3 research outputs found

    A Comparison of Uncertainty Estimation Approaches in Deep Learning Components for Autonomous Vehicle Applications

    Full text link
    A key factor for ensuring safety in Autonomous Vehicles (AVs) is to avoid any abnormal behaviors under undesirable and unpredicted circumstances. As AVs increasingly rely on Deep Neural Networks (DNNs) to perform safety-critical tasks, different methods for uncertainty quantification have recently been proposed to measure the inevitable source of errors in data and models. However, uncertainty quantification in DNNs is still a challenging task. These methods require a higher computational load, a higher memory footprint, and introduce extra latency, which can be prohibitive in safety-critical applications. In this paper, we provide a brief and comparative survey of methods for uncertainty quantification in DNNs along with existing metrics to evaluate uncertainty predictions. We are particularly interested in understanding the advantages and downsides of each method for specific AV tasks and types of uncertainty sources.Comment: Accepted Workshop AISafety 2020 - Workshop in Artificial Intelligence Safet

    Bayesian Deep Learning and Uncertainty in Computer Vision

    Get PDF
    Visual data contains rich information about the operating environment of an intelligent robotic system. Extracting this information allows intelligent systems to reason and decide their future actions. Erroneous visual information, therefore, can lead to poor decisions, causing accidents and casualties, especially in a safety-critical application such as automated driving. One way to prevent this is by measuring the level of uncertainty in the visual information interpretation, so that the system knows the reliability degree of the extracted information. Deep neural networks are now being used in many vision tasks due to their superior accuracy compared to traditional machine learning methods. However, their estimated uncertainties have been shown to be unreliable. To mitigate this issue, researchers have developed methods and tools to apply Bayesian modeling to deep neural networks. This results in a class of models known as Bayesian neural networks, whose uncertainty estimates are more reliable and informative. In this thesis, we make the following contributions in the context of Bayesian Neural Network applied to vision tasks. In particular: - We improve the understanding of visual uncertainty estimates from Bayesian deep models. Specifically, we study the behavior of Bayesian deep models applied to road-scene image segmentation under different factors, such as varying weather, depth, and occlusion levels. - We show the importance of model calibration technique in the context of autonomous driving, which strengthens the reliability of the estimated uncertainty. We demonstrate its effectiveness in a simple object localization task. - We address the high run-time cost of the current Bayesian deep learning techniques. We develop a distillation technique based on the Dirichlet distribution, which allows us to estimate the uncertainties in real-time

    Evaluating Architectural Safeguards for Uncertain AI Black-Box Components

    Get PDF
    Künstliche Intelligenz (KI) hat in den vergangenen Jahren große Erfolge erzielt und ist immer stärker in den Fokus geraten. Insbesondere Methoden des Deep Learning (ein Teilgebiet der KI), in dem Tiefe Neuronale Netze (TNN) zum Einsatz kommen, haben beeindruckende Ergebnisse erzielt, z.B. im autonomen Fahren oder der Mensch-Roboter-Interaktion. Die immense Datenabhängigkeit und Komplexität von TNN haben jedoch gravierende Schwachstellen offenbart. So reagieren TNN sensitiv auf bestimmte Einflussfaktoren der Umwelt (z.B. Helligkeits- oder Kontraständerungen in Bildern) und führen zu falschen Vorhersagen. Da KI (und insbesondere TNN) in sicherheitskritischen Systemen eingesetzt werden, kann solch ein Verhalten zu lebensbedrohlichen Situationen führen. Folglich haben sich neue Forschungspotenziale entwickelt, die sich explizit der Absicherung von KI-Verfahren widmen. Ein wesentliches Problem bei vielen KI-Verfahren besteht darin, dass ihr Verhalten oder Vorhersagen auf Grund ihrer hohen Komplexität nicht erklärt bzw. nachvollzogen werden können. Solche KI-Modelle werden auch als Black-Box bezeichnet. Bestehende Arbeiten adressieren dieses Problem, in dem zur Laufzeit “bösartige” Eingabedaten identifiziert oder auf Basis von Ein- und Ausgaben potenziell falsche Vorhersagen erkannt werden. Arbeiten in diesem Bereich erlauben es zwar potenziell unsichere Zustände zu erkennen, machen allerdings keine Aussagen, inwiefern mit solchen Situationen umzugehen ist. Somit haben sich eine Reihe von Ansätzen auf Architektur- bzw. Systemebene etabliert, um mit KI-induzierten Unsicherheiten umzugehen (z.B. N-Version-Programming-Muster oder Simplex Architekturen). Darüber hinaus wächst die Anforderung an KI-basierte Systeme sich zur Laufzeit anzupassen, um mit sich verändernden Bedingungen der Umwelt umgehen zu können. Systeme mit solchen Fähigkeiten sind bekannt als Selbst-Adaptive Systeme. Software-Ingenieure stehen nun vor der Herausforderung, aus einer Menge von Architekturellen Sicherheitsmechanismen, den Ansatz zu identifizieren, der die nicht-funktionalen Anforderungen bestmöglich erfüllt. Jeder Ansatz hat jedoch unterschiedliche Auswirkungen auf die Qualitätsattribute des Systems. Architekturelle Entwurfsentscheidungen gilt es so früh wie möglich (d.h. zur Entwurfszeit) aufzulösen, um nach der Implementierung des Systems Änderungen zu vermeiden, die mit hohen Kosten verbunden sind. Darüber hinaus müssen insbesondere sicherheitskritische Systeme den strengen (Qualitäts-) Anforderungen gerecht werden, die bereits auf Architektur-Ebene des Software-Systems adressiert werden müssen. Diese Arbeit befasst sich mit einem modellbasierten Ansatz, der Software-Ingenieure bei der Entwicklung von KI-basierten System unterstützt, um architekturelle Entwurfsentscheidungen (bzw. architekturellen Sicherheitsmechanismen) zum Umgang mit KI-induzierten Unsicherheiten zu bewerten. Insbesondere wird eine Methode zur Zuverlässigkeitsvorhersage von KI-basierten Systemen auf Basis von etablierten modellbasierten Techniken erforscht. In einem weiteren Schritt wird die Erweiterbarkeit/Verallgemeinerbarkeit der Zuverlässigkeitsvorhersage für Selbst-Adaptive Systeme betrachtet. Der Kern beider Ansätze ist ein Umweltmodell zur Modellierung () von KI-spezifischen Unsicherheiten und () der operativen Umwelt des Selbst-Adaptiven Systems. Zuletzt wird eine Klassifikationsstruktur bzw. Taxonomie vorgestellt, welche, auf Basis von verschiedenen Dimensionen, KI-basierte Systeme in unterschiedliche Klassen einteilt. Jede Klasse ist mit einem bestimmten Grad an Verlässlichkeitszusicherungen assoziiert, die für das gegebene System gemacht werden können. Die Dissertation umfasst vier zentrale Beiträge. 1. Domänenunabhängige Modellierung von KI-spezifischen Umwelten: In diesem Beitrag wurde ein Metamodell zur Modellierung von KI-spezifischen Unsicherheiten und ihrer zeitlichen Ausdehnung entwickelt, welche die operative Umgebung eines selbstadaptiven Systems bilden. 2. Zuverlässigkeitsvorhersage von KI-basierten Systemen: Der vorgestellte Ansatz erweitert eine existierende Architekturbeschreibungssprache (genauer: Palladio Component Model) zur Modellierung von Komponenten-basierten Software-Architekturen sowie einem dazugehörigenWerkzeug zur Zuverlässigkeitsvorhersage (für klassische Software-Systeme). Das Problem der Black-Box-Eigenschaft einer KI-Komponente wird durch ein Sensitivitätsmodell adressiert, das, in Abhängigkeit zu verschiedenen Unsicherheitsfaktoren, die Prädektive Unsicherheit einer KI-Komponente modelliert. 3. Evaluation von Selbst-Adaptiven Systemen: Dieser Beitrag befasst sich mit einem Rahmenwerk für die Evaluation von Selbst-Adaptiven Systemen, welche für die Absicherung von KI-Komponenten vorgesehen sind. Die Arbeiten zu diesem Beitrag verallgemeinern/erweitern die Konzepte von Beitrag 2 für Selbst-Adaptive Systeme. 4. Klassen der Verlässlichkeitszusicherungen: Der Beitrag beschreibt eine Klassifikationsstruktur, die den Grad der Zusicherung (in Bezug auf bestimmte Systemeigenschaften) eines KI-basierten Systems bewertet. Der zweite Beitrag wurde im Rahmen einer Fallstudie aus dem Bereich des Autonomen Fahrens validiert. Es wurde geprüft, ob Plausibilitätseigenschaften bei der Zuverlässigkeitsvorhersage erhalten bleiben. Hierbei konnte nicht nur die Plausibilität des Ansatzes nachgewiesen werden, sondern auch die generelle Möglichkeit Entwurfsentscheidungen zur Entwurfszeit zu bewerten. Für die Validierung des dritten Beitrags wurden ebenfalls Plausibilitätseigenschaften geprüft (im Rahmen der eben genannten Fallstudie und einer Fallstudie aus dem Bereich der Mensch-Roboter-Interaktion). Darüber hinaus wurden zwei weitere Community-Fallstudien betrachtet, bei denen (auf Basis von Simulatoren) Selbst-Adaptive Systeme bewertet und mit den Ergebnissen unseres Ansatzes verglichen wurden. In beiden Fällen konnte gezeigt werden, dass zum einen alle Plausibilitätseigenschaft erhalten werden und zum anderen, der Ansatz dieselben Ergebnisse erzeugt, wie die Domänen-spezifischen Simulatoren. Darüber hinaus konnten wir zeigen, dass unser Ansatz Software-Ingenieure bzgl. der Bewertung von Entwurfsentscheidungen, die für die Entwicklung von Selbst-Adaptiven Systemen relevant sind, unterstützt. Der erste Beitrag wurde implizit mit Beitrag 2 und mit 3 validiert. Für den vierten Beitrag wurde die Klassifikationsstruktur auf bekannte und repräsentative KI-Systeme angewandt und diskutiert. Es konnte jedes KI-System in eine der Klassen eingeordnet werden, so dass die generelle Anwendbarkeit der Klassifikationsstruktur gezeigt wurde
    corecore