increase in their death rates. These 
results suggest changes in density may induce increases in apoptosis events that alone are sufficient 
to result in the elimination of the scribblekd cells. However, a detailed characterisation of the 
influence of density on apoptosis is lacking for a quantitative test of this hypothesis and the 
sensitivity of cell division to density has never been characterised.  

Here, we take a first step in characterising apoptosis, cell division, and net growth as a function of 

local cell density. Next, we show that the local neighbourhood influences apoptosis and division, 

suggesting a role for inductive phenomena in mechanical competition and emphasising the 

importance of examining single-cell behaviours to characterise competition at the tissue-scale. 

Finally, we implement a simple numerical model of competition to investigate how the density 

dependence of cell division and apoptosis determine the time evolution of cell count and the overall 

population fitness. Our analytical tools can be generally applied to determine the dependence of cell 

competition on local density and local neighbourhood, as well as analyse cell interactions with 

relevance to cancer, developmental biology and stem cell biology.  
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Experimental and computational strategy 
To characterise how single cell behaviours give rise to population shifts during cell competition, we 
developed a high-throughput imaging and analysis pipeline. We acquired time-lapse movies lasting 
several days imaging co-cultures of MDCKWT cells and scribblekd cells expressing H2b-GFP and H2b-
RFP, respectively. We first confirmed that exposure of scribblekd cells to tetracycline for 70h led to 
~90% reduction in scribble expression, consistent with previous reports (Norman et al., 2012) (Fig 
S1E). We assembled a low-cost cell imaging system for multi-position and multi-wavelength 
acquisition inside a standard CO2 incubator. Using fast-switching LEDs for illumination and an 
automated stage, we acquire bright-field, GFP, and RFP images for up to 12 regions of (530 × 400) 
μm2 with a 20x objective with a temporal resolution of 4 minutes for over 80 hours (Fig 1A, B). 
Regions can be sampled from multiple Petri dishes allowing competitions and controls to run side by 
side in identical conditions. In these conditions, the fate of loser cells (scribblekd) surrounded by 
winner cells (MDCKWT) can be easily traced as they undergo apoptosis prior to extrusion from the 
monolayer (Fig 1B). 

Movies were then automatically analysed to track the position, state and lineage of the cells using 
deep learning based image classification in a first processing step.  In this first step, cell nuclei are 
segmented (Fig 1A-C) and classified using a deep neural network to assign them one of five states: 
interphase, prometaphase, metaphase, anaphase or apoptosis (Fig 1D-G). The positions and states 
of nuclei are then linked into trajectories over time (Fig 1H) using a Bayesian tracking method 
followed by hypothesis-based optimisation to generate lineage trees (Fig 2).  In a second processing 
step, we determined the rates of division, apoptosis, and net growth as a function of density and 
local neighbourhood. These data were then used in numerical models of cell competition. Further 
details of the segmentation and tracking algorithms along with comparison to existing approaches 
can be found in Supplementary Information. 

Over the course of a single imaging experiment, we acquire 12 movies in parallel, following 800-
1,000 cells per field of view for 800-1200 frames. The analysis of such an experiment results in the 
determination of the fate of 9,600-12,000 cells (800-1,000 cells x 12) and returns 640,000 to 
1,200,000 (800-1,000 x 800-1,200) discrete cellular-scale observations (cells/time) per field of view. 
In the following, we define an “observation” as the detection of an object (a cell) at a given frame 
while an “event” refers to the detection of an apoptosis or a cell division. 
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Results 
Cell count, cell cycle length, and apoptosis in pure and mixed populations 

Following tracking and identification of cell-cycle state (Supplementary movies), we could generate 
lineage trees for each cell identifying its progeny as well as potential termination by apoptosis (Fig 
2A). By measuring the temporal separation between the birth of a cell and that of its daughters on a 
lineage tree, we extract the duration of the cell-cycle at single-cell resolution (Fig 2B) and plot its 
distribution for the entire population (Fig 2C). For MDCKWT, this yields a mean cell cycle time of 18 ± 
3.2 h, consistent with other reports (Puliafito et al., 2012, Gudipaty et al., 2017) and validating our 
segmentation, classification and tracking steps. It is important to note that, despite accurate 
estimation of cell-cycle duration for the vast majority of the population, some errors subsist due to 
identity swaps at high cell densities or triple divisions that lead to under-estimation of the cell-cycle 
time (e.g. ~1.5% of cells have estimated cell-cycle times of 5-10 hours, Fig 2C). 

As further validation of our algorithms, we analysed the change in cell numbers and the number of 
apoptoses in a competition assay in which MDCKWT cells were mixed with scribblekd cells. We mixed 
cells in a 90:10 MDCKWT:scribblekd ratio with an initial seeding density of 10-3 cells/µm2.  Over the 
course of 80 hours, scribblekd and MDCKWT proliferation differed markedly, with the scribblekd count 
peaking after 40 hours before decreasing (Fig 2D inset) and MDCKWT count showing a 7-fold increase 
(Fig 2D), consistent with previous work (Wagstaff et al., 2016). Previous work has revealed increased 
cell death in the scribblekd cells when in presence of MDCKWT cells (Wagstaff et al., 2016). To confirm 
this, we plotted the cumulative count of apoptosis events for each cell type (Fig 2E). This revealed 
that scribblekd cells had significantly higher counts of apoptosis than MDCKWT cells despite them 
being far scarcer, indicating a higher probability of apoptosis in scribblekd cells. 

In contrast, control experiments mixing H2b-GFP MDCKWT with non-induced H2b-RFP scribblekd in a 
90:10 ratio showed a 2-fold increase in cell count for H2b-RFP scribblekd and a 3-fold increase in 
MDCKWT cells after 50h (Fig S1A). These increases were comparable to those recorded in pure 
populations of each cell type over a similar duration (Fig S1D). When we examined apoptosis in each 
cell population, we found that WT cells had significantly higher apoptosis counts, as would be 
expected from their 10-fold larger numbers (Fig S1B) and in contrast to what is observed upon 
depletion (Fig 1G). Together, these data confirmed that, when scribble depletion is not induced, 
scribblekd and MDCK WT cells did not compete (Norman et al., 2012).  

Altogether, our large-scale quantification of growth rates and apoptosis in competitive and non-
competitive conditions are consistent with previous findings (Wagstaff et al., 2016), confirming that 
our analysis pipeline can provide reliable high-throughput automated quantification of single cell 
events during competition.  

 

Probability of division and apoptosis depend on local cell density in competitive interactions 

Previous experiments showed that scribblekd cells are less tolerant to density than MDCKWT cells 

resulting in a higher rate of apoptosis for a given density (Wagstaff et al., 2016). During competition, 

MDCKWT cells cause compaction of the scribblekd cells inducing them to apoptose. However, the 

exact relationship between cell density and probability of apoptosis was not determined. 

Furthermore, although a decrease in probability of division with density would also contribute to 

competition, the influence of cell density on cell division has not been examined.  

Using our analysis pipeline, we investigated the impact of cellular density on the probability of 

division and apoptosis. For this, we implemented a measure of single-cell density based on a 

Delaunay triangulation of the centres of mass of cell nuclei in each image frame (Fig 3A). In 

computing density, we verify that cells are in contact with one another using a distance threshold 
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(Fig S2, S3) and we exclude cells that are closer than 10 µm to the edge of the field of view because 

not all of their neighbours can be identified leading to an underestimation of density. We defined 

the local cellular density ρ as the sum of inverse areas of the triangles that share a common vertex 

with the cell of interest, as given by equation: 

  ∑
 

    

 

   

 

where A(i) is the area of the triangle i, possessing a vertex in the centre of the nucleus of the cell of 

interest (Fig 3A). Consistent with previous qualitative descriptions (Wagstaff et al., 2016), the mean 

local density of non-induced scribblekd (tet-) and MDCKWT cells increases with time in pure 

populations, whereas the density of pure populations of induced scribblekd fluctuates around the 

initial density value (Fig 3B). After 80 h, the mean density of non-induced scribblekd and MDCKWT cells 

reaches a plateau (the homeostatic density) several fold higher (3.6 and 3-fold, respectively) than 

the density of induced scribblekd (Fig 3B). Thus, induced scribblekd cells possess a lower homeostatic 

density than MDCKWT or non-induced scribblekd cells. Strikingly, when induced scribblekd cells are 

placed in competition with MDCKWT cells, the temporal evolution of their density changes 

dramatically, augmenting 4-fold over 80 h and reaching a final density 1.4 fold higher than the 

average density of surrounding MDCKWT (Fig 3C). In contrast, when MDCKWT cells and non-induced 

scribblekd cells are placed in competitive conditions, they follow behaviours similar to those 

observed in pure populations (Fig S1A). Overall, our time-resolved mean local density measurements 

are consistent with the global density analysis previously performed by means of single–time-point 

quantification (Wagstaff et al., 2016).  

Having validated the efficacy of our approach to estimate density heterogeneity in a competing co-

culture, we experimentally determined the dependency of proliferation and apoptosis probability on 

local cellular density. To do this, we discretized the local densities for each cell ID at each time frame 

into twenty bins; the middle bin corresponds to the mean local density of all cells and the first and 

last bins correspond to the minimum and maximum local density measured across the population. 

The probability of cells undergoing mitosis/apoptosis per cell per frame was then calculated for each 

bin as: 

            
∑            

∑   
, 

with            the number of observed events (division or apotosis) in each bin and   the total 

number of observations in that bin. The net growth per cell per frame pnet growth is then defined as: 

                                 

In pure populations, MDCKWT cells showed a high baseline probability of division that decreased 

when density reached            whereas this remained approximately constant at a 4-fold 

smaller level for scribblekd cells (Fig 3D). Probability of apoptosis for both cell types was similar, 

approximately 10-fold smaller than the probability of division, and increasing with density (Fig 3E). 

Overall, this resulted in net growths that were positive and relatively insensitive to density until 

           after which they decreased (Fig 3F). These data suggest that homeostatic density is 

set differently for each cell type: in MDCKWT cells, it is controlled by a density-dependent decrease in 

proliferation; while in scribblekd cells, it results from an increase in apoptosis with density. 
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As hypothesised previously (Levayer et al., 2015; Wagstaff et al., 2016), we found that the 

probability of apoptosis     
 of scribblekd cells increased sharply with density for densities 

             when placed in contact with MDCKWT cells (Fig 3H, E). For MDCKWT cells,      

was comparable to that observed in pure populations until           , after which it increased 

sharply. For high densities (          ), the probability of apoptosis for scribblekd was  2.5 fold 

higher than in MDCKWT cells. At the lowest densities             , the probability of apoptosis 

for scribblekd was similar in competitive and pure populations (Compare Fig 3H and 3E).  

Interestingly, the local density observed in competitions covered a larger range than in pure 

populations (Fig 3H, 3C), perhaps because in pure populations scribblekd cells strive to preserve the 

low homeostatic density that they prefer. Together, these data directly show that apoptosis is 

upregulated with increasing density, as hypothesised previously (Wagstaff et al., 2016).  

To date, analysis of competition has mostly focused on increases in the probability of apoptosis. 

Interestingly, the analysis of division probabilities in competitive conditions revealed clear 

differences in behaviour between scribblekd and MDCKWT. MDCKWT cells behaved as in pure 

populations, with      remaining largely insensitive to density before decreasing for            

(Fig 3D,G). In contrast, scribblekd cells showed clear sensitivity to local density with similar      than 

in pure populations at low density but a larger      for densities            (Fig 3D,G). In both 

pure populations and competitions,    
    was larger than          

    until           . Together, 

the increase in      with density and the decrease in      with density resulted in net growth that 

decreased sharply for densities            (Fig 3I). Overall, the MDCKWT cells dominate the 

competition at all densities, with a net growth of 0.2% that drops to 0.025% for the largest densities 

present in our experiments due to the combination of a decrease in      and an increase in     . 

Thus, our single-cell analysis emphasises the importance of considering division as well as apoptosis 

when examining cell competition.  

 

Single cell analysis reveals the presence of local neighborhood effect in net-growth 

The induction of behavior in one cell lineage by contact with another is a central concept in cell 
competition (Vincent et al., 2013). To detect inductive behaviours during cell competition, we 
categorise each division and apoptosis as a function of the number of neighbours of each type. To do 
this, we implemented a neighbourhood-based distance algorithm to retrieve the interaction network 
for each cell at each time point. First, we used the localization of centroids to infer the Voronoi 
diagram (Barber et al., 1996) in each frame (Fig 4A, Fig S2-S3) and verified its accuracy in 
determining the number of neighbours of each cell (Fig S8). For each cell ID, we compute the total 
number of neighbours and the number belonging to each cell lineage. Such calculations exclude cells 

closer than 10 µm to the edge of the field of view because their entire neighbourhood cannot be 
identified. This information enables the generation of "neighbourhood plots", where the value of a 
parameter of interest is colour-coded and placed in a grid as a function of the number of scribblekd 
and MDCKWT neighbours, respectively on the x-axis and y-axis. The measurement at each grid 
position is typically computed from >500 cells and often 104-105 cells (Fig S4). In our diagrams, we 
annotated with an asterisk grid positions populated by more than 500 observations, but for which 
no event (e.g. a division or an apoptosis) of interest was detected. Thus, in these positions, we 
provide an upper bound (1/Nobservations) for the probability of the event.  

Next, we employed neighbourhood plots to investigate how proliferation, apoptosis and the 
resulting net-growth depend on the local neighbourhood (Fig 4B-D). A diagram with uniform colour 
indicates a behavior independent on the composition of the cell neighborhood, whereas a diagram 
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showing asymmetry about the diagonal identifies a behavior dependent on neighborhood. To 
provide a metric for asymmetry, we computed: 

  |∑  ∑ | 

where U and L are the upper and lower triangular matrices of the neighbourhood plot (See Methods, 

Fig 4E). With this metric, the higher the s value the higher the inductive effect (Fig 4F). The 

probability of division (    ) of MDCKWT is strongly influenced by neighborhood, being higher in 

scribblekd dominated neighborhoods (top panel, lower quadrant, Fig 4B). In contrast,      for 

scribblekd is insensitive to neighbourhood (bottom panel, Fig 4B). Apoptosis diagrams displayed 

higher symmetry (Fig 4F), with      higher in scribblekd cells than MDCKWT cells for most grid 

positions (Fig 4C). For both cell types,      are lower than      by approximately an order of 

magnitude (Fig 4B,C), consistent with Fig 3. As a result, the net growth neighbourhood plots reflect 

the prevalent contribution of division (Fig 4D). Net growth is positive and highest in the bottom right 

corner of the neighbourhood plot for MDCKWT cells (Fig 4D, top panel), while scribblekd have either 

zero or negative net-growth in the upper left corner (Fig 4D, bottom panel), the region dominated by 

MDCKWT. Similar plots for mixed populations of non-induced scribblekd (tet-) and MDCKWT show less 

sensitivity to neighbourhood, with much lower degree of asymmetry in apoptosis, division and net 

growth (Fig S5). In particular, the non-induced scribblekd (tet-) have a positive and quite uniform net-

growth across the entire grid, signifying that their behaviour is independent on the composition of 

the cell neighbourhood. 

 

Rate equation model of density-dependent growth and death quantitatively reproduces 
competition dynamics  

Previous work has suggested that mechanical competition may be the result of cell autonomous 
increases in apoptosis with density (Wagstaff et al., 2016). Here, we test this hypothesis by 
developing a quantitative model based on our experimental findings. To this end, we implemented a 
coupled rate-equation model to investigate how the density dependence of cell division and 
apoptosis determine the time evolution of cell count and the overall population fitness. In this 
model, the density of the MDCKWT (WT) and scribblekd cells (KD) increases at a rate proportional to 

the density-dependent division rate (    
  ,     

  ), and decreases proportionally with the density-

dependent death rate (    
       

  ), as given by Eqs (1) and (2). The rate equations for cell counts Nwt 

and Nkd are dependent on the cell density, as given by Eqs (3) and (4). 

    

  
     

                               
                               

    

  
     

                           
                                         (2) 

    

  
      

                       
                                               (3) 

    

  
      

                
                                                                

Equations (1) and (2) describe the temporal evolution of local density of MDCKWT and scribblekd, 
respectively. Equations (3) and (4) describe the temporal evolution of cell count of MDCKWT and 
scribblekd, respectively. We solve Equations (1)-(4) simultaneously for the four unknowns (ρwt, ρkd, 

Nwt, Nkd), as since the local density ρ and cell count N are not trivially related. To describe the density 
dependence of birth and death rates of MDCKWT and scribblekd cells, we fit logistic curves to the 
experimental data in Fig 3G-H (Fig S6C-D, Fig S6F). The analytical form for the division rates of 
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scribblekd (    
  ) and MDCKWT (    

  ) are determined by fitting a Gaussian and a logistic function, 
respectively, to the experimental data in Fig 3G (Fig S6A-B, Fig S6F). The resultant input functions to 
the model are shown in Fig 5A. Based on our experimental finding (Fig 4B-C) that the MDCKWT cells 
exhibit an asymmetric neighborhood dependence of division rate, we introduce a parameter, a, 
describing the degree of asymmetric dependence of MDCKWT division rate on the densities of 
MDCKWT and scribblekd cells. The coupled equations (1)-(4) are solved numerically to reproduce the 
temporal evolution of cell counts of MDCKWT and scribblekd cells (Fig 5B-C, Fig S6E), subject to the 
experimental initial conditions for the cell count and density of the two cell types. 

We hypothesize three different models for competitive interaction between the MDCKWT and the 
scribblekd cells, modulated by the asymmetry parameter, a. First, we consider an uncoupled model 
(a=1), where the growth rates of MDCKWT and scribblekd cells are independent of each other. Second, 
we examine a symmetric interaction model (a=0), where the evolution of cell density and count are 
equally affected by the densities of the MDCKWT and scribblekd cells. Finally, we investigate an 
asymmetric interaction model, with a>0 treated as a fitting parameter, such that the division rate of 
MDCKWT are enhanced in the presence of scribblekd neighbours (a>1). 

Both the symmetric model (Fig 5B) and the uncoupled model (Fig S6E) fail to quantitatively 
reproduce the experimental cell count, predicting a lower count of MDCKWT cells. By contrast, the 
asymmetric model (a=2.6), quantitatively reproduces the experimentally observed cell counts (Fig 
5C), by accounting for the enhancement of division rate of MDCKWT when in neighbourhoods with 
high proportions of scribblekd cells (Fig 4B, 4F). This result reinforces our hypothesis that the MDCKWT 
cells exhibit division induction dependent on local neighborhood. The model further predicts how 
the net growth of the competing cell lines varies with the densities of MDCKWT and scribblekd cells 
(Fig 5D-E). First, the net growth of the MDCKWT is larger than that of the scribblekd cells, as seen 
experimentally (Fig 4D). Second, in agreement with the experimental data (Fig 4D-bottom) the net 
growth of scribblekd cells exhibit a symmetric dependence on ρWT and ρkd (Fig 5E). Finally, the relative 
fitness (net growth of the MDCKWT – net growth of the scribblekd) heat map (Fig 5F) predicts that the 
net growth of the MDCKWT cells is always larger than scribblekd cells except in a small region with 
high density of scribblekd cells and low density of MDCKWT (dashed line, Fig 5F). This prediction 
quantitatively delineates the influence of asymmetric density dependence of MDCKWT division rate 
on the overall fitness landscape.  

Discussion 
Competition is a process during which two (or more) cell types interact and whose outcome is the 

elimination of the less fit cells. Previous work has shown that competition can arise through 

biochemical induction via intercellular contact or through different tolerances to cell density 

(Levayer and Moreno, 2013; Vincent et al., 2013). Furthermore, as competition typically takes place 

over several days, population shifts may result from changes in division rate as well as apoptosis 

rate. Thus, quantitatively characterising cell competition necessitates high-throughput automated 

analysis strategies to mine long duration time-lapses of cell interactions.  

Here we describe a new high-throughput analysis pipeline for characterising the single cell 

behaviours giving rise to population shifts during cell competition. We developed a low-cost time-

lapse acquisition system for imaging cells over long durations (up to 80 h) that we coupled with an 

image analysis pipeline that tracks cells, automatically annotates cell-cycle state, and generates 

lineage trees for each cell at each time point. Next, we designed tools to investigate how key 

parameters in competition, such as the probabilities of apoptosis and division, are affected by the 

local cellular density as well as the composition of the local cellular neighbourhood. To benchmark 

our analysis, we examined the interaction between MDCKWT cells and scribblekd cells, as previous 
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work has highlighted it as an example of mechanical competition resulting from differential 

sensitivity of the cell lines to cell density (Wagstaff et al., 2016). 

Previous work showed that scribblekd cells are more sensitive to cell density leading to apoptosis and 

suggested that compaction caused by the MDCKWT cells leads to their eventual elimination (Wagstaff 

et al., 2016).  We found that, when scribblekd cells are placed in the presence of MDCKWT cells, their 

local density increases three-fold compared to when they are in pure populations. Using our 

automated analysis pipeline, we quantitatively characterised the dependency of the probability of 

apoptosis and division as a function of density. Strikingly, interaction with MDCKWT cells causes the 

probability of apoptosis of scribblekd cells to increase sharply at higher densities. As the probability of 

division is approximately one order of magnitude larger than the probability of apoptosis, any effect 

on division will be the dominant effect on competition. For instance, at high density (~10-2 µm-2), the 

division rate for scribblekd cells is higher than the division rate of MDCKWT cells and higher than in 

pure populations of scribblekd cells. Despite this, the net growth of scribblekd cells at high density 

remains lower than MDCKWT because of a concomitant increase in the probability of apoptosis of 

scribblekd cells. Therefore, in the range of density explored in our experiments, there is no regime 

where scribblekd cells have higher net growth than MDCK WT cells. These competition-specific 

changes were intriguing because they did not fit in a framework where cell density is the main 

predictor of competition outcome and suggested that other factors may participate.  

We addressed this question by using our single-cell analysis approach to investigate the impact of 

the local neighbourhood make-up on population dynamics. For this, we generated neighbourhood 

plots, which display how the probability of apoptosis or division depends on the number and cell-

type of neighbours. Our neighbourhood plots suggest that apoptosis is increased in scribblekd cells 

possessing many neighbours, consistent with the notion that it increases at high density. Our metric 

for asymmetry revealed that apoptosis in scribblekd cells was more sensitive to neighbourhood than 

apoptosis in MDCKWT cells. However, the most striking neighbourhood dependence was revealed in 

neighbourhood plots of division in MDCKWT cells. Interestingly, we found that the probability of 

division is significantly higher for MDCKWT cells in a neighbourhood mostly populated by scribblekd 

cells. Thus, proliferation also seems to be strongly affected by local cellular neighbourhood and 

surprisingly, this is the case in the winner cell type. These data suggest that some inductive cell 

behaviour may be at play in this competition, something that is a well-known marker of cell 

competition in its traditional definition (Vincent et al., 2013). In addition, our neighbourhood 

analysis can be extended to include a temporal aspect, so that changes in competition at high or low 

cell density can be assessed, for example (Fig S7). Time-resolved neighbourhood plots may also 

enable comparison of competition before and after drug treatment.  

To explore the dependence of apoptosis and division on neighbour cell-type evident from our 

experimental data, we introduced a coupled rate equation model for the evolution of cell count, 

where rates of division and apoptosis depended on cell density. We found that the scenario that 

best simulated the experimental cell counts assumed an asymmetric dependency of the division rate 

of MDCKWT on the density of scribblekd cells. There is a clear difference when we compare this 

scenario to the symmetric interaction model, which underestimates the temporal evolution of 

MDCKWT cell count.  

Interestingly, our numerical simulation shows that scribblekd cells may outcompete MDCKWT cells in a 

region of high scribblekd density and low MDCKWT density (bottom right hand corner of figure 5F). 

Such regime is never observed in our experimental conditions and would require external 

manipulation to be applied. 
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Initial seeding density is a key parameter in the competition phenomenon described here. All of our 

experiments were performed with an initial density of 10-3 cells/µm2 and a 90:10 ratio of MDCKWT 

and scribblekd cells. Future experiments will be necessary to assess how the competition outcome 

depends on initial seeding density and seeding ratios of the competing lines. 

One intriguing question arising from our analysis is to understand if increased division of MDCKWT 

cells in majority scribblekd neighbourhoods is cause or consequence of increased apoptosis in 

scribblekd cells. Further experimental work will be needed to understand the molecular mechanisms 

underlying the sensitivity of mitotic behaviour to density and neighbourhood and provide a dynamic 

characterization of the molecular changes occurring at the interface between cell types.  

Our quantitative analysis of competition has suggested original hypotheses underlying the eventual 

elimination of loser cells from the tissue and emphasises the need to examine how the probability of 

division changes with density and neighbourhood. In addition to competition, our pipeline and 

characterisation tools are broadly applicable to any interaction between cell types leading to 

outcomes such as division, death, or differentiation in processes such as cancer, stem cell biology, 

and development. 
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Materials and Methods 
Cell culture. The MDCK cell lines used for this study (MDCKWT and pTR scribble shRNA, scribblekd) 

were generated as described in (Norman et al., 2012). All cell lines used in this publication have been 

tested for mycoplasma infection and were found to be negative (MycoAlert Plus Detection Kit, 

Lonza, LT07-710).  

MDCK cells were grown in DMEM (Thermo-Fisher) supplemented with 10% fetal bovine serum (FBS, 

Sigma-Aldrich), Hepes buffer (Sigma-Aldrich), and 1% Penicillin/Streptomycin in a humidified 

incubator at 37C with 5% CO2. The scribblekd cells were cultured as wild-type cells, except that we 

used tetracycline-free bovine serum (Clontech, 631106) to supplement the culture medium. For 

inducing expression of scribble shRNA, doxycycline (Sigma-Aldrich, D9891-1G) was added to the 

medium at a final concentration of 1 µg/ml.  

To enable visualisation of nucleic acid organisation during the cell cycle, we established cell lines 

stably expressing fluorescently tagged histone markers. Use of different fluorescent proteins 

enabled us to distinguish the two competing cell types and allowed for accurate segmentation. To 

do this, we transduced MDCKWT cells with lentiviruses encoding H2B-GFP (Addgene, plasmid #25999) 

and the scribblekd cells with lentiviruses encoding H2B-RFP (Addgene, plasmid #26001). After 

transduction, cells were sorted using fluorescence activated flow cytometry based on GFP or RFP 

fluorescence to yield populations with homogenous levels of fluorescence.  

Western-Blotting. We performed Western Blotting on MDCK H2b-GFP cells, non-induced MDCK 

scribblekd H2b-RFP (tet-) and induced MDCK scribblekd H2b-RFP cells. Induction of scribble shRNA 

was carried out as described in (Norman et al., 2012). Briefly, cells were induced with 1 µg/ml 

doxycycline for 70 hours before lysis. For preparation of protein extracts, cells were placed on ice 

and washed with cold PBS. After removal of PBS, the cells were lysed using RIPA lysis buffer (Santa 

Cruz Biotechnology) to which protease and phosphatase inhibitors were added at appropriate 

concentrations. The lysates were clarified by centrifugation at 8,000g for 4 min at 4C, diluted 1:1 

with ×2 Laemmli buffer (Sigma-Aldrich), denatured for 5 min at 95C and loaded onto NuPage 4–20% 

gradient gels (Bio-Rad). For immuno-blotting, we used Goat anti-Scribble primary antibody (1:500, 

Santa Cruz sc-11048) and Mouse anti-GAPDH (1:1000, Novus Biologicals NB300-221) as loading 

control. For secondary antibodies we used HRP coupled anti-Mouse (GE Healthcare, NXA931) and 

HRP coupled anti-Goat (Abcam, ab 97110). All HRP coupled secondary antibodies were used at 

1:10000 dilution. Protein bands were visualised using ECL Detection kit (GE Healthcare).  

Wide-field microscopy. A custom-built automated epifluorescence microscope was built inside a 

standard CO2 incubator (Thermo Scientific Heraeus BL20) that maintained the temperature at 37°C 

and in a 5% CO2 atmosphere. The microscope comprised a high performance motorized stage (Prior 

Proscan III, H117E2IX), with a motorised focus controller (Prior FB201 and PS3H122R) and a 9.1MP 

CCD camera (Point Grey GS3-U3-91S6M). Brightfield illumination was provided using a green LED 

(Thorlabs M520L3, 520nm).  Fluorescence illumination in two channels, GFP and mCherry/RFP, was 

via a blue (Thorlabs M470L3, 470nm) or yellow (Thorlabs M565L3, 565nm) LED respectively. These 

were combined using a dichroic beamsplitter (Semrock), and focussed onto the back focal plane of a 

20x air objective (Olympus 20x, 0.4NA) in an epifluorescence configuration. The camera and the LEDs 

were synchronised using TTL pulses from an external D/A converter (Data Translation DT9834). A 

custom built humidified chamber maintained the humidity within the sample chamber and was 

fitted with a thermocouple and humidity sensor to continuously monitor the environment. The 

microscope setup was controlled via custom written software in Python and C++. 
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Long-term live imaging and competition assay. Cell competition assays were carried out in 35 mm 

glass bottom Petri-dishes (WillCo). At the start of each experiment, cells were seeded at an initial 

density of 1x10-3 cells/µm2. MDCKWT cells expressing H2b-GFP were mixed with scribblekd H2b-RFP 

cells at a ratio of 90:10. In some experiments, the expression of scribble shRNA had been induced in 

scribblekd cells by exposure to doxycycline for 70 hours before seeding. In other experiments, the 

cells were maintained in tetracycline free medium to prevent scribble shRNA induction.  

Imaging was started 2–3 h after seeding. Imaging medium used during the assay was phenol red free 

DMEM (Thermo Fisher Scientific, 31053) supplemented with tetracycline-free bovine serum, Hepes, 

antibiotics and, for experiments involving induction, doxycycline at the dose indicated above. Multi-

location imaging was performed inside the incubator-scope for duration of 50-80 h. Bright field, GFP 

and RFP fluorescence images were acquired with a frequency of 1 frame every 4 minutes for each 

position.  

Image processing and cell tracking. After having acquired time-lapse movies of cells using the 

incubator microscope, we segment the images into foreground (cells) and background.  Several pre-

processing steps were performed to restore the image. Flat-field illumination correction and CCD 

“hot pixels” were removed.  

Following image restoration, segmentation of the fluorescence images was performed using a 

Gaussian Mixture Model (GMM). Briefly, the combined intensity histogram of three images taken 

from the beginning, middle and end of the movie were fitted to a GMM using the Expectation 

Maximisation (EM) algorithm to learn the appropriate parameters (Xu and Jordan, 1996). The 

intensity distribution was described as a weighted sum of n normal distributions: 

   |   ∑   

 

   

        
   

Where   represents the learned parameters for the n models:    is the normalised weight,    the 

mean intensity and    
  the variance for each normal distribution in the mixture model. We typically 

used n=3, and separate parameters were learnt for the GFP and RFP fluorescence movies. In general, 

when ordered by increasing   , the three normal distributions reflect the intensity distributions of 

background, interphase and mitotic/apoptotic cells. The output of the segmentation method is a 

binary classification of the image into background and cells. Dense regions of cells were separated 

using either a marker controlled watershed transform, a custom written object splitting algorithm 

based on calculating regions of concavity in convex objects (Wienert et al., 2012) or a hybrid of both 

methods.   

Next we use an additional merging step to recombine fragments arising from over-segmentation of 

nuclei with a weak-fluorescence signal. The algorithm attempts to find the best possible hypothesis 

for merging the objects, based on separation distance and image features. This works in several 

phases. First, a Delaunay graph is calculated to make putative clusters of fragments. Second, 

hypotheses for combinations of fragments constituting a single object are constructed. Each 

hypothesis has an equal prior probability. Third, successive Bayesian updates are performed using 

the separation distance and image feature information. Finally, the algorithm selects the merging 

hypotheses with the highest posterior probabilities. This algorithm has the advantage of not merging 

apoptotic fragments with non-apoptotic nuclei. 

Once the objects are segmented and split/merged, each nuclear marker in the original image is 

classified according to the position in the cell cycle.  We use the following classes for simplicity: 
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Interphase, Pro(meta)phase, Metaphase, Anaphase/Telophase and Apoptotic. We trained a deep 

convolutional neural network (CNN) to perform object classification. 

Our CNN architecture was broadly based on the LeNet-5 architecture (Lecun et al., 1998), and 

consists of several layers of 3x3 convolution, rectified linear units (ReLU) (Nair and Hinton, 2010) and 

2x2 max-pooling units (Scherer et al., 2010), which decrease spatial dimensionality and increase the 

number of filters. These layers are followed by several fully connected layers, which reduce the 

output to a one-dimensional tensor representing the five mutually exclusive cell-cycle classes.  A 

final Softmax layer (normalized exponential function) returns the output probabilities for each class. 

 In order to train the deep CNN, we generated three datasets: (i) training (ii) test (iii) validation. Each 

set has an identical number of training examples that are shuffled, class balanced, and augmented 

(rotations, noise, translations) to yield a large number of training examples. CNNs were 

implemented in Caffe (Jia et al., 2014) or TensorFlow (Abadi et al., 2016). Training was performed 

using a momentum optimizer with an exponentially decaying learning rate until convergence. We 

measured the accuracy of the CNN classification by calculating a confusion matrix that compares a 

ground truth based on human operator classification and the CNN prediction using the validation 

data set. Following the training steps, the CNN achieved an overall accuracy of >99% (Fig 1F).  

We also trained a non-linear Support Vector Machine (SVM) with a Radial Basis Function using image 

features such as fluorescence intensity, intensity gradient, HoG features (Dalal and Triggs, 2005), 

orientation, eccentricity and texture. Although the SVM performed well at cell-cycle state 

classification, it did not match the performance of the CNN, particularly with apoptosis detection, 

with a maximum accuracy of ~80% (Not shown). We utilised the CNN for all further data analysis.  

Next, classified and segmented objects are assembled into tracks. The tracking algorithm assembles 

reliable sections of track that do not contain cell division events (tracklets). Each new tracklet 

initiates a probabilistic model in the form of a Kalman filter (Kalman, 1960), and utilises this to 

predict future states (and error in states) of each of the objects in the field of view.  We assign new 

observations to the growing tracklets (linking) is performed by evaluating the posterior probability of 

each potential linkage from a Bayesian belief matrix for all possible linkages (Narayana and 

Haverkamp, 2007). The best linkages are those with the highest posterior probability. Despite the 

high instantaneous accuracy of the CNN classification, occasional errors occur.  We correct errors 

using a temporal model of the cell cycle implemented as a Hidden Markov Model (HMM) comprising 

interphase, the three states of mitosis, and a dead-end state of apoptosis. Any tracklets containing a 

metaphase to anaphase transition are split into separate tracks so that they can be labeled as 

division events in later steps of the algorithm.  

The tracklets are then assembled into lineage trees by using multiple hypothesis testing and integer 

programming (Al-Kofahi et al., 2006; Bise et al., 2011) to identify a globally optimal solution.  We 

build upon this previous work to incorporate hypotheses specific to apoptosis/extrusion and use 

additional geometric features and CNN classifications in the hypothesis generation.  The following 

hypotheses are generated: (i) true positive track (ii) false positive track (iii) initializing at the 

beginning of the movie or near the edge of the FOV, (iv) termination at the end of the movie or near 

the edge of the FOV (v) a merge between two tracklets (vi) a division event or (vii) an apoptotic 

event. The likelihood of each hypothesis is calculated for some or all of the tracklets based on 

heuristics. The global solution identifies a sequence of high likelihood hypotheses that accounts for 

all observations. Having identified the global solution, the fates of each cell are updated, tracks are 

merged and lineage trees are generated using a Breadth First Search (BFS) to traverse the trees. 
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At the end of the image processing and tracking steps, the xyt-position, cell-cycle state, and lineage 

of each cell in the field of view has been determined. 

All code was implemented in Python and C/C++ using CVXOPT, GLPK, Numpy, Scipy, TensorFlow and 

Caffe libraries. All image processing was performed on a Dell Precision workstation running Ubuntu 

16.04LTS with 32Gb RAM and a NVIDIA GTX1080 GPU. Computational time is of the order of minutes 

to hours depending on the complexity of the data. 

Post processing analysis. The output of the tracking software is a table containing a time-resolved 

list of unique cell IDs; for each cell ID, the software saves the centroid coordinates, the assigned cell 

cycle state and lineage information (mother ID).  

To investigate the role of local neighbourhood in cell competition, we implemented a 

neighbourhood-based distance algorithm to retrieve the cellular interaction network (Fig 3A). A 

custom written MATLAB (MathWorks) script was created to calculate the Voronoi diagram (Barber 

et al., 1996) using the known localization of cell centroids in each frame. The distance between 

Voronoi cells was computed (Fig S2) and compared to a threshold value (       ). We calculated the 

mean value of inter-nuclear separation over time, determining         to be 30 µm for MDCK WT and 

60 µm for induced MDCK scribblekd. Among the neighbouring Voronoi cells centred at a distance 

below        , we defined true neighbours as those cells sharing one common vertex with the target 

cell. This definition is important to detect and remove neighbours situated too far from the cell of 

interest to truly interact with it. Thus, for each cell ID, we could compute the number of neighbours 

and the fraction of neighbours belonging to each cell lineage. This allowed investigation of the 

dependency of proliferation and apoptosis on local neighbourhood (Fig 3B-C). 

To investigate how apoptosis and division depended on local cell density, we implemented a 

custom-written MATLAB script to computing a local cellular density measurement based on the 

Delaunay triangulation of nuclei centres of mass in each image frame (Fig 3A). We defined the local 

cellular density as the sum of inverse areas of the triangles that share a common vertex with the cell 

of interest, as given by equation: 

 

  ∑
 

    

 

   

 

where A(i) is the area of the triangle i sharing a vertex with the target cell. Local cell density ( ) was 

computed for each cell ID and averaged among cells of the same lineage at each time point. Such 

average was then plotted as a function of time for each cell type separately in mixed populations. 

We discretized the local densities for each cell ID at each time frame into twenty bins; the middle bin 

corresponds to the mean local density of all cells and the first and last bin correspond to the 

minimum and maximum local density measured across the population. The probability of cells 

undergoing mitosis/apoptosis per cell per frame was then calculated for each bin as: 

            
∑            

∑   
, 

with            the number of observed events (division or apoptosis) in each bin and   the total 

number of events. The net growth per cell per frame is then defined as: 
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Error bars correspond to the inverse of the number of observations for each data point. For 
generating the neighbourhood diagrams shown in Fig 4, we implemented a custom-written MATLAB 
script to compute the interaction network for each cell at each time point, based on a Voronoi 
tessellation. For each cell ID, we compute the total number of neighbours and the number belonging 
to each cell lineage, MDCKWT or scribbleKD. We categorise each division and apoptosis event as a 
function of the number of neighbors of each type. We color-code the probability of division, 
apoptosis and net-growth and display these parameters as function of neighborhood by placing 
them in a grid, where the x-axis and y-axis respectively represents the number of scribblekd and 
MDCKWT neighbours. The measurement within each grid position is computed from Nobservations >500 
cells. We annotated with an asterisk grid positions populated by more than 500 observations, but for 
which no event (e.g. a division or an apoptosis) of interest was detected.  In these positions, we 
provide an upper bound (1/Nobservations) for the probability of the event. We analyzed the symmetry of 
the neighborhood plots by calculating an asymmetry parameter s: 

  |∑  ∑ | 

where U and L are the upper and lower triangular matrices of the neighbourhood plot. 

Numerical simulations. The experimental data for the density dependence of the probability of 

division and apoptosis were fitted with analytic functions. These functions correspond to the density 

dependent division and apoptotic rate for both respective cell types used in the model 

(    
  ,     

  ,    
  ,     

  ). The mathematical form of the fitting functions were chosen to minimise the 

number of parameters (Fig 5A, S5A-D), while providing an accurate fit that converge at extremities. 

For density dependent apoptotic rate of MDCKWT and density dependent apoptotic rate of scribbleKD, 

logistic functions satisfied these criteria. For density dependent division rate of wild-type and 

scribbleKD, Gaussian functions best described the experimental trends (S5 A-B). We numerically 

solved the four coupled rate equations (Eq. 1-4) for the density of MDCKWT, density of scribbleKD, cell 

count of MDCKWT and the cell count of scribbleKD using Mathematica (Wolfram Research Inc.), and 

plotted the normalised cell counts in Fig 5c. We studied two interacting limits of the rate equation 

models, one describing a symmetric interaction of local densities of MDCKWT and scribbleKD (a=0) and 

the other describing asymmetric interaction (a>0 in equations 1-4). We found that the asymmetric 

model best replicated the experimental findings.  For figure 5d-e, the heat maps of net growth 

against density of MDCKWT and density of scribbleKD were then plotted by using the built in Density 

Plot function in Mathematica, where the net growth of a cell type is calculated as the density 

dependent division rate minus the density dependent apoptotic rate. The relative fitness is 

calculated as the net growth of MDCKWT minus the net growth of scribbleKD. 

Software availability. MATLAB scripts for analysis of cell trajectories are available at 

https://github.com/quantumjot/CellTracking.  The Bayesian tracking library is available at 

https://github.com/quantumjot/BayesianTracker. 

  

https://github.com/quantumjot/
https://github.com/quantumjot/BayesianTracker
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Figure 1: High-throughput image analysis pipeline for long-term analysis of single cell dynamics. A Representative image 
containing H2b-GFP MDCK

WT 
(green) and H2b-RFP scribble

kd
 (magenta) cells mixed in an initial 90:10 ratio. The image 

corresponds to one field of view (1600 x 1200 pixels, 530µm x 400µm) acquired by wide-field epifluorescence using 20x 
magnification. The region of interest in the white rectangle is shown in B. scale bar = 50µm. B Time series from the 
competition assay in the region boxed in A. The white arrow indicates a scribble

kd
 cell surrounded by MDCK

WT
 neighbours 

that undergoes apoptosis. The acquisition of both transmission and fluorescence images enables detection of the apoptotic 
fragmentation of the loser’s nucleus happening prior to extrusion of the cell body from the monolayer. Timings are 
indicated in the top left corner in hours and minutes. C Segmentation of the final image in B. MDCK

WT 
cells are outlined in 

green and scribble
kd

 cells in magenta. D Flow chart of the computational pipeline implemented for the study of 
competition dynamics. The strategy is based on segmentation of individual cells (cell detector), automatic annotation of 
morphological classes related to cell cycle state and apoptosis (track compiler), and post-processing analysis of single-cell 
tracking data. E Convolutional Neural Network architecture (CNN) for object classification. The CNN inputs are single-object 
patches, both in the transmission (BF) and fluorescence channels (Left). The CNN stacks together four types of layers: 
convolutional/ReLU/max-pooling and fully connected layers (middle). The CNN transforms the input image layer by layer 
from the original pixel values to the final class scores with the highest score reflecting the most probable classification of 
the image data (right). F Confusion matrix showing the matching of human annotations versus the annotation of the CNN 
system. G Hidden Markov model (HMM) used for modelling progression through the cell cycle. The figure depicts the 
permitted directional transitions between five classes (interphase, prometaphase, metaphase, anaphase and apoptosis). H 
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Automated annotation of cell trajectories over time. A random selection of 100 trajectories (rows) is aligned and shown 
over a 40 minute period. Colours refer to state labels as defined in F. Left: Tracks following division start with anaphase 
before proceeding to interphase. Middle: Tracks terminating in a division are preceded by interphase before going through 
prometaphase and metaphase. Right: Tracks terminating with apoptosis are often preceded by interphase, but can arise 
through failed division events (highlighted with arrows).  
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Figure 2: Cell lineage, cell cycle duration and apoptosis detection during cell competition. A 

Representative cell tracks assembled into lineages trees as result of the global optimization. The 

original progenitor cell is at the bottom of the diagram, time is on the z axis and the position of all 

progeny is plotted in the x-y plane. Tracks in which the metaphase to anaphase transition is present 

are split, and labelled as division events. In our classification, the metaphase state corresponds to a 

branching point, and new tracks start with the anaphase state. Each cell is assigned a unique cell ID 

(not shown in the figure). B Representative lineage tree for the cells shown in A. Cell cycle time can 

be measured for each individual cell as the time between consecutive division events on the lineage 

tree. C Representative cell tracks assembled in to a lineage tree, showing a single apoptotic 

termination event, following multiple observations of the apoptotic state. The apoptotic states are 

labelled in red. D The lineage tree of the cells shown in C. E Histogram of cell-cycle time measured 

for a population of MDCKWT showing a mean value of 18± 3.2 h. The distribution represents a 

population of at least 250 cells in the same field of view followed for 80h. A total of 1326 division 

events were observed. F Proliferation profiles of MDCKWT (green) and scribblekd (magenta) during a 

competition. Data are pooled from three biological replicates imaging 4 fields of view for each 

replicate. The solid line indicates the mean of the experiments and the shaded area indicates the 

standard deviation. The inset shows the evolution of cell count in the scribblekd cells on a smaller 

scale. G Quantification of apoptotic events for MDCKWT (green) and scribblekd (magenta) during 

competition. The number of apoptoses is detected and averaged across the 4 areas imaged during 

one competition assay. 
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Figure 3: Probability of apoptosis and division are sensitive to local density in competitive conditions. A Definition of 
local density. The centre of the nucleus of each cell is represented by a filled circle (green: MDCK

WT  
and magenta: 

scribble
kd

). Nuclei centres are used to construct a Delaunay triangulation (dashed lines) and a Voronoi tesselation (solid 
lines). Local density was defined as the sum of inverse areas of the triangles sharing a common vertex at the nucleus of the 
cell of interest. The area taken into account in this example is shown in grey. B-C The local cellular density was computed 
for each cell ID and averaged among cells of the same lineage at each time point. The solid line indicates the mean of the 
experiments and the shaded area indicates the standard deviation. Data are pooled from three biological replicates. B 
Temporal evolution of local density for pure populations of MDCK

WT
 (green), non-induced scribble

kd 
(tet-, black), and 

induced scribble
kd 

(tet+, magenta). C Temporal evolution of local density for MDCK
WT 

(green) and scribble
kd

 (magenta) 

seeded at a 90:10 ratio during a competition assay. D-E-F Probability of division (    ), apoptosis (    ), and net growth 

(         ) per cell per frame as function of local density computed for induced scribble
kd 

(tet+, magenta) and MDCK
WT 

 
pure populations. G-H-I Probability of division, apoptosis, and net growth per cell per frame for MDCK

WT 
and induced 
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scribble
kd 

during competition. Data are pooled from 8 fields of view from two biological replicates. D-I Data points are 
indicated by solid circles. Each data point is computed from N>500 observations. Trend lines computed using smoothing 
splines are plotted as dashed lines. In panels D-F, the mean local density used to define the bins is 2.6x10

-3
 µm

-2
 for 

scribble
kd

 cells and 6x10
-3

 µm
-2 for MDCK

WT
. In panels G-I, the mean local density value is 6x10

-3
 µm

-2 for both cell types. 
For each data point, whiskers indicate the inverse of the number of observations as an estimate of accuracy in determining 
the probability. 
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Figure 4: Probability of apoptosis, division, and net growth are sensitive to the composition of local neighbourhood. A 
Definition of local neighbourhood.  The centre of the nucleus of each cell is represented by a filled circle (green: MDCK

WT
 

and magenta: scribble
kd

). Nuclei centres are used to construct a Voronoi tesselation (solid lines). To determine the 
composition of local neighbourhood, we determine how many intercellular junctions the cell of interest (grey) has in 
common with the MDCK

WT
 cells (junctions shown in green) or scribble

kd
 cells (junction shown in magenta). The position of 

the cell of interest depicted here is shown by the grid position circled with the white frame in B in the neighbourhood plot 
for MDCK

WT
 cells. B-C-D Neighbourhood plots showing the colour coded probability per cell per frame of Division, 
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Apoptosis and Net-growth for MDCK
WT

 (top) and scribble
kd

 (bottom) during competition. The number of scribble
kd

 
neighbours is shown on the x-axis and the number of MDCK

WT
 cells is shown on the y-axis. The diagonal (black dashed line) 

indicates grid positions with equal numbers of MDCK
WT

 and scribble
kd

 neighbours. Numbers in each grid position indicate 
the number of detected events (division/apoptosis). The total number of observations for each grid position is shown in Fig 
S4. Measurements for each grid position are typically computed from observations of >500 cells. The probability for each 
grid position is defined as p=Nevents/Nobservations. Grid positions for which many observations were made but no event 
detected are marked by an asterisk and coloured as 1/Nobservations to provide an upper-bound for the probability in that 
position. Data are pooled from 12 time-lapse movies from three biological replicates. E Definition of s as parameter used 
for calculating the symmetry of neighbourhood plots around the diagonal. For each neighborhood plot, s is computed as 
difference between the sum of the lower quadrant and the sum of the upper quadrant for grid positions ranging from [0,0] 
to [4,4] inclusive. F Symmetry calculation performed on checkerboard plot shown in B-D. The symmetry defines whether 
the behaviour is cell-autonomous (low s values) or dependent on the cell-type of neighbours (high s values). 
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Figure 5: A density dependent rate equation model for cell competition. A Probability (per unit time per cell) of apoptosis 
(dashed lines) and probability of division (solid lines) for MDCK

WT
 (green lines) and scribble

kd
 (magenta lines) cells 

determine the rates fapo and fdiv for our model. These functions were fitted to the experimental data in Fig 3G-I, S5A-D. B 
Temporal evolution of cell count predicted by the symmetric interaction model (a=0.0) initialised with the mean 
experimental cell count at t=0 for MDCK

WT
 (solid blue line) and scribble

kd
 (solid red line). The model curves are overlaid 

with the experimental cell count from Fig 2D for MDCK
WT

 (green) and scribble
kd

 cells (magenta).  C Temporal evolution of 
cell count predicted by the asymmetric interaction model (a=2.64) initialised with the mean experimental cell count at t=0 
for MDCK

WT
 (solid blue line) and scribble

kd
 (solid red line). D-E Heat maps of net growth as a function of local density of 

MDCK
WT

 cells on the y-axis and local density of scribble
kd

 cells on the x-axis for the asymmetric interaction model for 
MDCK

WT
 cells (a=2.64, D) and scribble

kd
 cells (a=2.64, E). Warm colours indicate high net growths while cold colours 

indicate low net growths. Dashed line indicates the contour of zero net growth, or density homeostasis. F Relative fitness 
landscape for the asymmetric density dependent model (a=2.64), defined as the net growth of the MDCK

WT
 cells minus the 

net growth of the scribble
kd

 cells. MDCK
WT

 cells have a higher fitness than scribble
kd 

cells, except within the region 
delineated by the dashed line.  
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Figure	  S1	  Proliferation	  and	  apoptosis	  quantification	  in	  non-‐competitive	  conditions.	  A	  Proliferation	  profiles	  of	  MDCK	  WT	  (green)	  
and	  non-‐induced	  scribblekd	   (magenta)	  mixed	   in	  90:10	  relative	  ratios.	  Data	  are	  normalized	  to	   the	   initial	  cell	   count	  and	  pooled	  
from	  two	  biological	  replicates	  imaging	  4	  fields	  of	  view	  for	  each	  replicate.	  The	  solid	  line	  indicates	  the	  mean	  of	  the	  experiments	  
and	   the	   shaded	   area	   indicates	   the	   standard	   deviation.	  B	   Quantification	   of	   apoptotic	   events	   for	  MDCK	   WT	   (green)	   and	   non-‐
induced	  scribblekd	  (magenta)	  mixed	  in	  90:10	  relative	  ratios.	  The	  number	  of	  apoptoses	  is	  detected	  and	  averaged	  across	  the	  four	  
areas	  imaged	  during	  one	  control	  experiment.	  The	  number	  of	  apoptoses	  for	  MDCK	  WT	  and	  non-‐induced	  scribblekd	  cells	  evolved	  in	  
proportion	   to	   the	   initial	   seeding	   ratio.	   C	  Quantification	   of	   growth	   of	   pure	   non-‐induced	   scribblekd	   (tet-‐,	   green)	   and	   induced	  
scribblekd	   (tet+,	   magenta)	   populations.	   Plots	   are	   normalised	   to	   the	   initial	   cell	   count	   and	   are	   pooled	   from	   three	   biological	  
replicates,	  imaging	  three	  fields	  of	  view	  each.	  The	  solid	  line	  indicates	  the	  mean	  of	  the	  experiments	  and	  the	  shaded	  area	  indicates	  
the	   standard	   deviation.	  D	  Proliferation	   profiles	   of	   non-‐induced	   scribblekd	   (tet-‐,	  magenta)	   and	  MDCK	  WT	   (green)	   cells	   in	   pure	  
populations.	  The	   three	   lines	   show	   the	  cell	   count	   in	  each	   field	  of	   view	   imaged	  during	  one	  control	  experiment.	  E	   Immunoblot	  
showing	  scribble	  and	  GAPDH	  expression	  for	  induced	  scribblekd	  cells	  (tet+),	  non-‐induced	  scribblekd	  cells	  (tet-‐),	  and	  MDCK	  WT	  cells	  
expressing	   H2b-‐GFP.	   Induction	   of	   scribble	   shRNA	   expression	   results	   in	   a	   significant	   decrease	   in	   scribble	   expression	   levels.	  



	  

Figure	  S2:	  Plot	  of	  inter-‐nuclear	  separation	  over	  time.	  Two-‐dimensional	  histograms	  of	  the	  time	  evolution	  of	  edge	  lengths	  in	  the	  
Delaunay	  graph	  constructed	  from	  cell	  centroids.	  The	  mean	  value	  of	  edges	  lengths	  over	  time	  is	  displayed	  as	  solid	  white	  line.	  The	  
time	  evolution	   is	   used	   to	   calculate	   the	   threshold	   value	   (D!"#$%")	   for	   interacting	   cells	   used	   in	  neighbourhood	  estimation.	  We	  
determined	  D!"#$%"	   to	  be	  A	   	   ~30	  µm	   for	  non-‐induced	  MDCK	   scribblekd	   (tet-‐),	  B	   	   ~60	  µm	   for	  MDCK	   scribblekd	   (tet+)	   in	  which	  
knock-‐down	  of	   scribble	  had	  been	   induced,	  and	  C	   	  ~30	  µm	  for	  MDCKWT.	  These	   threshold	  values	  correspond	  to	   the	   respective	  
average	  cell	  diameter	  in	  pre-‐confluency	  conditions,	  which	  describes	  the	  maximum	  distance	  between	  two	  cells	  in	  contact.	  Any	  
distance	   larger	   than	   this	   would	   imply	   the	   presence	   of	   free	   space	   between	   cells,	   signifying	   they	   cannot	   be	   classified	   as	  
neighbours.	  The	  plots	  in	  Figure	  S2	  show	  that	  the	  average	  inter-‐nuclear	  distance	  is	  larger	  the	  threshold	  values	  at	  low	  densities	  
due	  to	  the	  presence	  of	  free-‐space	  between	  some	  of	  the	  cells	  in	  the	  triangulation.	  This	  distance	  shortens	  over	  time	  below	  the	  
threshold,	  as	  cell	  numbers	  increases	  and	  the	  cells	  reach	  confluency.	   	  



	  

Figure	   S3:	   Example	  of	  neighbourhood	  estimation	  before	   cells	  have	   reached	   confluence.	   	  A	  True	  neighbours	   are	   those	   that	  
share	  a	  common	  edge	  with	  the	  Voronoi	  polygon	  of	  the	  target	  cell	  (centre,	  grey	  ellipse	  MDCKWT),	  and	  whose	  separation	  distance	  
from	   the	   target	   cell	   is	  below	   the	  experimentally	  determined	  D!"#$%"	   value	   (Fig	   S2).	   In	   the	  diagram,	   the	  dotted	   lines	   link	   the	  
centroid	  of	  neighbours.	  B	  In	  this	  case	  the	  target	  cell	  has	  three	  neighbours,	  two	  MDCKWT	  (green)	  and	  one	  scribbleKD	  (magenta).	  
In	  this	  diagram,	  neighbours	  with	  separation	  distances	  above	  Dthresh	  have	  been	  removed.	  	  

	   	  



	  

Figure	  S4:	  Number	  of	  observations	  in	  each	  position	  of	  neighbourhood	  plots.	   	  (A,B)	  Neighbourhood	  plots	  showing	  the	  colour	  
coded	  number	  of	  observations	  (cell	  per	  frame)	  for	  MDCKWT	  (left	  panels)	  and	  scribblekd	   (right	  panels)	  during	  competition.	  The	  
number	  of	   scribblekd	  neighbours	   is	   shown	  on	   the	   x-‐axis	   and	   the	  number	  of	  MDCKWT	  neighbours	   is	   shown	  on	   the	   y-‐axis.	   The	  
diagonal	  (black	  dashed	  line)	  indicates	  grid	  positions	  with	  equal	  numbers	  of	  MDCKWT	  and	  scribblekd	  neighbours.	  Numbers	  in	  each	  
grid	  position	   indicate	  the	  number	  of	  observations	  for	  MDCKWT	  and	  MDCK	  scribblekd	  cells	  with	  that	  particular	  neighbourhood.	  
Data	  are	  pooled	  from	  12	  time-‐lapse	  movies	  from	  three	  biological	  replicates.	  	  



	  

	  

Figure	   S5:	   Neighbourhood	   plots	   for	   apoptosis,	   division,	   and	   net	   growth	   probabilities	   in	   non-‐competitive	   conditions.	  
Neighbourhood	  plots	  showing	  the	  colour	  coded	  probability	  per	  cell	  per	  frame	  of	  division,	  apoptosis	  and	  net-‐growth	  for	  MDCKWT	  
(A,B,C)	  and	  non-‐induced	  scribblekd	  (D,E,F)	  mixed	  in	  90:10	  relative	  ratios.	  Data	  are	  pooled	  from	  7	  time-‐lapse	  movies	  from	  two	  
biological	  replicates.	  Colour	  scales	  are	  the	  same	  as	  used	  in	  Fig	  4.	  	  

	   	  



	  

Figure	  S6:	  Analytical	  functions	  for	  fitting	  the	  density	  dependence	  of	  apoptosis	  and	  cell	  division.	  (A,B)	  Probability	  of	  division	  
for	  MDCKWT	  and	  scribblekd	  as	  a	  function	  of	  local	  density	  fitted	  with	  Gaussian	  functions	  (dashed	  line)	  used	  in	  the	  rate	  equation	  
model	  with	  parameters	  relating	  to	  equation	  (1)	  in	  F.	  (C,D)	  	  Probability	  of	  apoptosis	  for	  MDCKWT	  	  and	  scribblekd	  as	  a	  function	  of	  
local	  density	  fitted	  with	  Logistic	  functions	  (dashed	  line)	  used	  in	  model	  with	  parameters	  relating	  to	  equation	  (2)	  in	  F.	  E	  Temporal	  
evolution	  of	   cell	   count	  predicted	  by	   the	  uncoupled	  model	   (a=1)	   initialised	  with	   the	  mean	  experimental	   cell	   count	   at	   t=0	   for	  
MDCKWT	  	  (solid	  green	  line)	  and	  scribblekd	  (solid	  magenta	  line),	  overlaid	  with	  experimental	  cell	  count	  from	  for	  MDCKWT	  (green)	  
and	  scribblekd	  cells	  (magenta).	  F	  Equations	  used	  for	  fitting	  the	  experimental	  data	  relating	  probability	  of	  apoptosis	  and	  division	  
to	  local	  density.	  Equation	  1	  is	  used	  to	  fit	  graphs	  A,	  and	  B.	  Equation	  2	  is	  used	  to	  fit	  graphs	  C	  and	  D.	  On	  (A-‐D),	  the	  values	  of	  the	  
parameters	  leading	  to	  the	  best	  fit	  are	  indicated	  on	  the	  graph.	  	  



	  

	  

Figure	  S7:	  Time-‐resolved	  neighbourhood	  analysis	  Neighbourhood	  plots	  showing	  probability	  of	  division	  for	  MDCKWT	  (A,	  B)	  and	  
Scribblekd	   (D,E).	   Data	  were	   split	   between	   low	   (t<40	   h,	  A,D)	   and	   high	   (t>40	   h,	  B,E)	   density;	   the	   resulting	   plots	   are	   displayed	  
alongside	  with	  neighbourhood	  plots	  taking	  into	  account	  the	  whole	  duration	  of	  the	  experiment	  as	  shown	  in	  the	  original	  version	  
of	   the	  manuscript	   (C,F).	   (A-‐F)	   The	   diagonal	   (black	   dashed	   line)	   indicates	   grid	   positions	  with	   equal	   numbers	   of	  MDCKWT	   and	  
scribblekd	  neighbours.	  (C,F)	  The	  white	  dashed	  line	  separates	  grid	  positions	  representative	  of	  the	  low	  density	  (lower	  quadrant)	  
from	  those	  representative	  of	  high	  density	  (upper	  quadrant).	  

	   	  



	  

Figure	  S8:	  Validation	  of	  neighbourhood	  analysis	  using	  the	  Voronoi	  method.	  We	  assessed	  the	  accuracy	  of	  our	  neighbourhood	  
and	  density	  analysis	  by	  comparing	  the	  number	  of	  neighbours	  determined	  from	  the	  Voronoi	  diagram	  (number	  of	  Voronoi	  edges)	  
to	  the	  number	  of	  neighbours	  determined	  manually.	   In	  order	  to	  do	  so,	  we	  fixed	  and	  imaged	  MDCK	  cells	  stably	  expressing	  the	  
H2B	  nuclear	  marker	  together	  with	  an	  E-‐cadherin	  marker,	  which	  localizes	  at	  adherent	  junctions.	  We	  considered	  both	  high	  and	  
low	  density.	  High	  density	   (D,E)	  and	   low	  density	   (A,B)	   images	  of	  MDCK	  stably	  expressing	  H2b-‐RFP	   (magenta,	  A-‐B,	  D-‐E)	  and	  E-‐
cadherin	  GFP	  (grey,	  C,F).	  	  Scale	  bar	  =	  25µm.	  We	  applied	  the	  Voronoi	  tessellation	  and	  Delaunay	  triangulation	  algorithms	  to	  the	  
nuclei	   images	  (A-‐B,	  D-‐E).	  The	  Voronoi	  diagram	  and	  the	  Delaunay	  triangulation	  are	  highlighted	   in	  yellow.	  Finally,	  we	  manually	  
scored	  the	  number	  of	  E-‐cadherin	  delimited	  edges	  for	  each	  cell	  as	  a	  ground	  truth.	  Next,	  we	  determined	  the	  correlation	  between	  
the	  edges	  detected	  via	   the	  Voronoi	  method	  and	  manually,	   at	  high	  and	   low	  densities.	  We	  plotted	   the	  number	  of	  neighbours	  
determined	  using	  the	  Voronoi	  method	  on	  the	  y-‐axis	  as	  a	  function	  of	  the	  number	  of	  manually	  determined	  number	  of	  neighbours	  
on	   the	   x-‐axis.	  We	   calculated	   the	   Pearson	   coefficient	   (r)	   and	   obtained	   r=0.832	   for	   high	   density	   and	   r=0.951	   for	   low	   density,	  
indicating	  that	  the	  Voronoi	  method	  provides	  a	  reliable	  estimate	  of	  the	  number	  of	  neighbours.	  
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Several software packages have been developed for the purposes of single-cell
tracking. These include tTy [1], CellProfiler [2], CellCognition [3] and LEVER
[4] amongst others (reviewed in [1]). In general, they provide manual or semi-
automated image segmentation and tracking over several division cycles, and have
been, in most cases, tailored to the study of proliferation and differentiation pro-
cesses.

Here we have additional experimental considerations in studying cell competi-
tion, in that we must accurately identify not only division events but also apoptotic
events. Not only does this require robust cell tracking but also accurate identi-
fication of cell-cycle state. In our experience, previous software packages tend
to over-estimate or incorrectly assign cell division events to account for apopto-
sis events, or prove to be too laborious for annotating the vast amount of data
generated during imaging. Therefore, we developed our own software that takes
advantage of recent advances in machine learning (in particular deep learning) and
optimized our tracking algorithms to account for cell death as well as proliferation
events. In this way we have created a computational strategy for characterising
apoptosis, cell division, and net growth as a function of local cell neighbourhood.

To segment, track and classify cell-cycle state and apoptosis automatically, we
implemented a novel multi-layered computational pipeline that first detects indi-
vidual cells and then classifies their cell-cycle stage based on the combination of
cell and histone morphology (Fig 1C-D).

Image segmentation. In the Cell Detector step (Fig 1D), fluorescence im-
ages are segmented into foreground (cells) and background. After having acquired
time-lapse movies of cells using the incubator microscope, we restore the images by
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performing flat-field illumination correction and removing CCD hot pixels. Follow-
ing image restoration, segmentation of the fluorescence images was performed using
a Gaussian Mixture Model (GMM). Briefly, the combined intensity histogram of
three images taken from the beginning, middle and end of the movie were fitted
to a GMM using the Expectation Maximisation (EM) algorithm to learn the ap-
propriate parameters [5,6]. The intensity distribution was described as a weighted
sum of n normal distributions:

P (x | θ) =
n∑

k=1

λkNk(µk, σ
2
k) (1)

where θ represents the learned parameters for the n models: λk is the nor-
malised weight, µk the mean intensity and σ2

k the variance for each normal dis-
tribution in the mixture model. We typically used n=3, and separate parameters
were learnt for the GFP and RFP fluorescence movies. In general, when ordered
by increasing µk, the three normal distributions reflect the intensity distributions
of background, interphase and mitotic/apoptotic cells. The output of the segmen-
tation method is a binary classification of the image into background and cells.
Dense regions of cells were separated using either a marker controlled watershed
transform, a custom written object splitting algorithm based on calculating regions
of concavity in convex objects [7] or a hybrid of both methods.

Next we use an additional merging step to recombine fragments arising from
over-segmentation of nuclei with a weak-fluorescence signal. We developed an al-
gorithm that attempts to find the best possible hypothesis for merging the objects,
based on separation distance and image features. This works in several phases.
First, a Delaunay graph is calculated to make putative clusters of fragments. Sec-
ond, hypotheses for combinations of fragments constituting a single object are
constructed. Each hypothesis has an equal prior probability. Third, successive
Bayesian updates are performed using the separation distance and image feature
information. Finally, the algorithm selects the merging hypotheses with the highest
posterior probabilities. This algorithm has the advantage of not merging apoptotic
fragments with non-apoptotic nuclei.

Object classification using deep neural networks. In the Track compiler
step, each nucleus is assigned a type (scribblekd or MDCKWT ) according to its
fluorescence emission and is classified into one of five different classes reflecting
the cell cycle or apoptotic-state. The five states are: interphase, pro(meta)phase,
metaphase, anaphase/telophase or apoptosis. Automatically assigning class la-
bels to images (image classification) is a task well suited to machine learning ap-
proaches. In recent years, a deep learning approach known as convolutional neural
networks (CNN) have demonstrated great utility with significantly improved ac-
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curacy over conventional approaches.
We implemented a deep CNN to automatically perform the cell-cycle state

assignment of each detected cell (Fig 1E). A fully trained CNN takes a multi-
dimensional image as input (such as the transmission and fluorescence images in
our case, Fig 1E, left) and transforms it through a sequence of operations (Fig
1E, middle) that yields an output label. Our CNN architecture (Fig 1E) was
broadly based on the LeNet-5 architecture [8], and consists of several layers of
3x3 convolution, rectified linear units (ReLU) [9] and 2x2 max-pooling units [10],
which decrease spatial dimensionality and increase the number of filters. In this
architecture, early layers of the network are sensitive to small image features (a
small receptive field), and later layers to gross morphology in the image (larger
receptive field). The combined effect is that the network utilises information from
multiple spatial scales. Next, several fully connected layers reduce the output of
the internal layers into a mapping to the output label - in our case, the five cell-
cycle classes. The final output represents the probability of the image belonging
to each of the five classes that we define (Fig 1E, right). The classification label
is simply the label with the highest probability.

Training the neural network. The deep CNN needs to be trained to perform
this task. We generated a ground truth dataset for training, by hand annotating
thousands of regions of interest (ROI), using both transmission (BF) and fluores-
cence channels (Fig 1E, left). Each ROI, centered on the nucleus of the cell, was
assigned one of five cell-cycle states. From this training set, we generated three
subsets for: (i) training, (ii) testing, and (iii) validation. Each set had an identical
number of training examples, with their order shuffled and the class numbers bal-
anced such that all classes had an identical number of occurrences. Care was taken
to annotate images that represented the diversity of the dataset and were tempo-
rally non-sequential to prevent over-training. To increase the number of training
examples, we augmented the examples by introducing random transformations,
rotations and noise, yielding 15,535 training examples per class. We used dropout
(50% while training) to prevent over-fitting. CNNs were implemented in Caffe [11]
or TensorFlow [12]. Training was performed using a momentum optimizer with
an exponentially decaying learning rate until convergence.

Having trained the deep CNN, we determined the performance by calculating
the normalized accuracy for each class, presented as a confusion matrix. Here we
confront the prediction of the CNN to ground truth using the validation dataset
(Fig 1F). Correct predictions are located on the diagonal of the matrix and,
following completion of training, the CNN possessed an accuracy > 99% for all
states based on instantaneous image features. Such performance is remarkable
particularly for the detection of the apoptotic state, which possesses a far broader
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distribution of image features than other states.
We also trained a classifier based on a non-linear Support Vector Machine

(SVM) [13] with a Radial Basis Function (RBF). We used image features such as
fluorescence intensity, intensity gradient, Histogram of Oriented Gradients (HoG)
features [14], orientation, eccentricity and texture. Although the SVM performed
well at cell-cycle state classification, it did not match the performance of the CNN,
particularly with apoptosis detection, with a maximum accuracy of ∼ 80% (Not
shown). We utilised the CNN for all further data analysis.

Cell tracking. Next, classified and segmented objects are assembled into
tracks. The tracking algorithm assembles reliable sections of track that do not
contain cell division events (tracklets). Each new tracklet initiates a probabilis-
tic model in the form of a Kalman filter [15], and utilises this to predict future
states (and error in states) of each of the objects in the field of view. We assign
new observations to the growing tracklets (linking) is performed by evaluating the
posterior probability of each potential linkage from a Bayesian belief matrix for
all possible linkages [16]. The best linkages are those with the highest posterior
probability. Despite the high instantaneous accuracy of the CNN classification,
occasional errors occur. We correct errors using a temporal model of the cell cycle
implemented as a Hidden Markov Model (HMM) [3] comprising interphase, the
three states of mitosis, and a dead-end state of apoptosis (Fig 1G). Any tracklets
containing a metaphase to anaphase transition are split into separate tracks so
that they can be labeled as division events in later steps of the algorithm.

The tracklets are then assembled into lineage trees by using multiple hypothe-
sis testing and integer programming [17,18] to identify a globally optimal solution.
We build upon this previous work to incorporate hypotheses specific to apopto-
sis/extrusion and use additional geometric features and CNN classifications in the
hypothesis generation. The following hypotheses are generated: (i) true positive
track (ii) false positive track (iii) initializing at the beginning of the movie or near
the edge of the FOV, (iv) termination at the end of the movie or near the edge
of the FOV (v) a merge between two tracklets (vi) a division event or (vii) an
apoptotic event. The likelihood of each hypothesis is calculated for some or all
of the tracklets based on heuristics. The global solution identifies a sequence of
high likelihood hypotheses that accounts for all observations. Having identified the
global solution, the fates of each cell are updated, tracks are merged and lineage
trees are generated using a Breadth First Search (BFS) to traverse the trees.

As displayed from the alignment of 100 randomly selected annotated trajec-
tories followed over 40 minutes, the software is correctly assigning the anaphase
state to new tracks initialized after a division event (Fig 1H, left). Likewise, tra-
jectories terminating in a division event contain the correct class sequence motif
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of Interphase-Prometaphase-Metaphase (Fig 1H, middle). Trajectories terminat-
ing in apoptosis often follow a prolonged interphase sequence, although in some
circumstances appear to arise following a failed division event (Fig 1H, right).

The final output of the pipeline is a fully annotated time-lapse sequence yielding
the centroid, cell type, state and lineage/fate of every cell. Although segmenta-
tion of the cell boundaries would provide useful additional information, we found
that, in general, the result was error prone and not robust, due to the well-known
difficulty in unambiguously determining cell boundaries in the absence of addi-
tional markers. In order to assess the overall quality of the tracking output we
calculated the Multiple Object Tracking Accuracy (MOTA) [20], which yields a
mean accuracy of 93.3± 1.8% over the five datasets tested (Supplementary Note
2). Combined with the deep CNNs classification accuracy, these metrics suggest
that we are able to accurately detect, classify and track thousands of cells over 80
hours of time-lapse imaging.
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Supplementary Note 2

Quantitative assessment of cell tracking precision and accuracy. The
accuracy of our image analysis pipeline can be thought of as being determined by
several different sources of error:

1. Accuracy and precision of cell detection

2. Accuracy of cell state estimation

3. Accuracy of cell tracking

In this supplementary note we will quantify the accuracy and precision of de-
tection and tracking (Items 1 and 3). We took five different short time-lapse se-
quences (consisting of 20-30 frames and ≥50 cells), and split these between three
users to manually annotate the images, marking the cell centroids. We then used
our pipeline to automatically track the cells. We define four different types of
observations in the tracking output (Fig S9):

• True positive (TP, hit): This represents a true detection where the same
object is found in the output and the manual annotation.

• False positive (FP, false alarm): These are object detections in the output
that do not appear in the manual annotation.

• False negative (FN, miss): This represents a missed detection, not found
in the output but present in the manual annotation.

• Identity swap (IS, mismatch): This is a tracking error where the unique
identity of two tracks are swapped (perhaps by two objects crossing or by
close proximity) or an incorrect linkage event, for example during cell divi-
sion.

Next, we determined correspondences between the tracking output and the
manual annotations. Briefly, a cost matrix representing the Euclidean distance
between all pairs of detections and manual annotations is calculated. Matches are
determined using the Jonker and Volgenant solver [19]. The solver finds the lowest
cost solution, assigning a match (correspondence) between pairs of tracked objects
and manually annotated objects that minimises the distance between them. Cor-
respondences falling within a threshold distance limit are considered to be true
matches. Although the global optimisation step of the tracker removes false posi-
tive tracks, we have included them in the analysis to give an accurate estimation of
the errors in the segmentation steps. Finally, the tracks were inspected for identity
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Figure S9: Examples of tracking errors. A Representative image of one field
of view (1600 × 1200 pixels, 530µm × 400µm) showing tracking of hundreds
of cells. B Examples of different types of tracking errors. White arrows show
where incorrect detections or tracking errors occur. Numbers represent unique cell
identifiers.
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swap errors, which were counted manually.

We implemented the widely used Multiple Object Tracking (MOT) metrics to
provide a quantitative assessment of the tracking performance [20]. The two MOT
metrics used are:

Multiple Object Tracking Precision (MOTP):

MOTP =

∑
i,t d

i
t∑

t ct
(2)

Where dit is the Euclidean distance between manual annotation and tracker
output i at time t and ct is the number of matches at time t. This metric rep-
resents how precisely tracking algorithm can determine the position of an object.
It is the ratio of the total error in position to the number of true positive corre-
spondences between the tracker and manual annotation. In reality, the tracker is
accurately measuring the centroid of the object, whereas the user is estimating it,
so this value represents the user error and variability in determining the centroids
in this case.

Multiple Object Tracking Accuracy (MOTA):

MOTA = 1−
∑

t(FNt + FPt + ISt)∑
t gt

(3)

Where FNt, FPt and ISt are the number of false negative, false positive and
identity swaps observed at time t, and gt is the total number of true observations
at time t. This metric represents the errors associated with detecting objects and
accurately keeping track of them, independent of the ability to precisely localise
them. Overall we achieve a tracking accuracy (MOTA) of 93.3±1.8% as shown
in Table 1.
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Image User N ‡
true False False True Identity MOTP MOTA

seq. positive negative positive swap (pixels)
1 A 1099 35 39 1060 1 2.69 93.1%
2 B 795 27 17 778 0 3.33 94.4%
3 B 856 16 1 855 0 3.87 98.0%
4 B 931 33 19 912 0 3.88 94.3%
5 C 732 59 46 686 0 4.51 85.6%
Total - 4413 170 122 4291 1 3.61 93.3%

Table 1: Cell tracking quality assessment Quality metrics calculated from five
sequences by three separate users. ‡Ntrue is the total number of true observations
in the sequence or

∑
t gt.

Supplementary Note 3

Source code availability. MATLAB scripts for analysis of cell trajectories
are available at https://github.com/quantumjot/CellTracking. The Bayesian
tracking library is available at https://github.com/quantumjot/BayesianTracker.
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